
ar
X

iv
:c

on
d-

m
at

/9
60

31
40

v1
  2

1 
M

ar
 1

99
6

MULTIPOLAR REPRESENTATION OF
MAXWELL AND SCHRÖDINGER EQUATIONS:
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Development of quantum engineering put forward new theoretical problems. Behavior
of a single mesoscopic cell (device) we may usually describe by equations of quantum
mechanics. However if experimentators gather hundreds of thousands of similar cells
there arises some artificial medium that one already needs to describe by means of new
electromagnetic equations. The same problem arises when we try to describe e.g. a
sublattice structure of such complex substances like perovskites. It is demonstrated that
the inherent primacy of vector potential in quantum systems leads to a generalization
of the equations of electromagnetism by introducing in them toroid polarizations. To
derive the equations of motion the Lagrangian and the Hamiltonian formalisms are used.
Some examples where electromagnetic properties of molecules are described by the toroid
moment are pointed out.
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1 Introduction

Let us remind a known thing that says ”it is impossible to introduce electrodynamics of
matter in general” (E. A. Turov, 1983). For example, different types of crystalline
structures of matter lead to the alignment of one or other type of polarizations in the
matter considered. So the necessity to introduce in the equations of high tensor polar-
ization is arose. But the most intricate case is the toroid polarization one. The fact is
that the ideal static toroid moments do not interact with each other. So the dynamic
alignment of toroid moments is impossible thanks to electric and magnetic interactions.
But this takes place for example in perovskites [1, 2] and have to be explained. The other
case when the local toroid moments can align is connected with their proper oscillations
that permit them interact with each other [3] through electric and magnetic fields.

It is noteworthy to remark that toroid moments are the multipole sources of field-free
vector potentials. Therefore, electromagnetotoroidic equations we are forced to express
in terms of vector potentials. The first part of our report is devoted to introduction of
the equations mentioned in Lagrangian formalism. In the second part we introduce toroid
moments in Schrödinger equations.

2 Toroid moments in Lagrangian formalism

2.1 Canonical formulation of electrodynamics

We begin with usual canonical formulation of electrodynamics (e.g. [4]). The inter-
acting system of electromagnetic field and non-relativistic charged particles is specified
partly by a discrete set of variables, namely the coordinates of the charged particles,
and partly by a continuous set, which we take to be the values of the vector potential
in the Coulomb gauge. The Lagrangian L will thus be a functional of A and Ȧ if the
particle coordinates and their velocities are fixed, and a function of the qα and q̇α if the
vector potential and its time derivative are fixed. We write L = L[A, Ȧ; q, q̇]. In the
application of Hamilton’s principle, the particle and the field coordinates are to be varied
independently. The Lagrangian must then be chosen so that variation with respect to the
particle coordinates gives Newton’s law

mα q̈α = eα (E +
1

c
q̇α × B)

and variation with respect to the field coordinates (subject to the Coulomb gauge condi-
tion) gives the equation of motion

∇2 A − 1

c2
Ä = − 4π

c
J⊥

for the vector potential.
A suitable Lagrangian is obtained by setting (see e.g. [4])

L = Lpar + Lrad + Lint (2.1)
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with

Lpar =
1

2

∑

α

mα q̇2
α − 1

2

∑

α6=β

eα eβ

|qα − qβ|
(2.2)

Lrad =
1

8π

∫

[
Ȧ

2

c2
− (curlA)2] dV (2.3)

and

Lint =
1

c

∫

J(r) · A(r) dV =
∑

α

eα

c
q̇α · A(qα, t). (2.4)

Here Lpar is the Lagrangian appropriate to a system of charged particles interacting solely
through instantaneous Coulomb force; it has the simple form of ”kinetic energy minus
potential energy”. Lrad is the Lagrangian for a radiation field far removed from the charges
and currents, and has the form of ”electric field energy minus magnetic field energy”. The
interaction Lagrangian Lint couples the particle variables to the field variables. The part
of the Lagrangian that involves the vector potential can be written as the integral over a
Lagrangian density L,

L =
1

8π
[
Ȧ

2

c2
− (curl A)2] +

1

c
J⊥(r) · A(r) (2.5)

Since the Coulomb gauge condition is being used as a constraint, the transverse current
density J⊥ has been substituted for the total current density J without affecting the
Lagrangian.

To verify that L given by Equation (2.1) is indeed a suitable Lagrangian, we write
down the Euler-Lagrange equations, beginning with those for the particle coordinates.

d

dt

∂L

∂q̇αi

− ∂L

∂qαi

= 0.

In this particular case we have

mα q̈αi − eα

[

∑

β 6=α

eβ

|qα − qβ|3
(qαi − qβi) − 1

c
ȧi

]

− eα

c
q̇αj

( ∂aj

∂qαi
− ∂ai

∂qαj

)

= 0. (2.6)

Using the expressions B = curlA and E‖ = −gradφ, E⊥ = −1
c
Ȧ with φ(r, t) =

∑

α
eα

|q
α
−r| for the transverse fields in terms of the vector potentials, we find that

mα q̈α = eα E(qα, t) +
eα

c
q̇α × B(qα, t) (2.7)

which is nothing but the second law of Newton with the Lorentz force.
To obtain the field equations, the functional derivatives of L must first be calculated

from the Lagrangian density L. The Euler–Lagrange field equations

∂

∂t

δL

δȦi

− δL

δAi

= 0

in this case give

curlB =
1

c
Ė +

4π

c
J⊥
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which leads to the usual evolution equation for the vector potential in the Coulomb gauge:

curl curlA +
1

c2
Ä =

4π

c
J⊥. (2.8)

