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Spin Correlation and Discrete Symmetry in Spinor Bose-Einstein Condensates
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We study spin correlations in Bose-Einstein condensates of spin 1 bosons with scatterings dom-
inated by a total spin equal 2 channel. We show that the low energy spin dynamics in the system
can be mapped into an o(n) nonlinear sigma model(NLσM). n = 3 at the zero magnetic field limit
and n = 2 in the presence of weak magnetic fields. In an ordered phase, the ground state has a
discrete Z2 symmetry and the degeneracy space is [U(1) × Sn−1]/Z2. We explore consequences of
the discrete symmetry and propose some measurements to probe it.

Recently, there has been a burst of theoretical and
experimental activities on spinor Bose-Einstein conden-
sates [1–6]. An optical trap confines alkali atoms inde-
pendent of spins and liberates spin degree of freedoms
[2,3]. For sodium(23Na) or rubidium(87Rb) atoms with
nuclear spin I = 3/2 and electrons at s orbits, the energy
splitting between hyperfine multiplets is of order 100mk.
At temperatures as low as 100nk, 23Na and 87Rb atoms
can be considered as simple bosons with a hyperfine spin
F = 1. The ground state of N spin 1 noninteracting
bosons has (N +1)N/2 folds spin degeneracy, by contrast
to its magnetically trapped cousins. Presumably, hyper-
fine spin-dependent scattering lifts the degeneracy and
leads to a spin correlated state. Optically trapped BEC
therefore sets up a platform for studying quantum mag-
netism in many boson systems and adds a new dimension
to already extremely rich physics in these systems.

The spin-dependent two -body interaction in BEC is
characterized by U2(r1, r2) = δ(r1 − r2)[c0 + c2F1Ḟ2], as
suggested in an early paper [4]. Here c0 = (g0 + 2g2)/3,
c2 = (g2 − g0)/3; gF = 4πh̄2aF /M , M is the mass of the
atom and aF is the s-wave scattering length in the total
spin F channel. Thus, the spin correlation in a BEC is
determined by c2. For 87Rb, g2 < g0 or c2 < 0 and the
scattering is dominated by the total spin F = 0 channel.
In the ground state, all spins of atoms prefer to align in a
certain direction and have a maxima magnetization [4].

For 23Na studied experimentally [2], the scattering
between 23Na atoms is dominated by the total spin
F = 2 channel, i.e. g2 > g0. The scattering between
23Na atoms thus leads to an ”antiferromagnetic” spin
correlation. Efforts have been made to understand the
ground state properties, exact excitation spectra, collec-
tive modes [4–6]. Many interesting predictions, such as
spin waves, spin mixing dynamics were made for 23Na
BEC where c2 > 0.

In this paper, we show the spin dynamics in BEC with

c2 > 0 is characterized by an o(n) nonlinear sigma model
(NLσM) of n components. n = 3 at zero magnetic field
limit and n = 2 in the presence of a weak magnetic field.
Spin correlations in spinor BEC can be studied in the
context of the NLσM. We identify that the internal or-
der parameter space for BEC as [S1 × S2]/Z2(zero field
limit) and the ground state is nematically ordered. We
explore consequences of the discrete Z2 symmetry.

To describe the spin correlated BEC, it is most conve-
nient to introduce Weyl representation of SU(2) involv-
ing polynomials of a unit vector (u, v) [7]. Each unit
vector is represented by a point Ω on a sphere with po-
lar coordinates (θ, φ); namely u = exp(iφ/2) cos(θ/2),
v = exp(−iφ/2) sin θ/2. The corresponding hyper-
fine spin operators are F+ = u∂/∂v, F− = v∂/∂u,
and Fz = (u∂/∂u − v∂/∂v)/2. The scalar prod-
uct between two wavefunctions g and f is defined as
∫

g∗(u, v)f(u, v)dΩ/4π. (We reserve Ω for the spin ro-
tations discussed below.)

Under spin rotations R = exp(iFzχ1/2) exp(iFyθ1/2)
exp(iFzφ1/2), u and v transform into

u(Ω1, χ1) = exp(iχ1/2)

(cos θ1/2 exp(−iφ1/2)u + sin θ1/2 exp(iφ1/2)v),

v(Ω2, χ2) = exp(−iχ2/2)

(− sin θ2/2 exp(−iφ2/2)u + cos θ2/2 exp(iφ2/2)v), (1)

where Ω1,2 = (θ1,2, φ1,2). Spin-1 wavefunctions are poly-
nomials of degree 2 in u and v.

