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ABSTRACT

The stationary spherically symmetric accretion flow in the Schwarzschild metric has
been set up as an autonomous first-order dynamical system, and it has been studied
completely analytically. Of the three possible critical points in the flow, the one that
is physically realistic behaves like the saddle point of the standard Bondi accretion
problem. One of the two remaining critical points exhibits the strange mathematical
behaviour of being either a saddle point or a centre-type point, depending on the values
of the flow parameters. The third critical point is always unphysical and behaves like
a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows
for comparison with the general relativistic analysis.
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1 INTRODUCTION

To researchers in astrophysics and general relativity, phys-
ical models of spherical symmetry have an abiding appeal.
One especial advantage with these models is that almost
always they lend themselves to an exact mathematical anal-
ysis, and in the process they allow a very clear insight to be
had into the underlying physical principles. For this reason
in particular, spherically symmetric models frequently serve
as a firm foundation for constructing theoretical models of
physical systems involving more realistic and, therefore, un-
avoidably complicated features.

Studies in accretion are no exception to this practice.
Ever since the seminal work published by (@),
that effectively launched the subject in the form in which
it is recognised today, the problem of spherically symmetric
flows has been revisited time and again from various
angles (Parker [1958, 11966; |Axford & Newman [1967; Balazs
11972; Michel [1972; Mészarod 11975; [Blumenthal & Mathews
11976; [Mészéros & Silk [1977; [Begelman [1978; |Cowie et all
1978; Stellingwerf & Buff 1978; |Garlick 1979; Brinkmanrl
1980; Moncrief [1980; [Petterson et all [1980; Vitelld [1984;

Bonazzola et all IL%_’H, IL(L(H; Theuns & David M;
ina [1994; Markovid [1995; [Tsuribe et all
11995; |Titarchuk et al! [1996; |Zampieri et al. 1996}

Titarchuk et aljm; Kovalenko & Eremin M; @M,
Maled [1999; [Toropin et. all [1999; Das [2000; Das & Sarkai
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2001; [Ray & Bhattacharjed [2002; Ray [2003; [Dad [2004;
Ray & Bhattacharjee 2005; (Gaite 2006).

The original work of [Bondi (@) introduced formal
fluid dynamical equations in the Newtonian construct of
space and time to study the stationary accretion problem.
From here the connection to the proper general relativis-
tic framework was not too long in coming. In particular
it was (@) who made an important early foray
into the general relativistic domain, which was followed by
a spate of other works, of which some (to mention a few),
along with the paper of (@), addressed various
aspects related to the critical behaviour of general relativis-
tic flows in spherical symmetry (Begelman! [1978; Brinkmanl
11980; Maled [1999; IDas & Sarkax [2001).

The work being presented here is also along the same
lines. Its direct purpose is to construct a pedagogical theory
to understand the nature of the critical points of station-
ary spherically symmetric flows in the Schwarzschild met-
ric, after starting with the set of basic stationary equations
which govern the flow. To the extent that critical solutions
— specifically transonic solutions in regard to spherically
symmetric flows — can only pass through some critical
points (which must arguably be saddle points), this treat-
ment will also have a bearing on a very important gen-
eral issue in accretion studies — the manner in which a
compressible astrophysical fluid passes (either continuously
or discontinuously) from infinity to the event horizon of
a black hole. In addressing this question the mathemati-
cal method that has been adopted is a dynamical systems
analysis, which is always an effective tool for researchers in
non-linear dynamics, and which has been tried successfully
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before in a related astrophysical system, namely multitran-
sonic flows in an inviscid and thin pseudo-Schwarzschild ac-
cretion disc (Chaudhury et all[2006). While it is to be natu-
rally expected that the same treatment could be carried over
directly to a rotational flow in the Schwarzschild metric, it
has also been a worthwhile exercise to consider spherically
symmetric flows first, as a suitably uncomplicated starting
point into more intricate general relativistic problems. An
immediate advantage in studying this relatively simple sys-
tem has been that the mathematical treatment could be
carried out with full analytic rigour, something, as it has
been stressed right at the beginning, that has inspired the
choice of the spherically symmetric model in the first place.
It has been found here that under practical restrictions on
the conditions for critical behaviour, it will be possible to
gain a complete mathematical understanding (in the sense of
producing final results which are absolutely non-numerical)
of the nature of the critical points (not all of whom may be
physically realistic), and the pattern of the solution topolo-
gies in the neighbourhood of those points. In no way do
these results contradict any of the earlier findings (Michel
1972; IBegelman [1978), and if anything, many surprisingly
new features in the flow, hitherto unrecognised, have been
revealed.