The conjugate momenta corresponding to the Lagrangian (2.1) are defined in the usual
way as

pα =
∂L

∂q̇α

= m q̇α +
eα

c
A(q, t) (2.9)

and

Π(r) =
∂L

∂Ȧ(r)
=

Ȧ(r)

4π c2
(= −E(r)/4π c). (2.10)

Proceeding in the conventional way we get

H [Π,A; p, q] =
∑

α

pα · q̇α +
∫

Π · ȦdV − L

=
∑

α

1

2mα
[pα − eα

c
A(q, t)]2 +

1

2

∑

α6=β

eα eβ

|qα − qβ|

+
1

8π

∫

[(4π cΠ)2 + (curl A)2] dV (2.11)

The Hamiltonian equations reproduce the equations of motions (2.7) and (2.8) as they
must be. The pair of equations

q̇αi =
∂H

∂pαi
, Ȧi =

δH

δΠi

are equivalent to the relations between the canonical momenta and Lagrangian velocities,
where as the equations

ṗαi = − ∂H

∂qαi
, Π̇i = − δH

δAi

yield once again the Lorentz force law (2.7) and the inhomogeneous wave equation (2.8)
for the vector potential with the transverse current density as source.

2.2 Formation of an equivalent Lagrangian

It is well known that in classical dynamics the addition of a total time derivative to
a Lagrangian leads to a new Lagrangian with the equations of motion unaltered. La-
grangians obtained in this manner are said to be equivalent. In general, the Hamiltonians
following from the equivalent Lagrangians are different. Even the relationship between
the conjugate and the kinetic momenta may be changed.

More over, let us notice that the basic equations of any new theory can not be intro-
duced strictly deductively. Usually, either they are postulated in differential form based
on the partial integral conservation laws or transformations of basic dynamical variables,
whose initial definitions usually have some analogs in mechanics. We will mark that we
need to do so not only by inertia of thinking but also because of the fact that most of
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our measurements have its objects as individual particles or use them as test one. The
situation is the same in electromagnetism and in gravitation. Attaching of geometri-
cal meaning to any dynamical variables plays the crucial role in this case. Even that
slight modifications of electrodynamic equations that we performed, demands the clear
understanding of this situation.

As a simple most example we will consider the ”geometrization” of momenta in non-
relativistic quantum theory when the external classical electromagnetic field, acting on
free particle, is available. Let us begin with the classical Lagrangian:

L(r,v; t) =
1

2
mv2 − q[φ(r; t) − v · A(r; t)],

that leads to the equations of motion of particle with charge q and mass m, moving under
the influence of electric and magnetic potentials φ and A. To move up to Hamiltonian
formalism, more closer to the quantum one, let us find the canonical momenta of the
particle:

p := δv L(r,v; t) = mv + qA(r; t). (⋆)

The Hamiltonain in this case is defined as:

H := pv − L =
1

2m
[p− qA]2 + qφ. (⋆⋆)

Let us use the initially defined mechanical momenta π := mv (gauge invariant quantity
that can be directly measured!) to write the expression in square bracket in (⋆⋆). We find

[p − qA]2 = [mv + qA − qA]2 = π2.

It is of course the simplest tautology, nevertheless under introduction of electromagnetic
field in Schrödinger equation it leads to some subtlety. Quantum physicists random say or
write that the gauge invariant introduction of external electromagnetic field in Schrödinger
equation is occurred by extended momenta (of particle), implying the substitution p →
p − qA.

In fact the operation to move up from the classical description to the quantum one
with the introduction of electromagnetic potential we imply the following substitutions:

π := mv = ∇ to p = π + qA → ∇

and

H =
1

2m
[∇− qA]2

. In this the mathematical expectation of meansquare deviation between ”geomtrized”
momenta (operator of spatial displacement of particle) and field (potential) angular mo-
ment of the particle qA are equated to the quantum mechanical expectation of evolution
operator of the particle considered:

ih̄Ψ+ ∂

∂t
Ψ =

1

2m
Ψ+[(ih̄∇ + qA)2 + qφ]Ψ. (⋆ ⋆ ⋆)
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In deduction of Schrödinger equation in [5] the similar view is taken into account. Power
a.o. [5] (see also [14]) begin the introduction of electrical polarization in Schrödinger
equation starting with the equivalent Lagrangian.

An equivalent Lagrangian to that of (2.1) is [5]

Lnew = L − 1

c

d

dt
[
∫

P(r) · A(r) dV ]. (2.12)

Taking into account the Coulomb gauge condition divA = 0 and toroid contribution we
may substitute

P =⇒ P⊥ + P‖ + curlTe, (2.13)

with the contribution of P‖ being vanished.
Thus we have the following equivalent Lagrangian

Lnew = L − 1

c

d

dt
[
∫

(P⊥(r) + curlTe(r)) · A(r) dV ]. (2.14)

Writing it in the explicit form we get

Lnew = Lpar + Lrad +
1

c

∫

(J⊥(r) − Ṗ
⊥
(r) − curlṪ

e
(r)) · A(r) dV −

− 1

c

∫

(P⊥(r) + curlTe(r)) · Ȧ(r) dV (2.15)

The field conjugate to the vector potential A is now

Π(r) =
∂Lnew

∂Ȧ(r)
= − E⊥(r) + 4π (P⊥(r) + curlTe(r))