√
3u2,

√
6uv,

√
3v2 cor-

respond to m = 1, 0,−1 states. All F = 1 states can
also be expressed in term of

√
6u(Ω1)v(Ω2) with Ω1,2

properly chosen.
The Hamiltonian for spin-1 bosons can be written as

H = − 1

2M

∑

α

∇2
α +

∑

α,β

[
c0

2
+

c2

2
Fα ·Fβ ]δ(r − r

′)

−
∑

α

FzαgµBH. (2)
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The second term is hyperfine spin-dependent interaction
with c2 > 0 and the last term is the coupling with an
external magnetic field H = Hez; g is a Lande factor of
an atom and µB is the Bohr magneton.

The wavefunction of N spin-1 Bosons generally can be
written as [8]

Ψ({rα}) = PΠα=1...NΦNα
(rα)

√
6uα(Ω1α(rα))vα(Ω2α(rα)).

(3)

P is the permutation of {Nα}, {Ω1α,Ω2α}. Nα labels
an one-particle orbital state. Phases χ1,2 in Eq.1 are
absorbed by a gauge transformation of the wavefunction
ΦNα

introduced above. For BEC under consideration, we
take Ω1α,2α = Ω1,2(r) and ΦNα

(r) = Φ(r) (Φ(r) is a com-
plex scalar field). By introducing n(r) = (Ω1 + Ω2)/2,
L(r) = (Ω1−Ω2)/2 and Φ(r) =

√

ρ(r) exp(iχ(r)), we de-
rive from Eqs.2,3 an effective Hamiltonian as a function
of two pairs of variables : {n(r),L(r)} and {ρ(r), χ(r)}.
These are collective variables of the N interacting spin-
1 Bosons, which describe the spin dynamics and phase
dynamics respectively. In this representation, the hyper-
fine spin dependent interaction in Eq.2 is mapped into
Hs =

∫

drc2L
2(r)ρ2(r), which only depends on collective

variable L when ρ(r) is taken as a constant. This indi-
cates that each atom acquires an inertial I0 = 1/2c2ρ in
the presence of hyperfine spin dependent scatterings with
c2 > 0; the rotation energy in the presence of a finite spin
moment L is thus L

2/2I0.
In the most interesting limit, we can introduce the lo-

cal spin density as l(r) = L(r)ρ(r). n and l satisfy the
constrain n(r) · l(r) = 0. Commutation relations between
ρ and χ, n(r) and l(r) are given as [ρ(r), χ(r′)] = ih̄δ(r−
r
′); [nα(r),nβ(r′)] = 0, [lα(r),nβ(r′)] = ih̄ǫαβγ

nγδ(r −
r
′), [lα(r), lβ(r′)] = ih̄ǫαβγ

lγδ(r − r
′). ǫαβγ is an anti-

symmetric tensor. These identities are valid when L per
atom is much less than unity and n(r) can be considered
as a classical ”vector”, components of which commutate
with each other. The corresponding Lagrangian density
can be derived as L = Ls + Lc + Lsc [8], with

Lc ≈ ρ

2M
[(∇χ(r))2 +

1

v2
c

(∂τχ)2],

Ls =
ρ

2M
[(∇n(r))2 +

1

v2
s

(∂τn)2],

Lcs =
ρ

M

1

v2
s

[n × ∂τn · n× (∇χ · ∇)n]. (4)

Here ρ = ρ(0), vc =
√

2ρc0/M , vs =
√

2ρc2/M . We
introduce τ = it as the imaginary time. Nonlinearality
is imposed via a constraint |n2| = 1 at a low frequency
limit. Eq.4 is the main result of the mapping and we have
kept contributions which are lowest order in terms of ∂τ

and ∇. Lc is taken in a Gaussian approximation and
should be replaced by a full Gross-Pitaveskii Lagrangian
in general. We will be mostly interested in the spin sector

and simplification in Lc doesn’t affect conclusions here.
Ls in Eq.4 represents an o(3) NLσM.

The last term Lsc characterizes a coupling between a
spin rotation and the superflow in BEC due to Berry’s
phase. This term, however, is linear in ∂τ and quadratic
in spatial gradient and is negligible compared with Ls,Lc

at the long wave length limit. Particularly, such a cou-
pling vanishes in a configuration where L is zero.

At the zero field limit, there exists a saddle point solu-
tion for the spin sector n(r) = n0, l(r) = 0. n0 lives on a
unit sphere. By expanding Eq.4 around the saddle point
solution, we obtain spin waves with sound like spectrum
ω =

√

4c2ρ/Mk, which can also be obtained in the Gross-
Pitaveskii approach [4]. However, Eq.4 here is valid for
any point Ω1 ∼ Ω2 on the unit sphere. The effective
NLσM derived here allows us to describe spin correlated
states well beyond the Gross-Pitaveskii approach.

