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It is shown that the Maxwell’s equations for surface electromagnetic TM waves, propagating

along the plane boundary between two nonlinear dielectrics with arbitrary diagonal tensor of

dielectric permittivity, depending on |E|, can be integrated in quadratures.
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Surface electromagnetic waves, propagating along the boundary between two media with

different optical properties were widely studied [1-7]. Nonetheless the integration of the

corresponding equations presents difficulties because of their complicated nonlinear form.

We will consider surface TM waves for the case of two dielectric media with the diagonal

dielectric permittivity tensor εi k = diag(εx, εy, εz), therewith εx, εy, εz are considered as

arbitrary real functions of electric field strength E.

Suppose the plane x = 0 to be that of separation and plane electromagnetic wave with

frequency ω and wave vector k to propagate along z-axis. We will consider TM wave,

assuming

H = (0, H, 0); E = (Ex, 0, Ez) .

Putting ∂t = −v ∂z, where v = ω/k = β c is the wave velocity, we write the system of

Maxwell’s equations in each medium:

∂x (εx Ex) + ∂z (εz Ez) = 0 , (1)

∂x (H − β εx Ex) = 0 , (2)

∂z Ex − ∂x Ez = β ∂z H . (3)

Inasmuch at x = ±∞ the field is supposed to vanish, from (2) we will find

H = β εx Ex . (4)

Assuming that ∂z = ik, Ex = iA, Ez = B, where A and B are real functions, from

(1), (3) and (4) we deduce

(εx A)′ + k εz B = 0 , (5)

B′ = k A(εx β2 − 1) , (6)

where prime denotes differentiation with respect to x. Taking the functions εx(A
2 + B2)

and εz(A
2 + B2) as given ones, we will admit that |E|2 and εz can be expressed as some

functions of εx, i.e.

|E|2 = A2 + B2 = I(εx), εz(|E|2) = K(εx) . (7)
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Denoting εx A = f , from (5) and (7) we will find

I(εx) =
f 2

ε2
x

+
f ′2

k2 K2(εx)
, (8)

where, according to (5)

B = − f ′

k K(εx)
. (9)

Differentiating the equation (8) in view of (6), one gets

dI

dεx
ε′x = (f 2)′

(

1

ε2
x

− β2

K
+

1

εx K

)

− 2 f 2

ε3
x

ε′x . (10)

The equation (10) admits the integrating factor Y (εx) (see Appendix 1):

lnY (εx) =

εx
∫

dK

X K2

(

1

εx

− β2
)

+

εx
∫

dεx

ε2
x K X

, (11)

where

X(εx) =
1

ε2
x

− β2

K
+

1

εx K
. (12)

Given εx(0), the value of permittivity εx at E = 0, i.e. at x = ±∞, from (10) we deduce

the quadrature
εx
∫

εx(0)

Y (εx) dI(εx) = f 2 X(εx) Y (εx) . (13)

The equation (13), thus, defines the function f = F (εx), and finally one gets A = ε−1
x F (εx).

Solving the equation (8) with respect to f ′ and taking into account (13), we find the

equation

f ′ =
dF

dεx
ε′x = ± k K(εx)

[

I(εx) − F 2(εx)

ε2
x

]1/2

,

which is integrated in quadratures:

k x = ±
∫ dF (εx)

K(εx)
[

I(εx) − F 2(εx)
ε2
x

]1/2
. (14)

Here the sign ± is to be chosen in accordance with the domain x > 0 or x < 0. The integra-

tion constants in (14) are to be found from the boundary conditions, which are equivalent to

the continuity conditions for the functions f and f ′ at x = 0. The solution of the boundary

conditions, mentioned, is defined by the form of the functions εx(|E|2) and εz(|E|2).

Let us consider a simple example assuming that

εx = ax + bx|E|2, εy = ay + by|E|2, εz = az + bz|E|2, (15)
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with ax, ay, az, bx, by, bz being constants. Then from (7) one gets the functions:

I(εx) =
εx − ax

bx
, K(εx) = q +

bz

bx
εx, (16)

with q = az − (bz/bx) ax. Putting them into (11) we get (see Appendix 2)

Y (εx) = (q +
bz

bx
εx)

[

2 β2 εx + d −
√

D

2 β2 εx + d +
√

D

]d/bx

√
D

, (17)

where d = bz/bx − 1 and D = (1 + bz/bx)
2 + 4 β2 q. Here we assume that D > 0. For

simplicity we will now consider the case when the dielectric is isotropic, i.e.