4π c
(2.16)

In fact, if we define the new vector field in a medium D by the relation

D(r) = E⊥(r) + 4π (P⊥(r) + curlTe(r)) = D⊥(r) + 4π curlTe(r) (2.17)

for the conjugate field we get

Π(r) = − D(r)

4π c
(2.18)

Now from the definition of D we get

curlD(r) = − 1

c
Ḃ(r) + 4π (curlP(r) + curl curlTe(r)), (2.19)

under curlE(r) = − 1
c
Ḃ(r), since only the free field E is generated due to the change of

magnetic field B as before.
The new Lagrangian is a function of the variables qα, q̇α and a functional of the field

variables A, Ȧ, and the equations of motion follow from the variational principle. We
have

∂Lnew

∂A(r)
=

1

c
(J⊥(r) − Ṗ

⊥
(r) − curlṪ

e
(r)) =

1

c
(c curlM⊥(r) − curlṪ

e
(r)), (2.20)
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where the relation c curlM⊥(r) = J⊥(r) − Ṗ
⊥
(r) is taken into account and

∂Lnew

∂(∂Ai(r)/∂xj)
=

1

4π
εijkBk (2.21)

as usual. Applying the Euler-Lagrange equations of motion

∂

∂t

∂Lnew

∂Ȧi(r)
+

∑

j

∂

∂xj

∂Lnew

∂(∂Ai(r)/∂xj)
− ∂Lnew

∂Ai(r)
= 0 (2.22)

we obtain

− Ḋ(r)

4π c
+

1

4π
curlB(r) − 1

c
(c curlM⊥(r) − curlṪ

e
(r)) = 0. (2.23)

Introducing the following re-notations, corresponding to the initial identification by Maxwell
for local conastrain between the derivatives of electric and magnetic fields:

1

c
Ṫ

e,m |Ω =⇒ ∓ curlTm,e |Ω (2.24)

we may rewrite (2.23) as

curlB(r) =
1

c
Ḋ(r) + 4π(curlM⊥(r) + curl curlTm(r)) (2.25)

The relation (2.24) demands some comments. Both Te and Tm represent themselves in
essence closed isolated lines of electric and magnetic fields. So they have to obey the usual
differential relations similar to the free Maxwell equations (see in [2] and [6]). However,
remark that signs in (2.24) are inverse in comparison with the corresponding Maxwell
equations because the direction of electric dipole is accepted to be chosen opposite to its
inner electric field [7].

If we define the auxiliary field H to be

H(r) = B(r) − 4π (M⊥(r) + curlTm(r)), (2.26)

then it deduces to

curlH =
1

c
Ḋ.

But the latter formula is unsatisfactory from the physical point of view. It is easy to
image the situation when B and M⊥ are absent, because the medium may be composed
from isolated aligned dipoles Tm [1, 2] and each Tm is the source of free-field (transverse-
longitudinal) potential but not B [3]. So the transition to the description by means of
potentials is inevitable.
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2.3 Hamiltonian for new Lagrangian

Proceeding as before we get

Hnew[Π,A; p, q] =
∑

α

pα · q̇α +
∫

Π · ȦdV − Lnew

=
∑

α

1

2mα

[pα − eα

c
A(q, t)]2 +

1

2

∑

α6=β

eα eβ

|qα − qβ|

+
1

8π

∫

{[4π(P + curlTe) − D]2 + (curlA)2] dV

+
1

c

∫

(Ṗ
⊥

+ curlṪ
e
) · A dV. (2.27)

Taking into account 1
c
Ṗ

⊥
= 1

c
J⊥ − curlM⊥ and the relation (2.24) and also div[M×A] =

A · curlM + M · curlA the fourth term of the foregoing equality can be reconstructed
after integration and H can be presented as

Hnew[Π,A; p, q] =
∑

α

1

2mα
[pα − eα

c
A(q, t)]2 +

1

2

∑

α6=β

eα eβ

|qα − qβ|

+
1

8π

∫

{[4π(P + curl Te) − D]2 + (curlA)2} dV

+
1

c

∫

J⊥ · A dV −
∫

M · B dV −
∫

B · curlTm dV. (2.28)

The Hamiltonian equations in this case give

q̇αi =
∂H

∂pαi
=

∑

α

1

mαi
(pαi −

eαi

c
Ai(qα, t)), Ȧi =

δH

δΠi
= c[4π(P + curl Te) − D]i

which together with

Π̇i = − δH

δAi
=

∑

α

eα

cmαi
(pαi −

eαi

c
Ai(qα, t)) −

1

c
(Ṗ + curl Ṫ

e
)i −

1

4π
[∇× (∇×A)]i,

ṗαi = − ∂H

∂qαi

=
∑

α

eα

cmαi

(pαi −
eαi

c
Ai(qα, t))

(∂Aj

∂qαi

− ∂Ai

∂qαj

)

− 1

2

∑

α

eα eβ

|qα − qβ |
(qα − qβ)

once again yield the Lorentz force law (2.7) and the inhomogeneous wave equation (2.8)
for the vector potential.

2.4 Canonical quantization

Let us now draw the Schrödinger picture operators corresponding to the quantities ob-
tained above. To do so we need to interpret the coordinates qα of the particles together
with their conjugate momenta pα and the coordinates A(r) of the field together with
their conjugate momenta Π(r) as operators in Hilbert space. Thus we have six opera-
tors qαi and pαi, (i = 1, 2, 3) associated with each particle α and six operators Ai(r) and
Πi(r), (i = 1, 2, 3) associated with each field point r. These operators are Schrödinger
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picture operators since they are time-independent. The corresponding Heisenberg picture
operators may be written as qα(t), pα(t), A(r, t), Π(r, t) respectively.