For a symmetry broken state, the ground state wave-
function in Eq.3 with Ω1 = Ω2 = n is invariant under a
global transformation n, χ → −n, χ + π;

Ψ(n, χ) = Ψ(−n, χ + π), Ψ(n) = (−1)NΨ(−n) (5)

where χ is the phase of the scalar field Φ(x) intro-
duced before. In obtaining this symmetry, we notice
u(n) = exp(iπ/2)v(−n), with π/2 from a phase of a spin-
1/2 particle under a 1800 rotation. Eq.5 shows that the
many-body wavefunctions characterized by (n, χ) and
(−n, χ + π) are indistinguishable. Thus, the spinor BEC
under considerations has a discrete Z2 symmetry and the
order parameter space is R = [S1 ×S2]/Z2, with Z2 as a
two-element group of integers modulo 2.

As in a classical uniaxial nematic liquid crystal where
diatomic molecules are indistinguishable upon an inver-
sion of their directors n and the internal order param-
eter space is S2/Z2, the Z2 symmetry identified here
also indicates that there exists a tensor order parameter
[9]. For the purpose of demonstration, let us introduce
a ”director” dx = [uv∗ + vu∗]/2, dy = [uv∗ − vu∗]/2i,
dz = [uu∗ − vv∗]/2. One then can show for the ground
state wavefunction in Eq. 3, < d >= 0 but nematic order
parameter Qαβ = 1/ρ[< dαdβ > −1/3Tr < dαdβ >] is
nonzero. Here <> stands for an average taken over the
ground state wave function Ψ. In fact,

Qαβ =
2

5
[−3n0αn0β + δαβ ]. (6)

According to Eq.6, the director d aligns in a plane per-
pendicular to n0.

Topological defects in this case are of particular inter-
est because of the discrete symmetry in Eq.5. Following
the general theory for the classification of defects in a
symmetry broken state, the Z2 symmetry leads to π spin
disclinations superimposed with half vortices, which oth-
erwise don’t exist. The corresponding wavefunction of
composite linear singularities (Z2 strings) is

2



lim
ξ→∞

n(ξ) = Re(
ξ − ξ0

|ξ − ξ0|
)m+1/2

ex + Im(
ξ − ξ0

|ξ − ξ0|
)m+1/2

ey,

lim
ξ→∞

vs(ξ) =
1/2 + n

M |ξ − ξ0|

[Im(
ξ − ξ0

|ξ − ξ0|
)ex − Re(

ξ − ξ0

|ξ − ξ0|
)ey]. (7)

Here ξ = x+iy and lines are located at ξ0 = x0+iy0; n, m
are integers and vs is superfluid velocity [10]. Each string
is characterized by (m, n). However, (−1, n), (±3, n),
(±5, n) strings can be obtained by deforming string (1, n)
and are homotopical identical to (1, n).

In a composite string given in Eq.7, n evolves into −n

along a loop enclosing ξ0. The corresponding spin wave-
function changes its sign under an inversion n → −n,
following the identity u(n)v(n) = −u(−n)v(−n). A su-
perflow vs of a half vortex is present to compensate the π
phase under n → −n rotation and ensure the single val-
uedness of the wavefunction. This composite structure is
different from a linear defect in a classical nematic liquid
where π disclinations are free topological excitations. In
fact, in a coherent spinor BEC, a bare π-spin disclination
carries a cut along which phase changes abruptly from π
to 2π or 0. This cut starting at the disclination ends
only at the boundary of the system and costs an energy
linear in term of the size of BEC. For a similar reason,
the energy cost to have a π disclination and a half-vortex
separated at a distance L is linearly proportional to L.
Composite strings in Eq.7 should be considered as results
of confinement of π spin disclinations and half vortices in
spinor BEC [11].

In the presence of an external magnetic field along z
direction, Ω1,2 = n ± ezgµBH/4c2ρ and n satisfies con-
strain

n · µBH

4c2ρ
ez = 0. (8)

Obviously, an external magnetic field breaks the S2 sym-
metry and confines low frequency sector of n in a plane
perpendicular to H itself. The Lagrangian in the pres-
ence of a magnetic field is that of an O(2) NLσM; it has
S1-symmetry at the frequency ω ≪ µBH . At the high
frequency limit, n precesses in a field 4c2l(x), much larger
than the external field and S2-symmetry is restored.

