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In this Letter we study discrete symmetries of mean field manifolds of condensates of F = 2
cold atoms, and various unconventional quantum vortices. Discrete quaternion symmetries result
in two species of spin defects that can only appear in integer vortices while cyclic symmetries are
found to result in a phase shift of 2π/3 (or 4π/3) and therefore 1/3- (or 2/3-) quantum vortices in
condensates. We also briefly discuss 1/3-quantum vortices in condensates of trimers.

One of the most striking features of a superfluid is the
existence of quantized vortices. This is a consequence of
the requirement that the quantum mechanical wavefunc-
tion of any physical state be single-valued. In a standard
single component bosonic condensate, this requirement
results in the quantization of circulation: the line-integral
of the superfluid velocity along a path linking a vortex
takes discrete values:

∮

dr · vs = n · 2πh̄
m , with n an in-

teger. Here, 2πh̄
m is the fundamental quantum of circula-

tion. The quantization of circulation has been observed
in superfluid liquid Helium by Vinen [1], and recently in
Bose-Einstein condensates of cold atoms [2]; the presence
of quantized vortices usually results in discrete values in
the energy splitting of collective modes that have been
studied in experiments.

The existence of quantized vortices in a condensate is
also tied to the topology of the vacuum manifold. In
a single component condensate, the vacuum manifold is
the set of all distinct phases that the condensate can
have. This set is identical to the unit circle S1. As one
moves in a closed path around a quantized vortex, the
phase must traverse S1 an integer number of times [3, 4,
5, 6]. For condensates with more than one component,
vortices can have circulation quantized as fractions of the
basic unit 2πh̄

m ; this is achieved when a change of phase is
combined with a rotation of spin or orbital orientation.
A most recent example are the half-quantum vortices in
condensates of sodium atoms[7]; half vortices were also
discussed in the context of superfluid 3He[4].

Cold atoms in optical traps and lattices are a promis-
ing venue where exotic condensates and vortices could be
realized in nature. Spin correlated states of spin F = 1
cold atoms have already been explored experimentally [8]
and theoretically [9, 10, 11]. More recently, the scattering
lengths of spin F = 2 cold atoms have also been inves-
tigated [12] and various possible condensates have been
pointed out [13, 14]. In this letter we shall examine the
possible appearance of unconventional vortices in the lat-
ter condensates. In a previous study of their possible in-
sulating phases [15], we found a convenient parametriza-
tion of the F = 2 wave-function as a tensor χαβ where
α, β take the values x, y, z. Being the wave-function of
an atom, the entries of this matrix are complex func-
tions. To be a state with F = 2, it must be symmetric,

χαβ = χβα, and traceless, trχ = χxx + χyy + χzz = 0.
This leaves five independent complex entries. These en-
tries are linear combinations of the five components of
the atom wave-function ψmF

with mF = 2, 1, 0,−1,−2
the z-component of the spin. In Ref. [15], we related the
Landau-Ginzburg free energy functional of the conden-
sate to recently measured scattering lengths for atoms.
By including a derivative term, in the long-wavelength
limit we have

E =

∫

drρ0[
h̄2

m∗
tr∇χ∗(r) · ∇χ(r) +MA

(

χ(r), χ∗(r)
)

],

A(χ, χ∗) = 4bLTr[χ, χ
∗]2 + 2cLtrχ

2Trχ∗2 (1)

m∗ is the effective mass of atoms in optical lattices, M is
the average number of atoms per site and ρ0 the average
particle density. The coefficients bL and cL can be esti-
mated from the two-atom interaction strengths in chan-
nels with various spins[15]; bL or cL is proportional to
b = (a4−a2)/7 or c = (a0−a4)/5−2(a2−a4)/7 and a0,2,4

are two-body s-wave scattering lengths in F = 0, 2, 4
channels respectively. For ground states we consider uni-
form condensates. The χ-dependence of the energy of
condensates is identical to that of Mott states obtained
earlier in Ref.[15]; minimization of this energy subject to
a constraint of trχ∗χ = 1/2 was previously carried out.

When all scattering lengths are equal, A(χ, χ∗) = 0
and the Hamiltonian is SU(5) symmetric. The mean field
manifold is U(1)×SU(5). SU(5) is simply connected and
its fundamental group is trivial. Only integer vortices are
allowed in this case. Restoring the spin-dependent scat-
tering turns on the potential and, as shown below, results
in multiply connected mean field manifolds and exotic
vortices. Here we investigate various discrete symmetries
of the manifolds for cyclic and nematic phases.

