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We report conductivity measurements of Cr-doped V2O3 using a variable pres-

sure technique. The critical behavior of the conductivity near the Mott-insulator

to metal critical endpoint is investigated in detail as a function of pressure and

temperature. The critical exponents are determined, as well as the scaling

function associated with the equation of state. The universal properties of a

liquid-gas transition are found. This is potentially a generic description of the

Mott critical endpoint in correlated electron materials.
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Since the early recognition by Mott [1, 2] that electron-electron interactions are responsible

for the insulating character of many transition-metal oxides, extensive research over the last

decade has demonstrated the key importance of this phenomenon for the physics of strongly

correlated electron materials. Outstanding examples [3] are superconducting cuprates, mangan-

ites displaying colossal magnetoresistance, or fullerenecompounds. There are two routes for

achieving a metallic state, starting from a Mott insulatingmaterial. The first is to introduce

charge carriers by doping. The second, closely connected toMott’s original ideas, is to reduce

the ratioU/W between the typical strength of local Coulomb repulsion (U) and the typical

kinetic energy of the relevant electrons (W ). This can be achieved in practice, in some materi-

als, by selected atomic substitutions or by applying pressure. The most widely studied example

[4, 5, 6, 7, 8] is Cr-doped Vanadium sesquioxide (V1−x Crx)2O3 which displays a transition from

a paramagnetic Mott insulator to a strongly correlated metal. The transition into the metallic

state can be triggered by lowering temperature (at sufficiently small chromium concentration

x), by decreasingx or by increasing pressureP (early studies[4, 5, 6, 7] have revealed that

decreasing concentration by∆x ∼ −0.01 corresponds to an applied

pressure of∆P ∼ 4kbar). The transition is first-order, with a significant reduction of the lat-

tice spacing through the insulator-to-metal transition, indicating a coupling between electronic

and lattice degrees of freedom. The first-order transition line in the(P, T ) - or (x, T ) -phase

diagram ends in a second-order critical endpoint(Pc, Tc).

We report on transport experiments which allow for a preciseidentification of the critical

behavior associated with this critical endpoint, a question of fundamental importance in under-

standing the Mott transition. Recent theoretical developments have proposed a description of

the critical behavior in simplified purely electronic models (and also of the crossovers between

distinct transport regimes close to the critical point). Despite extensive studies of this material,

the critical behavior has not been elucidated so far experimentally. The key technique used in
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the present work is to perform conductivity measurements asa function of continuously vary-

ing pressure, at constant temperature (see ref. [5] for an early study). This is particularly well

adapted to the present situation in which the transition line in the(T, P ) plane is very sharp. In

contrast, the work of Kuwamotoet al.[8] investigated conductivity as a function of temperature

for a discrete set of chromium concentrationsx.

We use an isopentane liquid pressure cell, and control the value of pressure with an accuracy

of 1 bar. Conductivity is measured at constant regulated temperature with an accuracy of order

0.1 K, as a function of pressure, using a standard four-probe method. All our measurements

were performed on crystals of (V0.989 Cr0.011)2O3 grown using the skull-melter technique fol-

lowed by appropriate annealing [9]. The choice of a Cr concentrationx = 0.011 is such that

the sample is on the insulating side of the transition at ambient pressure but that a moderate

pressure (a few kilobars) drives the system into the metallic state (or, alternatively, a decrease

in temperature). This is visible on the data set (Fig. 1A), which displays the conductivityσ as a

function of pressureP , for several temperatures in the range290K < T < 485K. These data are

obtained by decreasing pressure fromP = 6 kbar down to ambient pressure, going from a high-

conductivity metallic regime to a low-conductivity insulating regime. For temperatures smaller

than the critical temperatureTc this transition is discontinuous, with a sudden jump of the con-

ductivity. In order to locate precisely this critical pointand to demonstrate the first-order nature

of the transition, we have performed hysteresis experiments in which the conductivity is mea-

sured during increasing and decreasing pressure sweeps at aslow rate of order 25 bar/min (Fig.