The Schrödinger operators are to satisfy the following canonical commutation rela-
tions, precisely

[qαi, qβj] = 0, [pαi, pβj] = 0

[qαi, pβj] = ih̄ δαβ δij (2.29)

for the particle variables and

[Ai(r), Aj(r
′)] = 0, [Πi(r),Πj(r

′)] = 0

[Ai(r),Πj(r
′)] = ih̄ δ⊥ij(r − r′) (2.30)

for the field variables. These equations are to hold for all α and β and all i and j. The
commutator bracket of any particle variable with any field variable is to vanish. The
canonical commutation relations are also satisfied by the Heisenberg dynamical variables,
provided all operators are evaluated at the same time t. These follows from the equations
(2.29) and (2.30) and the relation between two pictures:

Ω(t) = e(i/h̄) Ht Ωe−(i/h̄) Ht (2.31)

where H is the hamiltonian operator and Ω(t) is the Heisenberg operator corresponding
to the Schrödinger operator Ω. The operator Ω(t) satisfies the Heisenberg equation

Ω̇(t) =
1

ih̄
[Ω(t), H ], (2.32)

while the Schrödinger picture operator corresponding to Ω̇(t) is given by

Ω̇ =
1

ih̄
[Ω, H ]. (2.33)

Taking the expression (2.28) for the Hamiltonian one can easily verify that the equation
(2.32) together with the commutation relations leads to the expected equations of motion.

2.5 Formal deduction of equations of electromagnetotoroidics.

Let us suppose that in an electromagnetic medium there are no free charges and
currents. So we may rewrite usual Maxwell equation in the following symmetrical form:

curl B =
1

c
Ḋ + 4π curlM, B = H + 4πM in the whole ℜ3,

curlD = −1

c
Ḃ + 4π curlP, D = E + 4πP in the whole ℜ3, (2.34)

being of these equations interchange to each other as before through the self-reciprocal
exchanges B → ∓D, D → ±B, M → ∓P, P → ±M and the conditions divB = 0
and divD = 0 are fulfilled. Hence is valid the following changes [8]

B =⇒ curl αm + α̇e, D =⇒ curl αe − α̇m,

curl M =⇒ curlM + curl curl Tm curlP =⇒ curlP + curl curl Te (2.35)
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whereas the last substitution has already been implied canonically in the fore going para-
graphs. As a result we obtain for basic equations

curl curl αm + α̈m = 4π (curlM + curl curl Tm),

curl curl αe + α̈e = 4π (curlP + curl curl Te), (2.36)

It is necessary to emphasize that the potential descriptions electrotoroidic and magne-
totoroidic media are completely separated. The properties of the magnetic and electric
potentials αm and αe under the temporal and spatial inversions are opposite [2]. We also
see that the substitutions (2.28) in (2.25) produce (2.34) as well.

If divD 6= 0 and in the medium there does exist free current we have to remember
Dirac’s approach to the constrained systems and use along for instance [9] its application
to electrodynamics of continuous media.

2.6 Solution to the electromagnetotoroidic equations

Let us first solve the static equations. In this case we write

curl curl(αm − 4πTm) =: curl curlam = 4π curlM⊥(r), (2.37)

curl curl(αe − 4πTe) =: curl curlae = 4π curlP⊥(r), (2.38)

here a is an analog of H. From the vector analysis we can see

curl curlam = grad divam − ∇2am = −4π grad divTm − ∇2am (2.39)

where we use the condition divαm = 0 The solutions of the equations (2.37) and (2.38)
can be written as

am =
∫

curl′M(r′)

|r − r′| dV ′ + ∇
∫

div′Tm(r′)

|r − r′| dV ′ (2.40)

Analogically we get

ae =
∫

curl′P(r′)

|r − r′| dV ′ + ∇
∫

div′Te(r′)

|r − r′| dV ′ (2.41)

Now let us return to the general case. Adding − (4π/c2) T̈
m,e

in the both sides of the
equations (2.35) and (2.36) for a we get the wave equations

curl curlam +
1

c2
äm = 4π curlM⊥(r) − 4π

c2
T̈

m
(r) (2.42)

and

curl curlae +
1

c2
äe = 4π curlP⊥(r) − 4π

c2
T̈

e
(r) (2.43)

The solutions to these equations can be written as [10]

am = − 1

4π

∫

all space

[−∇′(∇′ · Tm ′) − 4π∇′ × M′) + (4π/c2)T̈
m ′

]

|r − r′| dV ′ (2.44)
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ae = − 1

4π

∫

all space

[−∇′(∇′ · Te ′)) − 4π∇′ × P′) + (4π/c2)T̈
e ′

]

|r − r′| dV ′ (2.45)

here M′ denotes M(r′). Under the Coulomb gauge the substitution divam,e = −4π divTm,e

is valid. The brackets [ ] in the above equations are the ”retardation symbol”. This sym-
bol indicates a special space and time dependence of the quantities to which it is applied
and is defined by the identity

[f ] ≡ f(x′, y′, z′, t− r/c).