When bL > 0, and cL > 0, the energy is minimized by
a ground state χ satisfying trχ2 = 0 = [χ, χ∗]. The real
and imaginary parts of χ commute with each other and
we can find a coordinate frame where χ is diagonal. A
solution which obeys trχ = 0 as well as trχ∗χ = 1

2 is

χ+ =
1√
6





1 0 0
0 ω 0
0 0 ω2



 , ω = ei2π/3 (2)
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The full set of degenerate solutions can be obtained by
applying symmetry transformations: SO(3) rotations,
implemented by 3 × 3 orthogonal matrices R and mul-
tiplication by a U(1) phase, eiξ, to the solution χ+. An
arbitrary solution χ can be written as eiξRχ+R−1.

The set of all solutions is equal to the group of all
such symmetry transformations factored by the subgroup
which leaves χ+ invariant. As we shall explain below, this
subgroup is the tetrahedral group, T . The vacuum man-

ifold is therefore the set of right cosets M = SO(3)×U(1)
T

[16]. The tetrahedral group, T , is the subgroup of
SO(3) × U(1) which leaves χ+ in eq. (2) invariant. This
group contains the identity, and three diagonal SO(3)
matrices (called the Klein 4-group)

1 =





1 0 0
0 1 0
0 0 1



 , Ix =





1 0 0
0 −1 0
0 0 −1





Iy =





−1 0 0
0 1 0
0 0 −1



 , Iz =





−1 0 0
0 −1 0
0 0 1



 . (3)

The remaining elements of T implement cyclic permu-
tations of the diagonal elements of χ+ as well as multi-
plication by phases. The the elements of SO(3) which
permute the diagonal elements of χ+ are

C =





0 0 1
1 0 0
0 1 0



 , C2 =





0 1 0
0 0 1
1 0 0



 (4)

Indeed, χ+ = ωCχ+C−1, where ω was introduced in
Eq. (2). The elements 1, C, C2 form a cyclic subgroup
of SO(3), C3. We emphasize that the transformation of
χ+ involves a U(1) phase of 2π

3 as well as a cyclic rota-
tion represented by C. We will denote this combination
of transformations as C̃. The full tetrahedral group T
has the 12 elements T = {1, Ix, Iy, Iz, C̃, IxC̃, IyC̃, Iz C̃,

C̃2, IxC̃2, IyC̃2, Iz C̃2}.
The first step in classifying vortices is to identify the

homotopy group Π1(M)[17]. Since SO(3) is not simply
connected, to understand the topology of the manifold
M we shall lift SO(3) to SU(2). An element of SU(2) is
a 2× 2 unitary matrix. The set of 2× 2 unitary matrices
is characterized by the four real Euler parameters (e0, e)
through the relation Q = e0 + ie · ~σ; ~σ are the usual
Pauli matrices. Q is unitary when e20 + e · e = 1; the
Euler parameters live on the unit three-sphere S3, which
is simply connected. The matrix Q is the well-known
quaternion representation of a rotation [18]. The 3 × 3
rotation matrix R ∈ SO(3) which corresponds to Q ∈
SU(2) is Rαβ = 1

2Tr
(

σαQσβQ†
)

. This is a two-to one
mapping since both Q and −Q are mapped to the same
R. The inverse, R → (Q,−Q) is the ‘lift’ of R to SU(2).

We also need to lift the tetrahedral group T to T ∗, the
binary tetrahedral group which is a subgroup of SU(2)

and contains 24 elements. For this, we must identify the
pair of SU(2) matrices which correspond to each of the 12
elements of T . The elements of T are the simple rotations
(examples are shown in Fig.2) that lift as: 1 → ±1,
Ix,y,z → ±iσx,y,z, C → ±σ = ± 1

2 (1 + iσx + iσy + iσz).
We further denote a rotation σ combined with a phase
shift of 2π/3 as σ̃. The group elements of T ∗ which are
lifts of T are therefore,

±iσx,±iσy,±iσz,±1 (5)

±iσxσ̃,±iσyσ̃,±iσzσ̃,±σ̃ (6)

±iσxσ̃
2,±iσyσ̃

2,±iσzσ̃
2,±σ̃2. (7)

Eq.(5) represents the quaternion subgroup Q.
The vacuum manifold derived above is isomorphic to

M =
SU(2) × U(1)

T ∗
. (8)

To find the homotopy classes of closed paths in M, we
must first understand how they are related to paths in the
product of space of SU(2)×U(1). As we have discussed
above, SU(2) is equivalent to a three-sphere S3, and U(1)
to a circle S1, so that we could equivalently think of paths
on the product space S3 × S1. Each point of S3 × S1

corresponds to an element in the group SU(2) × U(1).
Factoring by T ∗ is simply making an identification on
S3×S1, each point is to be identified with 23 other points
which are obtained from the corresponding group element
by operation of the non-trivial elements of T ∗.