The dynamical systems treatment has also been car-
ried out on pseudo-Schwarzschild spherical flows driven
by some of the established pseudo-Newtonian poten-
tials (Paczynski & Wiita 11980; Nowak & Wagoner (1991
Artemova et all [1996) to check for the consistency of this
approach with the fully general relativistic methods. All the
results have been in complete qualitative compatibility with
one another in the sense that there is only one physically
meaningful critical point in the flow through which a so-
lution could pass transonically, connecting infinity to the
event horizon of the black hole. In one important detail,
however, a quantitative difference has appeared. For accre-
tion governed by cold ambient conditions, transonicity has
been shown to be very much more pronounced in a properly
relativistic flow, than in a pseudo-Schwarzschild flow.

The case for a dynamical systems approach in study-
ing a proper general relativistic problem has been argued
cogently in this work. The mathematical methods demon-
strated here can very well be applied to the more involved
accretion disc system, described both by the Schwarzschild
metric and the Kerr metric. This particular study will be
reported separately. Meanwhile, following the treatment on
pseudo-Schwarzschild flows reported by |Chaudhury et al.
(2006), the present work on spherically symmetric flows may
be considered to be the second in a series that pedagogically
underlines the conspicuous advantages of applying dynam-
ical systems methods in standard astrophysical fluid flow
problems.

2 THE GENERAL RELATIVISTIC FLOW AND
ITS FIXED POINTS

In this general relativistic treatment of a spherically sym-
metric, stationary, compressible fluid flow, the two relevant
flow variables will be the radial inflow three-velocity, v, and
the local proper mass density of the fluid, p. The radial co-
ordinate of the flow is scaled by the Schwarzschild radius,

rg = ZGMBH/C2 (here Mgy is the mass of the black hole),
with any characteristic velocity in the flow being scaled
by c. Setting G = ¢ = 1, the general relativistic analogue
of Bernoulli’s equation will be given as (Chakrabarti 1990,
1996; IDas 12004)

pt+e [1—r—1
E=hv = P T2 (1)

with the pressure, p, connected to the density, p, through
an equation of state, p = kp”, and the specific enthalpy, h,
expressed as

p=tLE 2)
p
in which the energy density, € (which includes the rest mass

density and the internal energy), is to be set down as,

_ p
€—P+—7_1. (3)

It is then possible to arrive at the relation

v—1 1—r-t
€Z(W—1—c§)\/ 1—02’ (4)

with the speed of sound, c¢s, defined under conditions of con-
stant entropy, S, as

2_81?
<7 Be

(®)

s
Through the equation state, p = kp”, the speed of sound
can be connected to the density, p, as

p= {’yk(l incg)} ' (©)

with n being given by the usual definition of the polytropic
index (Chandrasekhan [1939) as n = (y —1)~*.

The stationary continuity condition, on the other hand,
will give another relation connecting the velocity and density
fields as,

[1—r—1 .
471'pm“2 Tz =™ (7)

with 7 being an integration constant, which is to be physi-
cally identified as the mass accretion rate.

It is now easy to see that equations ), (@) and ()
will give a complete description of the flow system. Making
use of equation (@) in equation (), and then going back to
equation (), it will be possible to express the gradient of
solutions in the » — v? plane as

d, _v2(1—v2)[c§(4r—3)—1]
)= r(r—1) (@ —c?) ’ (®)

with ¢s being used as a characteristic local scale of velocity
in the fluid, against which the local bulk velocity of the flow,
v, is to be measured.