1A). From the difference between the measured conductivities in these two sweeps (Fig. S2),

two characteristic pressures can be identified,PM(T ) andPI(T ) (PM < PI), corresponding

respectively to the lowest pressure at which a metallic state can be sustained while decreasing

pressure (PM ), and to the highest pressure at which an insulating state can be sustained while

increasing pressure (PI). These two spinodal lines , plotted as a function of temperature on Fig.
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1B, merge at the critical endpoint(Pc, Tc). We can then estimate:Pc ≃ 3738 bar,Tc ≃ 457.5 K.

Varying pressure rather than temperature is essential for aprecise determination ofTc, which

is compatible with the early estimate (≃ 450K) by Kuwamoto et al.[8]. At the critical tem-

perature, the pressure dependence ofσ(P, Tc) becomes singular, with a vertical tangent at the

critical pressureP = Pc (Fig. 2A). ForT > Tc, this singular behavior is replaced by a contin-

uous variation of the conductivity with pressure, which nevertheless defines a sharp crossover

line in the(P, T ) phase diagram (as also depicted in Fig. 1B). This crossover line extrapolates

to a temperature of order∼ 500K for the pressure (∼ 5kbar) corresponding to the pure V2O3

compound. Interestingly, the location of this crossover coincides with the one detected in early

NMR experiments[10].

We now show that the critical singularities found in the vicinity of the critical endpoint

(Pc, Tc) can be analyzed in the framework of the scaling theory of the liquid-gas transition of

classical systems[11]. The analogy between the latter and the finite-temperature Mott transition

has been emphasized early on by Castellaniet al.[12] (see also Ref. [5]). The insulating phase

(in which the Vanadium is mainly in the V3+ state, corresponding to thed2 configuration) can

be pictured as a “gas” phase with a low density of double occupancies or holes (corresponding

to V2+ and V4+, or d3 andd1, respectively). The metallic phase corresponds to a “liquid”

with a sizeable density of holes and double occupancies. Recently, this analogy has been given

firm theoretical foundations within the framework of a Landau theory[13, 14] derived from

dynamical mean-field theory (DMFT)[15]. In this framework,a scalar order parameterφ is

associated with the low-energy electronic degrees of freedom which build up the quasiparticle

resonance in the strongly correlated metallic phase close to the transition. This order parameter

couples to the singular part of the double occupancy (hence providing a connection to the picture

described above), as well as to other observables such as theDrude weight or dc-conductivity.

Because of the scalar nature of the order parameter, the transition falls in the Ising universality
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class. Coupling to lattice degrees of freedom can also be included in the theory[16] without

changing this conclusion. In the following we denote byr the scaling variable corresponding

to the temperature scaling axis in the Ising model analysis (i.e. to the termrφ2 in the Landau

functional) and byh the scaling axis corresponding to magnetic field (i.e. to thesymmetry-

breaking term−hφ). These scaling variables are a priori linear combinationsof (T − Tc)/Tc

and(P − Pc)/Pc. However, our data are compatible with no or little mixing, so that we choose

in all the following: r = (T − Tc)/Tc + · · · , h = (P − Pc)/Pc + · · · (the dots indicate higher

order terms). Denoting byσc = σ(Pc, Tc) (≃ 449.5 Ω−1cm−1) the measured conductivity at

the critical point, it is expected thatσ(P, T ) − σc depends linearly on the order parameter〈φ〉

close to the critical point. (This can be explicitly proven in the context of DMFT). AtT = Tc,

this implies a critical singularity of the form:σ(P, Tc) − σc ∼ h1/δ with δ the critical exponent

associated with the singular dependence of the magnetization at the critical point in the Ising

model. The data in Fig. 2A are very well fitted by this form, as demonstrated in the inset.

Over more than two decades inh ∝ (P − Pc)/Pc, we find the best-fit value of the exponent

to beδ ≃ 3, i.e. the mean-field value. In a narrow pressure interval (∆P ≃ 10 bar) close to

the critical pressure, indication for a crossover towards avalueδ ≃ 5 is found, close to the

three-dimensional (3D) Ising valueδ ≃ 4.814.