Consider a path on S3 × S1. In order to be a closed
path on M it must either end at the point on S3 ×S1 at
which it began, or it must end at one of 23 points that
are identified with it. As shown in Fig. 1, there are three
types of paths (which all begin at the identity):

Type A: Paths that traverse S1 n (n is an integer)
times and end with one of the eight elements in Eq.(5);

Type B: Paths that traverse S1 n + 1
3 times and end

with one of eight elements in Eq.(6);
Type C: Paths that traverse S1 n + 2

3 times and end
with one of eight elements in Eq.(7).

Thus each path is characterized with two variables:
the winding number around S1 and an element in
T ∗. Π1 (M) = {(n,1), (n,−1), (n, iσα), (n,−iσα),
(n+ 1

3 , σ̃), (n+ 1
3 ,−σ̃), (n+ 1

3 , iσασ̃), (n+ 1
3 ,−iσασ̃),

(n+ 2
3 , σ̃

2), (n+ 2
3 ,−σ̃2), (n+ 2

3 , iσασ̃
2), (n+ 2

3 ,−iσασ̃)
}

This set forms an infinite order non-abelian dis-
crete group with composition law (x, g1) · (y, g2) =
(x+ y, g1g2).

So far, we have computed the homotopy group Π1(M)
for loops with a base-point. However, distinct vortices
are identified with free homotopy classes, which coincide
with conjugacy classes of the based homotopy group[4,
5]. For an element gi of a group, the conjugacy class
is the set of all distinct elements in the set gagg

−1
a as

ga sweeps over the group. In our case, the classes are
1) {(n,1)}; 2) {(n,−1)}; 3) {(n, iσα), (n,−iσα)}, α =
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FIG. 1: (color online) Schematic of the mean field manifold
of cyclic condensates. The unit circle is oriented horizontally
with phase angles ξ (defined after Eq.2) around it shown ex-
plicitly. Each cross section at a given angle stands for a three-
sphere. Examples of 24 four identified points in the product
space S3

× S1 are shown explicitly as stars, with eight points
at ξ = 0 or 2π (or elements in Eq.5), eight points at ξ = 2π/3
(or elements in Eq.6), and the eight points at ξ = 4π/3 ( or
elements in Eq.7). The red path ending at phase 2π is for an
integer vortex with a spin defect inserted; the red dashed one
is for a plain integer vortex without spin defects. The short
(long) blue path ending at 2π/3 (4π/3) is for a 1/3 (2/3)-
quantum vortex. The green path at phase ξ = 0 corresponds
to a spin defect and the winding along S1 is trivial.

x, y, z; 4) {(n+ 1
3 , σ̃), (n+ 1

3 ,−iσασ̃)}; 5) {(n+ 1
3 ,−σ̃), (n+

1
3 , iσασ̃)}; 6) {(n + 2

3 , σ̃
2), (n + 2

3 ,−iσασ̃
2)}; 7) {(n +

2
3 ,−σ̃2), (n+ 2

3 , iσασ̃
2)}. Altogether there are only seven

distinct classes and thus seven types of linear defects.

If n = 0, a Type-A path corresponds to a pure spin
vortex. Such a path might begin at the origin (iden-
tity) and end at one of ±iσx, ±iσy, ±iσz or −1. These
correspond to, respectively, 1800 rotations around one of
the three axes x̂, ŷ, ẑ or a rotation around the ẑ-axis by
3600 (see (b-e) in Fig. (2)). However, paths which end
at ±iσx, ±iσy, ±iσz are freely homotopic to each other
and all represent the same spin defect. So there are two
differ types of spin vortices (specified by classes): (0,−1)
and (0,±iσα), α = x, y or z.

On the other hand when n is a nonzero integer, a type-
A path corresponds to an integer vortex. Three conju-
gacy classes involving integer n represent three distinct
species of integer vortices: a conventional integer vor-
tex with no spin structure, an integer vortex with a spin
defect of (0,−1) inserted and an integer vortex with a
spin defect of (0,±iσa) inserted. The last two types are
unique to condensates of F = 2 atoms.

Along Type-B or Type-C paths, a phase shift of 2π/3
or 4π/3 is generated under the action of the element σ̃c

or σ̃2
c . In these cases, the spin rotation leads to a 1/3-

quantum vortex or a 2/3-quantum vortex. Furthermore,
there are only two topologically distinct species of each
of 1/3- or 2/3-vortices. The two distinct 1/3-quantum

(h) (i)

(f)(e)

y
x

(d)