It is obvious from the foregoing solutions that the quantities that an experimentator
measures are α and a and the fields, they generate, differ from the old ones. It leads to
the fact that we no longer work with B and D but with some new quantities which need
to be defined differently. So instead of (2.35) we should now write

β = curl αm + α̇e, δ = curl αe − α̇m. (2.46)

Note that the quantities β and δ may be measured and possess physical significance.
For example, the experimentator, measuring magnetic field in a needle-like hole, dug
in magnetic, not along the principal axis of magnetization, beside the contribution of
Ampere current of magnetization curlM measures the contribution of inhomogeneous
toroidazation that is obvious from (2.44) and (2.45). Thus introduction of potential and
magnetic field based on the magnetization of media only, generally speaking is incorrect
[3].

3 Multipolar interactions in Schrödinger equations

A large number of works have been devoted to this problem. Unfortunately most of
them are confusing. We demonstrate it on the basis of detail paper by K. Haller and
R. B. Sohn [11]. The matter is that they begin with the expression independent of the
scalar-longitudinal contributions (ρ, divj) and after the integrations by parts in the final
expression restore them. It is a very common methodical error.

3.1 Description of non-relativistic interaction of electrons and

photons

Here we proceed and set the problem in terms used in [11]. The Hamiltonian that describes
the interaction between photons and non-relativistic Schrödinger electrons is given by

Hc = H0 −
∫

J(r) ·AT (r) dr +
e

2m

∫

ρ(r)AT (r) · AT (r) dr +

+
∫

ρ(r)ρ(r′)

8π|r − r′| dr dr
′, (3.1)
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where AT is the transverse vector potential with divAT = 0. H0 is the Hamiltonian
for noninteracting electrons and photons that can be represented by

H0 = H0(e) + H0(γ), (3.2)

where
H0(e) =

∫

ψ+(r)[−(2m)−1 ∇2 + V (r)]ψ(r)dr (3.3)

with V (r) representing an external short-range potential (for example, the shielded Coulomb
potential of a static nucleus). H0(γ) is the Hamiltonian for free transverse photons and
is given by

H0(γ) =
1

2

∫

[ET (r)2 + B(r)2]dr, (3.4)

where ET (r) and B(r) represent the transverse electric and magnetic field, respectively. In
equation (3.1) ρ(r) represents the charge density ρ(r) = e ψ+(r)ψ(r) and J(r) represents
a current

J(r) =
ie

2m
[∇ψ+(r)ψ(r) − ψ+(r)∇ψ(r)]. (3.5)

The commutation rules of these fields are

{ψ+(r), ψ(r′)} = δ(r − r′) (3.6)

for the electron field; for the photon field, −AT (r) has the transverse electric field ET (r)
as its conjugate momentum, so that the nonlocal commutation rule for the transverse
components is given by

[AT
i (r), ET

j (r′)] = −(δi,j δ(r − r′) +
∂

∂ri

∂

∂rj

1

4π|r − r′|). (3.7)

The current J(r) is conserved under the time dependence provided by the Hamiltonian
so that

divJ(r) = −i[H0, ρ(r)]. (3.8)

The current
j(r) = J(r) − (e/m) ρ(r)AT (r) (3.9)

is conserved under the time dependence provided by the Hamiltonian so that

div j(r) = −i[Hc, ρ(r)]. (3.10)

Hc may be expressed as

Hc = H0 −
∫

[J(r) + j(r)] · AT (r) dr +
∫ ρ(r)ρ(r′)

8π|r − r′| dr dr
′. (3.11)

When ψ is quantized in orbitals that are solutions of

[−(2m)−1 ∇2 + V (r) − ωi]Ui = 0, (3.12)
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(where Ui includes both bound and continuum states), H0(e) is given by

H0(e) =
∑

n

e+n en ωn, (3.13)

where e+n and en designate creation and annihilation operators, respectively, for electrons
in the n orbitals. H0(γ) can be represented as

H0(γ) =
∑

i=1,2

∫

dk |k|a+
ǫ(i)(k) aǫ(i)(k), (3.14)

and describes free photons in the two polarization modes.

3.2 Introduction of toroid moments

A formal procedure was first proposed by E. G. P. Rowe [12] permits to obtain the
complete solution to the problem of multipole expansion of electromagnetic current [3],
which consists of the replacing of some vector function of current by the three (in general
unlimited) series of multipole parameters. The multipole parametrization of interaction
Hamiltonian of an arbitrary system with external fields under the Coulomb gauge has the
form [3]

Hc = −
∞
∑

l=1

l
∑

m=−l

∞
∑

n=0

(2l + 1)!!

2n n!(2l + 2n+ 1)!!

√

2l + 1

4π
×

× {l−1M
(2n)
lm (t)Ylm(∇)△n(r · B)|r=0 + (3.15)

+ l−1[Q̇lm(t)δn,0△−1 − T 2n
lm (t)]Ylm(∇)△n[(1/c)r · Ḋ + (4π/c)r · j]r=0}.

where Q̇lm(t), connected with Coulomb multipole moments of the charge distribution of
the system are

Q̇lm(t) =
√

4πl
∫

rl−1 Y ∗
l l−1m(r̂) j(r, t) dr, (3.16)

M
(2n)
lm (t) are the magnetic multipole moments or their radii

M
(2n)
lm (t) =

−i
c

√

l

l + 1

√

4π

2l + 1

∫

rl Y ∗
llm(r̂) j(r, t) dr, (3.17)

and T
(2n)
lm (t) are third family of multipole moments [13], the toroid moments and their

radii, namely

T
(2n)
lm (t) = −

√
πl

c(2l + 1)

∫

rl+2n+1[Y ∗
l l−1 m(r̂) +

2
√

l/l + 1

2l + 3
Y ∗

l l+1m(r̂)] · j(r, t) dr, (3.18)

In the case considered by Haller and Sohn [11] we have to substitute into (3.15)

Q̇lm(t) ≡ ∂ Qlm

∂t
= i[Hc, Qlm] (3.19)

13



and
j = J − eρA (3.20)

in the formulas (3.15), (3.16), (3.17) and (3.18). In this approach there does not appear
any longitudinal contributions that are fictitious (mutually cancelled out) in the expres-
sion, deduced by Haller and Sohn. The formulas (3.16 - 3.18) obtained by us give correct
multipole parametrization for the interaction energy transverse degrees of freedom of a
non-relativistic system with radiation field.