From the foregoing expression it is evident that there
will be non-trivial singularities under the conditions r = 1
and v? = ¢Z, unless the numerator in equation (§) vanishes
simultaneously. The condition r = 1, of course, corresponds
to the behaviour of the flow on the actual event horizon of
the black hole (where v? = 1), but of immediate interest
is the condition v? = ¢2, which will give a critical condi-
tion for the flow at » > 1, if and only if the requirement of
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cZ (4r — 3) = 1, is simultaneously satisfied in the numerator.
In that event the critical point conditions in the flow will be
expressed as
Uc2 = Cgc = Fl_y 9)
with the subscript “c” labelling the critical point values.
The next logical step from here is to represent the crit-
ical point coordinates in terms of the parameters of the sys-
tem. This can be done in two ways — either by substituting
ve and cse in equation (IZI) and expressing 7. as a function of
& and 7, or by substituting the same critical point values in
equation (7)) and expressing r. as a function of 7 and ~. Ei-
ther approach is entirely equivalent to the other, and here for
simplicity of algebraic manipulations, the former approach
is being adopted. This will deliver a cubic equation in r. as

78+ Aor? + Arre + Ao = 0, (10)
where
27
Ao = 64(€2—1)
4= 23 -2 (v - 1)’
TeE - (- 1)?
and
2(2-37)E2+9(y—-1)
A = .

4 -1 (-1

The solutions of equation ([I0]) can be found completely
analytically by employing the Cardano-Tartaglia-del Ferro
method for solving cubic equations. To that end it should
be first convenient to define

2
5, = 3A19 A27
5, = 9A1 As — 27T Ao — 2A§7
54
U =3} 433,
&= (22 + \/@)1/3
and

& = (22 — \/6)1/3,

following which, the three roots of r. can ultimately be set
down as

Az

ra=-72+(&+&), (11)
Te2 = —% —(&1+ &)+ i\/?g (61— &2) (12)
and

re =52 — (64 &) - N; (& - &), (13)
respectively.

The sign of ¥ should be crucial in determining the na-
ture of the roots. If ¥ > 0, then only one root of r. will be
real, while for U < 0, there will be three real roots. Since it
is obvious that ¥ will have a dependence on £ and -, it will
be instructive to consider the appropriate ranges of values
for these two parameters.

The parameter £ is scaled in terms of the rest mass en-
ergy and it includes the rest mass energy itself. So it might
be argued that a lower limit of £ would be £ = 1. On the
other hand, although £ can in principle assume any value
greater than unity, values of £ > 2 will imply extremely hot
conditions at the outer boundary, with the thermal energy
being much greater than the rest mass energy. Such a situ-
ation could not conceivably prevail in realistic astrophysical
systems, and so the practically admissible range of £ will be
restricted to 1 < £ < 2. The non-relativistic range of £, on
the other hand, will be 0 < £ < 1, without any involvement
of the rest mass energy. This range will be considered for
the pseudo-Schwarzschild treatment in Section [l

The parameter « is likewise restricted by the range
1 < v < 2. The lower limit, i.e. v = 1, corresponds to op-
tically thin, isothermal accretion, while values of v > 2 will
involve magneto-hydrodynamics in the general relativistic
theory and the anisotropic nature of pressure. For most re-
alistic purposes, it should be noted, the range of v actually
varies from 4/3 to 5/3. Detailed discussions devoted to these
issues are to be found in the literature (Begelman |1978; [Das
2004).

And so it is that with the ranges of 1 < £ < 2 and
1 < v < 2, it should be easy to show that ¥ would always be
negative. This will consequently imply that the three roots
of rc, as given by equations (1)), (I2) and ([3), are always
real, and they can be represented in terms of a new variable,

© = arccos 22 = |
/%3
as
Tej = —% + 2/ =% cos [76 + ng(j — 1)] , (14)

with the label j taking the values {j = 1,2, 3}, respectively,
for the three distinct roots. Of these roots, rc2 is always neg-
ative and, therefore, is not of much physical interest. The
other two roots are always positive, and of these two, the
one at rq is always to be found at distances greater than
the event horizon of the black hole, i.e. 7c1 > 1. A physically
meaningful transonic inflow solution, connecting infinity to
the event horizon, seems to prefer the critical point at rc1 to
the one at rc3, even when r¢3 > 1. Through the latter point,
the flow exhibits non-physical properties like the matter in-
flow rate, as given by equations (@) and (@), being reduced to
an imaginary quantity. It was also pointed out by [Das (2004)
that a flow associated with this point becomes superluminal
much before reaching the event horizon of the black hole.
Nevertheless, for all its apparent barrenness from a physical
perspective, this critical point is not entirely devoid of some
very interesting mathematical properties, when a dynamical
systems approach is made to study the nature of the critical
points of the flow. This issue will be taken up in Section [3l