As a consequence, the order parameter space for the
quantum spin nematic state in an external magnetic field
is R = [S1 × S1]/Z2. The nematic order parameter Qαβ

is still given by Eq.7, with the easy plane of d parallel to
the external field. Wavefunctions for linear defects are of
same forms as those in Eq.7, but with all strings (m, n)
homotopically distinguishable.

We have restricted ourselves to the weak magnetic field
limit and neglected the possible quadratic Zeemann shift
HQZ =

∑

α QH2F 2
zα (the external field H is along ez di-

rection). Inclusion of the quadratic Zeemann shift yields
an additional term LQZ =

∫

ρQH2(n2
x + n

2
y)dx to the

NLσM derived. The main effect of this contribution is to
align n along the external field. When this shift domi-
nates, the ground state is left with a double degeneracy:
n = ez and n = −ez. The spin wave develops an energy
gap of order QH2. We will focus on the zero magnetic
field case in the rest of discussions.

In general, following Eq.4, spin correlated BEC can be
studied by considering a NLσM,

Ls =
1

2f
(∂µn)2,n2 = 1;

f = (16π)1/2(ρ∆a3)1/6, ∆a =
a2 − a0

3
. (9)

We introduce dimensionless length and time: r̃ =
rρ1/3, τ̃ = τvsρ

1/3. Derivatives ∂µ are defined as
(∂τ̃ , ∂x̃, ∂ỹ, ∂z̃). f−1 is a square root of the ratio between
potential energy at an interatomic scale h̄2ρ2/3/2m and
zero point kinetic(rotation) energy c2ρ/2 of an individual
atom. The zero point motion is absent for noninteracting
bosons but gets stronger when c2 increases, or the effec-
tive inertial I0 gets smaller. The o(3) NLσM has order
and disordered phases at d > 1, depending on the param-
eter f . Most of qualitative results about spin correlations
in BEC can be obtained in a renormalization group (RG)
approach [8]. For ρ∆a3 = 10−6 as is in experiments, a
long range nematic order should be observed.

In 1D case, at zero temperature and zero field, one
should expect there will be no long range order and the
state is nematically disordered, following the RG results
of NLσM [13]. These nematic disordered states mimic
the quantum spin liquid states proposed in the literature
of Heisenberg antiferromagnetic systems(HAFS). How-
ever, we notice that the NLσM derived from the micro-
scopic Hamiltonian in this paper doesn’t have a θ-term
Lθ = θ/4π

∫

dτdxn · ∂n/∂τ × ∂n/∂x, which is gener-
ally present in HAFS studied before [12]. Absence of
a θ-term, which ensures an energy gap in the excitation
spectrum of nematic state, follows a fact that the Berry’s
phase under rotations of n vanishes identically [8].

Two remarks are in order. 1) At a high density limit,
one should also take into three-body, four-body elastic
scatterings. This can further modify the short distance
dynamics but will not affect conclusions arrived above in
a qualitative way. 2)One should be cautious about the
definition of ”phase” since the alkali atoms under investi-
gation are in a long lived metal stable gaseous state. The
life time of alkali atomic gas is limited by three-body in-
elastic collisions [14]. The collision rate is proportional to
the square of the number density of atoms and increases
dramatically as the density increases. This sets a prac-
tical limit in order for the quantum disordered nematic
liquid to be probed in BEC.

Since the experiment [2] was done in a BEC cloud with
a few millions sodium atoms, it is also particularly inter-
esting to consider the symmetry restoring due to a fi-
nite size effect. We take a weakly interacting limit where
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quantum fluctuations of finite wave length are negligible.
In a zero mode approximation, Hamiltonian becomes,

Hz.m = ρc2

L
2

2N
. (10)

L is the total spin of the N-Bosons system and can be con-
sidered as an angular momentum operator defined on a
unit sphere of n [8]. And [n,n] = 0, [Lα,nβ] = ih̄ǫαβγ

nγ ,
[Lα,Lβ ] = ih̄ǫαβγ

Lγ . The energy spectrum is given by
L

2 = l(l + 1), which is identical to that obtained in [6].
l = 0, 2, 4, ....N , if N is an even number; and l = 1, 3, 5, ...
otherwise. The energy gap between lowest lying excita-
tions is inversely proportional of N and vanishes at large
N limit.

Now consider a wave packet with n confined within
a region centered at n0 = ez of size

√
< δ2n >0 ≪ 1

on the unit sphere at t = 0. Spread < δ2
n > is de-

fined as the expectation value of n
2
x + n

2
y. In spherical

polar coordinates (θ, φ) where n is a vector represented
by (sin θ cosφ, sin θ sin φ, cos θ), the corresponding wave
packet(for an even N) can be constructed as

Ψ(θ, φ, t) =
1

B

∑

l=2n

exp(− l2

4σ
− it

l(l + 1)c2ρ

2N
)Yl,0(θ, φ).