3.3 Toroid moments in Schrödinger equation
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Figure 1

qi
ei

qi −R

r

Now suppose that we
consider some electron
involved in the molecu-
lar structure. We may in-
troduce a coordinate sys-
tem as in Fig. 1. Then
it may be shown that
the Schrödinger equation
for this electron interact-
ing with external sources
of electromagnetic fields
has the following form
[14]

ih̄φ̇(q) =
[

− h̄2

2m
(∇(q))2 + V (q) + e2

∫

φ̄(q′)φ(q′)

|q − q′| dq −

−
∫

P(r, q) · E⊥(r) dr −
∫

M(r, q) · B⊥(r) dr +

+
1

2mc2
[
∫

n(r, q) × B(r) dr]2
]

φ(q), (3.21)

with n(r, q) = − e
2
(q − R) δ(r − R).

To get the Schrödinger equation avobe authors used the following substitutions in
the Lagrangian for an electron field uncoupled from the radiation field: ∇ is replaced
by ∇ + ie

h̄c
A(q) and the wave function describing electron field initially is transformed

according to
ψ(q) = e−S(q) φ(q),

where S(q) is given by

S(q) =
1

h̄c

∫

P(r,q) · A⊥(r)dr.
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There are two ways to introduce here the toroid contributions. The first one is straight-
forward to use the substitution (2.30) Then we obtain

∫

P·E⊥ dr =⇒
∫

P·E⊥ dr +
∫

curlTe·E⊥ dr =
∫

P·E⊥ dr +
∫

Te·curlE⊥ dr. (3.22)

Analogically
∫

M · B dr =⇒
∫

M · B dr +
∫

Tm · curlB dr. (3.23)

More reasonable approach is developed in [2]. It goes back to the classic multipolar
description of quasimolecular structure [9, 15]. According to it we may use immediately
the multipole expansion of the densities P(r, q) and M(r, q) as follows [2]:

W e = −
∫

d(r, q) ·E⊥(r) dr = −Q · E⊥ − Te · curlE −

−P̂
e · curl curlE − 1

2
Qij(∇iE

⊥
j + ∇jE

⊥
i ) − T e

ij∇i(curlE⊥)i − · · · (3.24)

where Q =
∫

d(r) dr is the conventional total electric dipole moment of the system,
Te = 1

2

∫

r× d(r) dr is the axial toroid moment and (see [14] and Appendix)

P(r, q) = −e
{

(q − R) − 1

2
(q ×R) −

−e
2
[(q − R)i (q − R)j − 2

3
(q − R)2 δij] + · · ·

}

δ(r − R). (3.25)

Analogically for M(r, q).
Let us now define the axial toroid moment. From the classical point of view on the origin

of electric dipoles we see that the multipole expansion of the distribution density P(r, t)
contents generally three kinds of dipole moments (see Formula (3.24)). Working within
the scope of classical framework after Power a. o. [5] we see that Te = 0 for a separate
”atom”. Really, all the electric dipoles are characterized by its space vectors, with the
origins lying in the origin of the coordinate system (center mass of the system considered)
and the endpoints in the electron coordinates. The sum of these vectors characterizes the
total electric dipole moment of the system. To demonostrate the forementioned conclusion
we consider the following example.
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Let us have a system con-
taining N atoms where
each j-atom itself forms a
subsystem [see Fig. 2].
Let ”O” be the center-
mass of the system as
a whole. If the system
contains only one atom,
say ”A”, which on his
part consists of one nu-
clei and n electrons, the
electric dipole moment of
this system relating to
the point ”O” can be
written as

Q = −e
n

∑

i=1

(R − qi), d = Q δ(r− R). (3.26)

Then the axial toroid moment of the such a system with respect to its proper center-mass
is

T(d) =
1

2

∫

d× r dr =
e

2

n
∑

i=1

(R − qi) × (R− qi) = 0, (3.27)

as ri = R−qi and R is fixed. If the molecule contains N atoms then we define the total
toroid moment of the molecule T(d) as a whole [16] with respect to its center-mass by the
following formula

T(d) =
e

2

N
∑

j=1

n
∑

i=1

(Rj − qij) ×Rj =
e

2

N
∑

j=1

n
∑

i=1

[qij ×Rj] 6= 0, (3.28)

although the axial toroid moment T
(d)
j for each separate j-atom with respect to its proper

center-mass is equal to zero as before.
As a particular example where electromagnetic properties of molecules are described by

the axial toroid moment, we point out the phenomenon of ”aromagnetism” [17]. There
exists substances with a closed chains of atoms like benzol ring. In the experiment,
the microcrystals of the aromatic series substances (antrazen, fenantren etc.), suspended
either in water or in other liquids, were reoriented by an alternating magnetic field so that
the modulation of polarized light, propagating through the media given, was observed.
This reorientations can be easily explained if the aromatic molecules are considered to
possess axial toroid moment T(d) (see Fig. 3) as an electromagnetic order parameter.
The latter can be clarified as follows. All molecular wave functions Ψ of the benzol ring,
being the main fragment of aromatic molecules, are first classified through the irreducible
representations of the point group symmetry D6h and then the asymmetric representations
(E2g and E1u) are selected among them. When such molecules are packed into a molecular
crystal, the parallel orientation of their axial toroid moments are preferred and the crystal
as a whole can possess a macroscopic axial toroid moment [18].