We now address the critical behavior away fromTc by studying the temperature dependence

of the conductivity in the following manner. ForT < Tc, we focus on the conductivity of the

metallic state, at the high-pressure boundary of the coexistence region. That is, we consider

σ∗(T ) ≡ σmet(PI(T ), T ) − σc with PI(T ) the spinodal of the insulating phase. This quantity,

plotted in Fig. 2B, is expected to display the critical behavior of the order parameter, by analogy

with the liquid-gas transition:σ∗(T ) ∼ (−r)β with r ∝ (T − Tc)/Tc. As shown in the inset

(Fig. 2B), a mean-field value of the critical exponentβ ≃ 0.5 is found to fit the data over

almost two decades away from the critical point. In a narrow temperature interval∆T ≃ 4K
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close toTc (∆T/Tc ≃ 0.01), some indication for a crossover towards a non mean-field value

β ≃ 0.34 is found, close to the 3D Ising valueβ ≃ 0.327. We also consider the derivative

of the conductivity with respect to pressure, in the metallic state, taken on the same spinodal

line: χ(T ) ≡ (dσmet(P, T )/dP )|P=PI(T ). This quantity can be defined as well forT > Tc

by taking the derivative at the inflection point of theσ(P ) curve (Fig. 1A). Following the

liquid-gas analogy, it corresponds to the magnetic susceptibility in the equivalent Ising model:

χ ∝ d〈φ〉/dh. As shown in Fig. 2C, it is found to diverge asχ ∼ χ+/(T −Tc)
γ for T > Tc and

asχ ∼ χ−/(Tc − T )γ′

for T < Tc. The exponentγ, as well as the (universal) amplitude ratio

χ+/χ−, are found to be close to their mean-field values:γ = γ′ = 1, χ+/χ− = 2. Very close to

Tc, the noise in the numerical derivative involved in the determination ofχ prevents a reliable

determination of deviations from mean-field, in contrast tothe above study of the conductivity

itself.

Finally, we demonstrate that the whole set of conductivity data in the metallic phase can be

scaled onto a universal form, which can be written as:

σmet(P, T ) − σc = (δh)1/δ f±

(

δh

|r|γδ/(δ−1)

)

(1)

In this expression,δh = h − hI denotes the difference between the ”field”h = (P − Pc)/Pc

and its value on the spinodal line of the insulating phasehI = (PI − Pc)/Pc, i.e.: δh =

(P − PI(T ))/Pc. This amounts to a simple shift of the field variable on the standard form [11]

of the universal equation of states near a liquid-gas critical point. The functionsf+ andf− are

universal scaling functions which apply forT > Tc (r > 0) andT < Tc (r < 0), respectively.

When written in this form, the equation of state is such that the order parameterσ∗(T ) defined

above is recovered when the limitδh → 0 is taken in the right-hand side of Eq. 1. The pressure-

dependent data sets for many different temperatures have been plotted in this manner (Fig. 3),

in which the two exponentsγ andδ were taken as adjustable parameters (Fig. S3) in order to
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obtain the best collapse of all the data points onto single curves. This leads to values of these

exponents close to the mean-field onesγ ≃ 1, δ ≃ 3, which provides a strong check on the

individual determination of each critical exponent performed above. The quality of the scaling

is seen to be excellent over a very large range of variation ofthe scaling variables (several

decades). It is apparent that the scaling functions obey theexpected asymptotic behaviors:

f+(x ≪ 1) ∼ x1−1/δ , f−(x ≪ 1) ∼ x−1/δ andf±(x ≫ 1) ∼ const.. This finding is essential to

ensure that Eq. 1 be compatible with the critical behavior ofthe order parameterσ∗ at small and

large field, for bothT < Tc andT > Tc, investigated previously in Fig. 2. It also implies that

the critical exponents obey the relationγ = β(δ−1), in agreement with the above determination

of β.