3 PROPERTIES OF THE FIXED POINTS : AN
AUTONOMOUS DYNAMICAL SYSTEM

So far the flow variables have been ascertained only at the
critical points. Since the flow equations are in general non-
linear differential equations, short of carrying out a numer-
ical integration, there is no completely rigorous analytical
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prescription for solving these differential equations to deter-
mine the global nature of the flow variables. Nevertheless,
some analytical headway could be made after all by tak-
ing advantage of the fact that equation (§]), which gives a
complete description of the r — v? phase portrait of the
flow, is an autonomous first-order differential equation, and
as such, could easily be recast into the mathematical form
& = X(z,y) and y = Y (z,y), which is that of the very famil-
iar coupled first-order dynamical system (Jordan & Smith
1999).

With the adoption of this line of attack, equation (8]
may be decomposed in terms of a mathematical parameter,
T, to read as

d

5(02) = (1 - v2) [cg (4r —3) — 1}
% = r(r—1) (v2 — cg) (15)

in both of which, it must be noted that the parameter 7
does not make an explicit appearance in the right hand side,
something of an especial advantage that derives from work-
ing with autonomous systems. This kind of parametrization
is quite common in fluid dynamics (Bohr et al! 1993), and
in accretion studies especially, this approach has been made
before (Ray & Bhattacharjed 2002; [Afshordi & Paczyriski
2003; IChaudhury et all [2006). A further point that has to
be noted is that the function ¢ in the right hand side of
equations (I3 can be expressed entirely in terms of v? and
r, with the help of equations (@) and (7). This will exactly
satisfy the criterion of a first-order dynamical system.

The critical points of the foregoing dynamical system,
as equations (@) give them, have already been identified, and
as equation ([I0Q) indicates, they have also been fixed in terms
of the physical flow parameters. Beyond this stage, the next
task would be to make a linearised approximation about the
fixed point coordinates and extract a linear dynamical sys-
tem out of equations ([IH). This will give a direct way to
establish the nature of the critical points (or fixed points),
which will ultimately pave the way for an investigation into
the global behaviour of the solutions in the phase portrait
of the flow. Indeed, not infrequently, if the flow system is
simple enough, with only an understanding of the features
of its critical points, complete qualitative predictions can be
made about the global solutions. In this regard the classi-
cal spherically symmetric Bondi flow, with its single criti-
cal point, provides an object lesson (Ray & Bhattacharjee
2002).

Expanding about the fixed point values, a perturbation
scheme of the kind v? = vZ + §v%, 2 = 2. + 6¢2 and r =
rc+dr is now to be applied on equations ([I3)), and then a set
of coupled autonomous linear equations is to be derived from
them. While doing so, it will also be necessary to express dc2
itself in terms of dr and dv?, with the help of equations (G

and (@), as

6c? vy—1-— c2 1 5v? 4r. — 3 [ Or
s - _ sC - _ . 16
c2 2 1—v2 \ v2 + re—1 (TC) (16)

The resulting coupled linearised equations will then read as

B (1 — cgc)
re (re — 1) o

4

3 (6v°) = —B&v® + |4cd —
o

Figure 1. Variation of 92 (associated with a physical saddle
point) with respect to the parameters £ and v for the fully gen-
eral relativistic spherically symmetric flow. All values of Q? are
positive for the chosen ranges of £ and ~y. For small values of these
two parameters, the saddle-type feature is very robust.