16



✧
✧
✧
✧✧◗◗

◗
◗◗

✑
✑
✑
✑✑❜

❜
❜
❜❜

s

s
✉

s

s
s✛

❆
❆
❆
❆❆❑

✁
✁
✁
✁✕

✲

❏
❏
❏❏❫

✁
✁
✁
✁☛

❛❛
PPP ✉

✉

✧✧
✧✧✉

❍❍
❜❜

✉

✉

✑✑
✑✑

✉
C1

C2

C3

C4

C5

C6

X1

d1

X2

d2

X3

d3

X4

d4
X5

d5

X6

d6

Figure 3. Here is a fragment of an aromatic molecule where Ci is a carbon atom, Xi

is a hydrogen atom or its substitute with Ci. The vectors di denotes the electric dipole
moments, being due to the molecular orbital with the symmetry E2g of the representation
of the point group D6h. The molecular wave functions ΨE2g and ΨE1u with this symmetry
are built [18]. The molecules in this states are shown to have the axial toroid moment.

Now let us see what ”aromagnetism” is? Microscopic crystals of aromatics like anthracene,
penthacene, phenanthrene and others were suspended in water or some other liquids.
When alternating or rotating magnetic field was applied to the suspension the change
of orientation of microcrystals was observed. This new magnetic property of aromatic
substances was named ”aromagnetism” [17]. This phenomena can not be explained by
the standard way like ferromagnetism since the organic molecules do not possess magnetic
moments neither orbital nor spin origin.

The theory of aromagnetism origin was proposed in [18]. It was assumed there that
the sample of aromagnetic substance is possessed of an axial toroid moment G (ATM).
This moment describes the vortex distribution of the electrical dipoles da deposited at
points ra and equal to

G = (1/2)
∑

[ra da],

where the sum is taken over the whole sample. Electrodynamics theory of ATM was
developed in [19]. The energy of ATM in external field is equal to

E = −GcurlE = G
∂H

∂ct
.

Thus toroid moment G, electrical by its nature, can interact with alternating magnetic
field H(t). In the following we consider as ’aromagnetic’ any molecule or macroscopic
sample that possess toroid moment G. The main feature that singles out aromagnetics
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among the other magnetics is their interaction with magnetic field time derivative ∂H/∂t
(not with magnetic field H itself). The theory previously given in [18] may be extended
so that new substances with aromagnetic properties can be predicted.

Indeed it was shown (see [18]) that the cause of molecular aromagnetism is the ex-
istence of quantum molecular electronic states (MO) where the quantum mean value of
toroid moment < G > of molecule is not equal to zero. In [18] only molecules with group
symmetry D6h were considered. It is obviously that molecules with the other symmetry
groups may be examined. The scheme of the examination is the following. Toroid moment
is a pseudovector and for any given group we know the irreps of its transformation under
the group operations. For example in the group D4h the irreps of pseudovector are : A2g

for Gz and Eg for Gx and Gy components of G. Considering direct products of this irreps
(A2g and Eg in a given case) with the other irreps of this group it is possible to find out
the symmetry of MO where the mean value of toroid moment is not zero (Eg or Eu for
group D4h). Then it is possible to find these MO in explicit form and calculate the mean
value < G >, as it was described in [18]. Toroid polarization coefficients of the molecule
can also be calculated in analogous way.
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✓✏

✁
✁☛

✲

❙
❙♦H

H

H
H

H

H

O

O

O

Figure 4. Distribution of dipole moments of
oxygen atoms of the molecule phloroglycine.
It can be estimated from this figure that
molecule has axial toroid moment.

The other important case of molecular aromagnetism is the vortex distribution of
dipole moments of oxygen or nitrogen atoms they have due to their lone pairs of electrons.
On the Figure 4 the stereomer of the molecule of phloroglycine is represented and dipole
moments of the oxygen atoms are shown. The stability of this stereomer was demonstrated
by numerical calculation by standard molecular dynamic method. It follows from the
picture that vortex distribution of the electrical dipole moments on the oxygen atoms
exists and that this stereomer of phloroglycine is aromagnetic one. The other examples
of organic molecules with the same kind of aromagnetism are given here.

To explain structural aromagnetism let us consider molecular crystal of indandion-1,3
pyridine-betaine (IPB) polar intramolecular salt (Figure 5, left). Due to charge transfer
this molecule has electrical dipole moment. The fundamental unit of the crystal of IPB
is shown in Figure 5 (to draw the Figure 5 the picture 1.9 from the book [20] is used)
and on the figure we show the dipole moments of the molecules. It can be seen from the
figure that toroid moment of the crystal cell is not equal to zero, i.e. this substance has
aromagnetic properties which we call structural aromagnetism.