εx = εy = εz = ε = a + b |E|2. (18)

In this case one gets the integrating factor Y (ε) = ε. Putting it into (13) and taking into

account that at x → ∞, f → 0 and ε → a, we find

f = F (ε) =

√

√

√

√

ε(ε2 − a2)

2 b (2 − β2 ε)
. (19)

The equation (14) in this case reads:

k x = ±
∫ 3 ε2 − β2 ε3 − a2

ε (ε − a) (2 − β2 ε)
√

P (ε)
dε, (20)

where P (ε) = (ε + a) (3 ε − 2 β2 ε2 − a). One can rewrite this equality in the form:

k x = ±
[
∫

dε
√

P (ε)
+ a

∫

dε

(ε − a)
√

P (ε)
+

+
a

2

∫

dε

ε
√

P (ε)
+ (1 +

aβ2

2
)
∫

dε

(2 − β2ε)
√

P (ε)

]

. (21)

Using the substitution

ε =
3

4 β2
+

µ

4 β2
cos2ϕ, µ =

√
9 − 8 ν, ν = a β2, (22)

one can rewrite the last equality by means of elliptical integrals (see Appendix 3):

k x = ∓[C0 F (ϕ, s) +
3

∑

j=1

Cj Πj(ϕ, nj , s)], (23)

where

C0 =
2
√

2

ξ
, s2 =

2 µ

ξ2
,

C1 =
8
√

2ν

ξ (3 − 4ν + µ)
, n1 = − 2 µ

3 − 4ν + µ
,

C2 =
4
√

2ν

ξ (3 + µ)
, n2 = − 2 µ

3 + µ
,

C3 =
8
√

2(1 + ν/2)

ξ (5 + µ)
, n3 = − 2µ

5 + µ
,
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with ξ =
√

3 + 4ν + µ.

The boundary conditions at x = 0

ε1 Ex1 = ε2 Ex2, (24)

and

Ez1 = Ez2 (25)

for the case considered can be represented as follows:

b2

b1

ε1 (ε1 − a1) (ε1 + a1)

β2
1 ε1 − 2

=
ε2 (ε2 − a2) (ε2 + a2)

β2
2 ε2 − 2

, (26)

(ε1 − q1 + τ1)(ε1 − q1 − τ1)

ε2
1 (ε1 + a1)

=
(ε2 − q2 + τ2)(ε2 − q2 − τ2)

ε2
2 (ε2 + a2)

, (27)

where qi = 3/4β2
i and τi =

√

9 − 8aiβ2
i /4β2

i , i = 1, 2.

The explicit form of relations (26) and (27) makes evident the existence of such param-

eters b2/b1 or β for which the equations (26) and (27) are satisfied.

Appendix 1:

Multiplying the equation (10) by Y one gets:

Y
dI

dεx
ε′x = (f 2)′

(

1

ε2
x

− β2

K
+

1

εx K

)

Y − 2 f 2

ε3
x

ε′x Y.

The righthand side of the last equation can be written as:

[f 2 X Y ]′ − 2 f 2

ε3
x

ε′x Y − f 2 X Y ′ − f 2 X ′ Y.

Here X = 1/ε2
x − β2/K + 1/εx K. Equating the last three terms of the R.H.S. to zero we

come to the equation

Y ′

Y
=

K ′

X K2
(

1

εx
− β2) +

ε′

ε2 K X
,

which leads to the equation (11).

Appendix 2:
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Putting K(εx) and X into (11) one gets

lnY (εx) = (bz/bx)
∫

dεx

K
− d

∫

dεx

K + Ω
,

with Ω = εx (1 − β2 εx). Assuming that D = (1 + bz/bx)
2 + 4 β2 q > 0 after integrating

one finds:

lnY (εx) = ln | q +
bz

bx
εx | + [d/bx

√
D] ln | 2 β2 εx + d −

√
D

2 β2 εx + d +
√

D
| .

Appendix 3:

For ε = 3
4 β2 + µ

4 β2 cos2ϕ, one gets dε = − µ
2 β2 sin2ϕ dϕ, and

P (ε) =
µ2

8 β2
sin22ϕ

[

(3 + 4aβ2) + µ cos2ϕ

4 β2

]

.

In view of these expressions we get

∫

dε
√

P (ε)
= −C0

∫

dϕ
√

1 − s2 sin2ϕ
= −C0 F (ϕ, s).

Analogously one can find the other terms.
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