%(&«) = re(re—1) (1 +

— Ug) 50% + Bér,  (17)
with B = (y — 1 — ¢%)/2. Using solutions of the type dv? ~
exp(Q7) and dr ~ exp(27) in equations (7)), the eigenvalues
of the stability matrix associated with the critical points will
be derived as

c? 3(re—1) 2—+
2 _U° _ _
O = 1 + (2r¢ C)[ pr— el (18)
where
et =-Dre=Bv-2)

4re — 3

Once the position of a critical point, rc, has become
known, it is then quite easy to determine the nature of that
critical point by using r. in equation ([8). Since r. is a
function of £ and ~, it effectively implies that Q% can, in
principle, be regarded as a function of the flow parameters.
From the form of Q2 in equation (I8]), a generic conclusion
that can be immediately drawn is that the only possible
critical points will be saddle points and centre-type points,
and for the former, Q% > 0, while for the latter, Q? < 0.
This is entirely to be expected because the physical system
under study here is a conservative system, very much like,
by analogy, the undamped simple harmonic oscillator, the
fixed points of whose phase portrait also manifest identical
properties (Jordan & Smith11999).

Of the three critical points, as implied by equation ({4,
the one given by the unphysical negative root, rc2, is always
a centre-type point. This is something that by itself is also
an equally unphysical trait as far as transonic accretion is
concerned, where the whole objective is to have a solution
that will connect infinity to the event horizon of the black
hole, and in doing so will cross the sonic barrier with a finite
gradient.

This requirement, on the other hand, is very eminently
met at the critical point fixed at 7.1, which is always a sad-
dle point and allows a physical transonic solution to pass
throught itself without any hindrance whatsoever. The be-
haviour of this critical point has been graphically depicted
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Figure 2. The general relativistic flow has a strange critical point
which behaves sometimes like a saddle (22 > 0) and at other
times like a centre-type point (22 < 0), depending on the values
of the parameters £ and ~. The dependence of Q2 does not exhibit
widespread deviations, except for small values of £ and ~.

in Fig. [l An interesting fact that emerges from the plot
is that for low values of £ and ~, there is a strong growth
behaviour for Q2. In fact, as £ and ~ approach unity, the
value of Q? increases by four orders of magnitude than what
has been scaled along the vertical axis of Fig. I:IE7 and this is
exactly how it should be. Apart from the sign of Q? — al-
ways positive and, therefore, indicative of a saddle point —
its magnitude also conveys quantitative information about
the strength of the saddle-type behaviour; the greater its
magnitude, the more prominent in effect will be the tran-
sonic behaviour of the flow (which will pass through the
saddle point). When £ and + approach unity, it will cor-
respond more closely to a cold, isothermal distribution of
matter, and this will make the flow easily submit to the
strong gravitational influence of the black hole (a hotter and
more pressure-dominated flow will be capable of building a
much greater resistance against gravity). Transonicity can
only occur when gravity triumphs over all other effects, and
the general features of the flow indicated by Fig. [l is an
emphatic endorsement of physical transonicity in a general
relativistic scenario.

On the other hand, a most intriguing and counter-
intuitive behaviour is to be encountered at the critical point
characterised by 73, which is placed between rc1 (always
a saddle point) and rc2 (always a centre-type point). De-
pending on the values of the parameters £ and -y, this point
exhibits the properties of both a saddle point (22 > 0) and a
centre-type point (22 < 0). As far as the former case is con-
cerned, this is a very curious state of affairs indeed, because
conventional wisdom about well-behaved fixed points will
have it that no two adjacent fixed points can both be saddle
points (Jordan & Smith|1999), quite contrary to what is be-
ing seen here — a saddle point (obviously realistic and phys-
ically meaningful) and a centre-type point (however physi-
cally unrealistic) flanking a point which, on some occasions
at least, behaves like a saddle (and on other occasions like a

1 This reduced scaling of the vertical axis will give a much better
resolution of the overall behaviour of Q2 against the parameters
on which it is dependent.

centre). It is difficult to provide an analogy for this kind of
behaviour from any other area in physics. One might con-
jecture that this waywardness could be intimately connected
to the divergent behaviour (like superluminal motion) exhib-
ited by solutions associated with this critical point (when it
behaves like a saddle point). A quantitative graphical un-
derstanding of the nature of this critical point has been con-
veyed in Fig. Bl Once again it is to be seen that as £ and
7 both assume values closer to unity, strong evidence of a
saddle-type behaviour results.