18



q
q
ss

qs
sq

ss
ss

s ss

ss

ss sq
s q

qssq
sq

q q

sq
s q q qsssq sq

ss
ss sss

q s
q s

q s q
q

s qq
s

s ss
sq s

ssq
q
q

s s
ss

s

ss s
s s

s
sq

q q

sq
ss

s s s
q qs s✖✕

✗✔❦ ✒✑
✓✏❦

O

−
+

N

O
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tal crystal unit (right). The electric dipole moments of the IPB molecules are shown that
demonstrates it vortex (toroid) distribution.

Let us see one more example. In a cubic perovskite the crystallographic plane (1, 1, 1)
contains triangular sublattice of oxygen atoms [21,- 23] (see Figure 6). Magnetic moments
of these atoms can be in two states of orientating symmetry that are separated by tem-
peratural phase transition.
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Figure 7a. Magnetic moments of oxygen atoms are orientated in such a way that they
generate in each triangle toroid moment directed ”up” or ”down” by turns and thus build
up anti-toroic
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Figure 7b. Triangular anti-regulation of meansquare radii of magnetic moments of each
domain in (1, 1, 1) plane.

4 Conclusion

Now let us remember that there are two electric fields those differ by properties [9]. That,
which appears in transverse part, is radiation field, unlike the longitudinal part that can
be connected with the evolution of scalar one in Lorentz gauge

divA = −1

c
ϕ̇. (4.29)

In connection with this we should notice the terminological ambiguity. In the framework of
electrodynamics of continuous media, where may be realized the situation when divj = 0,
the moments Q̇lm are the functions, independent to Coulomb moments Qlm, because there
is no free charges in the system considered. So Qlm cannot be restored as a result of the
measurement of Coulomb moments by means of permanent electric field. We will illustrate
it doing inverse transformation, i.e. adding in the current part of multipole expansion the
transverse and longitudinal contributions, for simplicity Q̇1m:

l−1[Q̇lm△−1Ylm(rḊ) − Q̇lmYlm(∇)△n−1div A]l=1,n=0 =⇒

=⇒ Q̇△−1(
1

c
Ḋ −∇divA) = Q̇△−1(curl curlA − ∇divA) =

= −Q̇△−1△A = −Q̇A = QȦ− d

dt
QA =⇒ −QE (4.30)

Here we take into account that 1
c
Ė = curlB = curl curl A. Naturally, these expressions

are nonzero and can be justified only if the system is described but by a charge density
and Q̇ =

∫

j dr (see e.g. [9]). Note that in quantum mechanics of atoms and moluclues
there are always isolated charges and the moments Q̇lm and Qlm are connected by the
evolution equation (3.19) i.e. Q̇lm = i[Hc, Qlm].
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The Coulomb gauge is generally not applied if a system in consideration contains some
free charges. Therefore we give the multipole expansion of ρ(r, t) for the completeness of
consideration [11, 3]

ρ(r, t) =
∑

l,m,n=0

(2l + 1)!!

2nn!(2l + 2n + 1)!!

√

4π

2l + 1
Q

(2n)
lm (t)△nδlm(r), (4.31)

Qlm(t) =

√

4π

2l + 1

∫

rl+2nY ∗
lm(r̂)ρ(r, t) dr. (4.32)

Naturally, the Coulomb dipole moments, inherent to (4.24), interact with electric field as
usual H = −QE. Had we used the Dirac’s analysis of constrained Hamiltonian system
developed within the scope of our problem in [24, 25] we would have been in need of the
fixation of Coulomb gauge [26] (see also [9]).
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5 Appendix

According to definition the current density, corresponding to one dipole moment in the
proper system of coordinates (see Fig. 1) is equal (see e.g. [13])

Jα(qα, R) = Q̇
α
δ(qα − R). (A.1)

where value of dipole is defined as Qα = −e (qα − R). We may introduce the total
point-like current

∑

α q̇α considered to be localized in the fixed point R in the coordinate
system r and attach it to the fixed point R (Fig. 1):

J(r) :=
∑

α

q̇α δ(r − R), (A.2)

where the proper dipoles Qα = −e (qα − R) as before, but Q̇
α

= q̇α. Certainly we
may obtain the last definition from the exact definition of the total current density of all
electrons in the system of coordinates r using dipole approximation:

J(r) =
∑

α

q̇αδ(r − qα) ≈
∑

α

q̇αδ(r − R), (A.3)

as far as

δ(r − qα) = δ(r− R + R− qα)|R→qα ≈ δ(r −R) + (R − qα)∇δ(r −R) + · · ·

But in the system r, the polarization vector field of the molecular system can be repre-
sented as [14]

P(r, qα) =⇒
∑

α

p(qα)δ(r−qα) =
∑

α

p(qα)δ(r−R+R−qα)|R→qα ≈
∑

α

p(qα)δ(r−R)+· · ·
(A.4)
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where
∑

α pα is the sum of dipoles of all electron. From here the polarization current is
found as

J(r) :=
∂P

∂t
=⇒

∑

α

ṗ(qα)δ(r − R). (A.5)

Comparing (A.5) with (A.2) we conclude that

P(r, qα) = −e (qα − R) δ(r − R) + · · · (A.6)

Now to define the quadrupole moment we use the following expression

Qij =
1

2

∫

[

Pirj + riPj − 2

3
(r ·P)δij

]

dr. (A.7)

Putting the value P from (A.6) we obtain

Qij = −e
2

[

qα
i rj + riq

α
j − 2rirj +

2

3
r(q − r)δij

]

. (A.8)
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