(c)(a) (b)

z

x
y

z

(g)

y

z

x
z y

x

z

x

y

y

x z

z
y

xy

x

z

y

zx

FIG. 2: Spin rotations in integer vortices, 1/3-quantum vor-
tices and 2/3-quantum vortices. (a) the orientation of three
basis vectors x̂ŷẑ at azimuthal angle φ = 0. (b-e) the orienta-
tion of the triad x̂ŷẑ at angle φ = 2π in four configurations of
integer vortices: (0, iσx) (b), (0, iσy) (c), (0, iσz) (d), (0,−1)
(e); the arrow in (e) represents a 3600 rotation around the z
axis. (f,g) the orientation of the triad x̂ŷẑ at angle φ = 2π
in two 1/3 quantum vortices: (1/3, iσzσ̃) (f), (1/3, iσyσ̃) (g);
(h,i) the orientation of the triad x̂ŷẑ at angle φ = 2π in two
2/3 quantum vortices: (2/3, iσzσ̃2) (h), (2/3, iσxσ̃2) (i).

vortices are represented by either paths that end with
elements σ̃, −iσασ̃ or paths that end with −σ̃, iσασ̃.
The 1/3 and 2/3-quantum vortices necessarily contain
topologically non-trivial spin configurations which differ
in structure from those in integer vortices.

We now are going to examine spatially slowly varying
matrix χ(r) and focus on spin vortices and 1/3-quantum
vortices. All linear defects are oriented along the z-
direction; the center of a defect is at the origin of cylin-
drical coordinates (ρ, φ, z). The superfluid velocity in the
condensate is vs = 2Im trχ∗∇χh̄/m. Far away from the
center, the wavefunction of a pure spin vortex is speci-
fied by the rotation, χ(ρ = +∞, φ) = R(φ)χ+RT (φ). To
minimize the energy in Eq.(1), we find that the rotation
matrix satisfies the equation

[χ+,
∂A

∂φ
] = 0, where A = RT ∂R

∂φ
. (9)

A solution can be expressed as R(φ) = exp(in · Lf(φ)),
where f(φ) is a linear function of φ. Alternatively

Rαβ(φ) = δαβ cos f(φ) + sin f(φ)ǫαβγnγ

+nαnβ(1 − cos f(φ)). (10)

Here L is a matrix vector, Lα
βγ = −iǫαβη, ǫαβγ is the

antisymmetric tensor. n is a unit vector with three com-
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ponents nα, α = x, y, z. For a configuration that is spec-
ified by the boundary condition: R(0) = 1,R(2π) = Iz,
we find the following solution

f(φ) =
φ

2
,n = ez. (11)

The superfluid velocity is zero. When going around this
vortex, the local triad of three orthogonal basis vectors
x̂ŷẑ makes a 180 rotation around ẑ-axis (see Fig.(2d) ).

In a 1/3-quantum vortex, the boundary condition is
R(φ = 0) = 1, R(φ = 2π) = IzC; at any φ, χ(φ) =
eiφ/3R(φ)χ+RT (φ). The solution which satisfies Eq.(9)
and boundary conditions is

f(φ) =
φ

3
,n =

1√
3
(−ex + ey − ez). (12)

One can calculate the circulation integral and confirm
that

∮

dr · vs = 1
3

2πh̄
m . A 1/3-quantum vortex is always

superimposed with a spin defect and is a unique com-
posite excitation in coherent condensates. When going
around this vortex, effectively the local triad x̂ŷẑ is per-
muted cyclically: x̂ŷẑ → ŷẑx̂; this is accompanied by a
1800 rotation around the ŷ axis (see Fig.(2f)). The sta-
bility can be studied by examining the core structure.
Similar discussions were presented for half-vortices [19].

When bL > cL

4 and cL < 0, χ satisfies trχ2 = 1/2, χ =
χ∗ which corresponds to biaxial nematics [15]. A real

solution is again invariant under the subgroup in Eq.(3);

the submanifold should be isomorphic to Mn = S3

Q ×S1,

Q is the quaternion group introduced before[20]. There
are quaternion spin defects but no 1/3-quantum vortices
in this case. The quaternion vortices are analogous to
disclinations in cholesteric liquid crystals [4, 5, 6, 21].

In conclusion, we have studied discrete symmetries in
condensates of F = 2 cold atoms and investigated 1/3-
quantum vortices and pure spin defects. It is worth
remarking that 1/3-quantum vortices are also natural
topological excitations in condensates of singlets of three
atoms (an analogue of Cooper pairs in a two-body chan-
nel) or condensates of trimers. Rotationally invariant
Mott states of trimers were pointed out by the authors
recently[15]. If a trimer condensate does exist in optical
lattices (say created by removing atoms from a trimer
Mott state), there will then be simple 1/3-quantum vor-
tices that are featureless in the spin subspace. Note

that 1/3-quantum vortices in a cyclic phase on the other
hand have very rich spin structure as discussed above.
The one-third circulation quantum can be studied by
observing fractionalized values in the energy splitting
of collective modes in experiments similar to those in
Ref.[1, 2]. FZ is in part supported by the office of the
Dean of Science at the University of British Columbia,
NSERC (Canada), Canadian Institute for Advanced Re-
search and the Alfred P. Sloan foundation.
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