These universal scaling properties of the pressure- and temperature-dependent conductivity

experimentally demonstrate that the electronic degrees offreedom undergo a liquid-gas phase

transition at the Mott critical endpoint. Critical exponents and a universal scaling function have

been determined. Our results are consistent with mean-fieldvalues over most of the parameter

range, with some indication for three-dimensional Ising behavior very close to the transition. A

possible explanation for why the range of validity of mean-field theory is so large can be put

forward by analogy with the theory of conventional superconductors. There, the key point is the

existence of a very large length scale (the pair coherence length), much larger than the lattice

spacing (or the Fermi wavelength). Here, the Mott insulatorcan be thought of as a state in which

holes and doubly occupied sites form bound states due to their Coulomb interaction. The spatial

extensionξ of these bound states is related to their energy (the Mott gap∆) by ∆ ∼ h2/(2mξ2).

Given the measured value of∆ in samples close to the transition, this leads to the conclusion

thatξ is indeed a large length-scale, of order a few nanometers. Finally, we emphasize that our

results provide experimental support to the early idea of Ref. [12] and to recent theories of the

Mott critical endpoint based on the dynamical mean-field (DMFT) approach[13, 14, 15]. While
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further effort should be devoted to the inclusion of latticedegrees of freedom in these theories,

simplified treatments of these effects[16] do emphasize thekey role of electronic degrees of

freedom in the transition.
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Figure captions

Fig. 1A: Conductivity as a function of decreasing pressure,for temperatures ranging from

T = 485K (> Tc = 457.5K, orange curves) down toT = 290K (< Tc, blue curves). The dark

yellow curve is the conductivity atTc. Only a selected set of values ofT has been displayed, for

clarity. (For a two-dimensional plot of the data, see Fig. S1) Examples of an hysteresis cycle

are shown forT = 290K andT = 348K. For a plot of the difference of conductivities measured

in decreasing and increasing pressure sweeps, see Fig. S2.

Fig. 1B: Phase diagram of Cr-doped Vanadium Sesquioxide V1−x Crx)2O3 as a function of

pressure and temperature, in the range1bar< P < 6kbar and290K < T < 500K investigated

in this work. At a given temperatureT , the metallic state can be obtained for pressures higher

than the spinodal pressurePM(T ), and the insulating state for pressures lower than the spinodal

pressurePI(T ). These two spinodal lines delimit a pressure rangePM < P < PI in which the

two states coexist (hatched region on the figure). This coexistence region closes at the critical

endpoint(Pc, Tc) (Pc ≃ 3738bar, Tc ≃ 457.5K). The crossover line above this point (dashed)

corresponds to the inflection point in theσ(P ) curves.

Fig. 1C: Schematic global phase diagram of Cr-doped Vanadium Sesquioxide V1−x Crx)2O3 as

a function of pressure and temperature, deduced from Ref. [7].

Fig.2 These plots demonstrate how the critical exponentsδ, β andγ can be inferred from the

study of the conductivity and of its derivative with respectto pressure (see text).

Fig. 2A: At the critical temperatureT = Tc, the conductivityσ is plotted as a function of

pressure. The (plain) red line is a fit toσ − σc ∼ (P − Pc)
1/δ, with δ = 3. The use of a

logarithmic scale (inset) confirms this value, and also reveals a non mean-field regime forP

close toPc.

Fig. 2B: Order parameterσ∗(T ) = σ(PI(T ), T ) − σc vs. T/Tc, for T < Tc. The line is a fit to
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(Tc − T )β with β = 0.5. The inset (logarithmic scale) reveals a non mean-field regime close to

Tc.

Fig. 2C: Derivative of the conductivity (analogous to a susceptibility χ, as described in text),

for T < Tc andT > Tc. The plain lines are fits toχ±|T − Tc|
−γ, with γ = 1 andχ+/χ− = 2.

Fig. 3: Scaling plot of the conductivity onto a universal equation of state. The whole data set

in the metallic state has been used in order to plot(σ − σc)/(P − PI)
1/δ vs. (P − PI)/(T −

Tc)
γδ/(δ−1), as described in the text. The data collapse onto two universal curves forT > Tc and

T < Tc, corresponding to the universal scaling functionsf± in Eq.(1).
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Figure 2:
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