(11)

Here B =
∑

l exp(−l2/2σ); < δ2
n >0= A0/σ with con-

stant A0 estimated to be a constant of unity. Yl,0(θ, φ)
are spheric harmonics. σ ≫ 1 but σ/N is vanish-
ingly small. The energy of this wave packet is ∆E =
2A0σc2ρ/N . In the limit N → ∞, an infinitesimal ex-
ternal field will stablize this wave packet with respect to
the rotation invariant state.

The spread of n at a time t is

< (δn)2 >t=< (δn)2 >0 +4A0σ(t
c2ρ

N
)2, (12)

which is valid at t < τc = σ/A0∆E. At t > τc, the
spread is of order unity. Therefore,

√
< δ2n >t exceeds

the initial spread
√

< δ2n >0 at a time of order 1/∆E.
At a longer time τc, n starts to explore the whole unit
sphere S2 and the rotation symmetry is restored due to
spin-dependent scatterings in BEC.

Eq.12 also imposes restrictions on measurements. A
measurement of n in 23Na BEC discussed here excites
the ground state to an excited state of energy ∆E, where
n has a finite spread on S2 and ∆E is infinitesimal small
in the thermal dynamical limit. The time scale to re-
store the broken symmetry is determined by the two-
body spin dependent scattering lengths and the number
of atoms in BEC. A measurement taken at a time scale
longer than σ/A0∆E should reveal the symmetry restor-
ing because of zero point motions of n. With N ∼ 107

and c2ρ ∼ 100Hz(500nK), the symmetry restoring time

is about one day which is much longer than the life time
of the trap. However, for a smaller cloud with 103−4

atoms, the symmetry restoring can take place within
10 − 100secs, before recombination processes take place.

Nematically ordered BEC has very fascinating optical
properties [8]. In the presence of spin-orbital couplings,
dielectric constant is a tensor expressed in terms of Qαβ .
This suggests that birefringence takes place in the system
as a direct evidence of the hidden Z2 symmetry. Another
experiment consequence associated with the broken sym-
metry is the enhanced small angle light scattering due to
thermal fluctuations of n. For 23Na, the light scattering
amplitude can be four order of magnitude higher than
that in an isotropic BEC and the nematic BEC is opti-
cally turbid. Finally, the Z2 symmetry also implies that
there exists a local Z2 gauge field in BEC. This was re-
cently considered and will be published elsewhere [15].

FZ would like to thank E. Demler, J.Ho for many stim-
ulating discussions. He is particularly grateful to F. D.
Haldane for his guidance and interest on this subject.
This work was partially supported by ARO under DAAG
55-98-1-0270.

[1] C. J. Myatt et al., Phys. Rev. Lett. 78, 586(1997).
[2] D. M. Stamper-Kurn et al., Phys. Rev. Lett. 80,

2027(1998).
[3] J. Stenger et al., Nature 396, 345(1998).
[4] T. L. Ho, Phys. Rev. Lett. 81, 742 (1998); T. L. Ho and

S. K. Yip, Phys. Rev. Lett. 84, 4031(2000).
[5] T. Ohmi and K. Machinda, J. Phys. Soc. Jpn. 67,

1822(1998).
[6] C. K. Law et al., Phys. Rev. Lett. 81, 5257(1998).
[7] D. P. Arovas et al., Phys. Rev. Lett. 60, 531(1988);I.

Afflect, J. Phys. Condensed Matter 1, 3047(1989).
[8] F. Zhou and F.D. Haldane, Preprint ITP-UU-

00/51(2000).
[9] P. G. de Gennes, The physics of liquid crystals, Oxford

University Press(1974).
[10] Half vortices were also discussed by V. Leonhart and G.

E. Volovik, JETP Lett. 72,46(2000).
[11] The vortex core is ferromagnetic with spins oriented

along the direction of the flux, Haldane, unpublished.
[12] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153(1983).
[13] A. M. Polyakov Gauge Fields and Strings, Hardwood aca-

demic publishers(1987).
[14] W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn,

in Bose-Einstein condensation in atomic gases, Proceed-

ings of the international School of Physics Enrico Fermi,

Course CXL, edited by M. Inguscio, S. Stringari and C.
E. Wieman (IOS Press, Amsterdam, 1999).

[15] E.Demler and F.Zhou, cond-mat/0104409; E. Dem-
ler, F.Zhou and F.D. Haldane, Preprint ITP-UU-
01/09(2001).

4

http://lanl.arxiv.org/abs/cond-mat/0104409