4 THE PSEUDO-SCHWARZSCHILD
APPROACH : A COMPARATIVE STUDY

Frequently in studies of black hole accretion, it becomes con-
venient to dispense completely with the rigour of general
relativity, and instead make use of an “effective” pseudo-
Newtonian potential that will imitate general relativistic ef-
fects in the Newtonian construct of space and time. In that
event the relevant stationary equations for the compressible
spherically symmetric flow will look like

dv 1dp

’UE-F;E-‘F(ZS,(T):O (19)
and

d 2

I (pvr ) =0 (20)

respectively, with the former being the familiar Euler’s equa-
tion and the latter the equation of continuity (Chakrabarti
1990; [Frank et al! [2002). In equation (I9), ¢(r) is the gen-
eralised pseudo-Newtonian potential driving the flow (with
the prime denoting its spatial derivative), and p is the pres-
sure of the flowing gas, which is related to the density by
the usual polytropic prescription. The local speed of sound,
with which the bulk flow will have to be scaled, is defined
by ¢ = dp/dp, following which the connection between the
p and cs could be established as

p= <%> : (21)

whose form may, for academic interest, be compared with
the general relativistic analogue given in equation (@)).

Making use of equation (2] in equation (20]), and then
going back to equation (I9)), will lead to a relation for the
gradient of solutions, which will read as

d, 22 [202 - rqﬁ'(r)}
V)= —————

dr r (v —c2) (22)

The critical points in the flow will be derived from the
standard requirement that the flow solutions will have a fi-
nite gradient when they will cross the sonic horizon, which
will mean that both the numerator and the denonimator
will have to vanish simultaneously and non-trivially. This
can only happen when

re¢’(re)
2 )
which gives the critical point conditions, with the subscript
“c” labelling the critical point values, as usual.
It is not a difficult exercise to integrate equation (9]
and then transform the variable p in it to ¢, with the help

2 _ 2
Ve = Csc =

(23)
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of equation (2I]). Once this has been done, the critical con-
ditions, as given by equations (23], will have to be invoked,
and all of these will deliver a relation for fixing the critical
point coordinates in terms of the flow parameters, £ (which
is actually Bernoulli’s constant) and ~. This relation will
look like

: (1—“:1) red/(re) + o(re) = €, (24)
with the ranges of values of £ and v here, in what is es-
sentially a non-relativistic approach, being accordingly cho-
sen (Das & Sarkai 2001), as opposed to the relativistic val-
ues of £ and v adopted in Section [3

The choice of the pseudo-Newtonian potential, ¢(r), will
obviously determine the number of roots of equation (24)).
Four such potentials have been considered here, and they
have in general been labelled as ¢ = ¢;(r), with {i =
1,2,3,4}. In an explicit form, each of these potentials will
be given as

¢1(r) = —ﬁ
w0 - - 2en]
o) = 14 (1 ~ %)1/2

bu(r) = %11«1(1—%) (25)

in all of which, the length of the radial coordinate, r,
has been scaled in units of the Schwarzschild radius, de-
fined as ry = QGMBH/C2. Every potential mentioned
above has been introduced in accretion literature at vari-
ous stages to meet some specific physical requirement —
¢1 by [Paczyniski & Wiita (1980), ¢2 by [Nowak & Wagoner
(1991), and ¢3 and ¢4 by |Artemova et all (1996), respec-
tively. With respect to spherically symmetric flows in par-
ticular, a comparative overview of the physical properties of
these potentials has been given by [Das & Sarkar (2001).

Considering each of the potentials separately in equa-
tion (24)), it will be seen that two distinct roots will be ob-
tained on using both ¢ and ¢3, while from ¢2 three roots
will be delivered. The fourth potential, ¢4, will lead to a
transcendental equation, and any root, therefore, can only
be extracted by numerical methods. Using the bisection al-
gorithm, it can be shown that only one physical root is pos-
sible.

With each such physically feasible root, a critical point
can evidently be associated. The way to have any apprecia-
tion of the behaviour of these critical points has already been
outlined in Section [Bl The first task would be to set up an
autonomous dynamical system (in terms of a mathematical
parameter, 7), which will be

d o 2 [ 2 /
E(U ) = 2v [QCS —rd (r)]
% = r (v2 — cg) . (26)

2 2

Subject to the perturbation scheme, v? = v2 4 §v?, 2 =
c2. + 6c2 and r = r. + or, equation 26) will lead to a set
of coupled autonomous linear equations in the perturbed
quantities dv? and &7, with d¢2 having first been expressed
in terms of §v? and dr from the continuity condition, as

Figure 3. Dependence of Q2 (always positive) on the parameters
& and + for the pseudo-Newtonian potential, ¢;. The saddle-type
behaviour is maximum for intermediate values of £ and ~.

5c? 1 | 602 or
S = 4—1. 27
cZ 2n |: v2 rc] (27)
The coupled linear dynamical system will be
d 2 o QCEC 2 2
T (6v7) = - ov” — 20D or
d _ 1 2 263(:
5(57“) = e (1—|— 2n) ov” + - or, (28)
with
4C§c ’ 1
D=— c c c)-
S5 () + e (1)

From here it is an easy passage to deriving the eigenval-
ues of the stability matrix associated with the critical points.
With the use of solutions, §v* ~ exp(Q27) and 6r ~ exp(Qr),
in equations (28], these eigenvalues will be derived as

2 [red' )l [0 o\ . 9(re)
Q=135 -(r+1) <o) |

2

from whose structure it can once again be claimed that the
critical points can only be either saddle points or centre-type
points. The dependence of Q2 on € and + has been separately
shown in Figs. Bl and @] under the choice of ¢1 and ¢4, re-
spectively. For ¢ there are two critical points, of which only
one is the physically relevant saddle point, while for ¢4 there
is only one critical point, which has to be found numerically.
It is always a saddle point. The two potentials, ¢1 and ¢4,
have been chosen because they give a closer Newtonian ap-
proximation to fully general relativistic conditions, than the
other two potentials, ¢2 and ¢3 (Das & Sarkar 2001). From
both the plots in Figs. Bland [ it is quite evident that con-
trary to what it was for the fully general relativistic case, for
pseudo-Schwarzschild flows, strongly transonic features (in-
dicated by high positive values of Q?) occur at much greater
values of £ and ~.

(29)

5 CONCLUDING REMARKS

In trying to mathematically understand the nature of the
three critical points in the general relativistic flow, it has
been shown that there arises a situation, whereby, because
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Figure 4. Dependence of Q2 (always positive) on the parameters
& and « for the pseudo-Newtonian potential, ¢4. The saddle-type
behaviour has a monotonic growth with increasingly higher values
of £ and ~.

of the fluctuating nature of the middle critical point (some-
times a saddle point and sometimes a centre-type point),
two contiguous critical points will be of the same kind. If
these two particular points are both saddle-type then as an
exercise of mathematical interest (if not of any direct phys-
ical relevance), it will be patently impossible to connect the
two points by continuous solutions. However, going back to
equation (8), and subjecting it to a closer examination, a
possible way of bypassing this difficulty could be found. It
has been discussed already that the only critical conditions
selected from equation (8) will be the ones on length scales
greater than that of the event horizon. On the other hand, if
some of the unphysical criteria (1)2 =latr=1orv=0at
r = 0, etc.) for criticality in the flow were to be taken into ac-
count, then some new critical points (of mathematical inter-
est only) could be found in the global phase portrait, even on
unrealistic length scales. These possible critical points may
then settle the difficulty which has arisen from the appar-
ent existence of adjacent critical points of the same nature.
Solutions could then be connected from one region to the
other through these “hidden” critical points.

Another problem with saddle points is that solutions
passing through them are notoriously sensitive to the
fine tuning of the outer boundary condition of the flow.
This is a standing problem with stationary flows and in
consequence of this, it has been shown for the classical
Bondi problem that transonicity could be achieved only
if the evolution of the flow were to be followed through
time (Ray & Bhattacharjee 12002). This is a relatively easy
proposition in the Newtonian domain. When a flow is stud-
ied in the general relativistic regime, the time-dependent
evolution will require much greater mathematical (both an-
alytical and numerical) sophistication. Having made this
point it should also be a fair expectation that transonic-
ity would continue all the same to hold its primary position
in spherically symmetric flows.
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