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Abstract

A modified system of equations of electrodynamics has been obtained. Beside

the Lagrangian one an alternative gauge-like formalism has been developed

to introduce the toroid moment contributions in the equations obtained. The

two potential formalism that was worked out by us earlier has been developed

further where along with the two vector potentials we introduce two scalar

potentials thus taking into account all the four equations of electromagnetism.
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PACS 03.50.De Maxwell theory: general mathematical aspects

PACS 11.10.Ef Lagrangian and Hamiltonian approach

1. INTRODUCTION

The history of electromagnetism is the history of struggle of different rival concepts from

the very early days of its existence. Though, after the historical observation by Hertz, all

main investigations in electromagnetism were based on Maxwell equations, nevertheless this

theory still suffers from some shortcomings inherent to its predecessors. Several attempts

were made to remove the internal inconsistencies of the theory. To be short we refer to very
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few of them. One of the attempts to modify the theory of electromanetism was connected

with the introduction of magnetic charge in Maxwell equation by Dirac [1,2], while keeping

the usual definition of E and B in terms of the gauge potentials. Recently D. Singleton [3]

developed this theory introducing two four-vector potentials Aµ = (φe,A) and Cµ = (φm,C).

Note that, a similar theory (two potential formalism) was developed by us few years ago

(we will come back to it in Sec. 3). The main defect of the theory developed by Singleton

in our view is that the existence of magnetic charge still lack of experimental support,

hence can be considered as a mathematically convenient one only. Recently Chubykalo a.o.

made an effort to modify the electromagnetic theory by invoking both the transverse and

longitudinal (explicitly time independent) fields simultaneously, thus giving an equal footing

to both the Maxwell-Hertz and Maxwell-Lorentz equations [4]. To remove all ambiguities

related to the applications of Maxwell’s displacement current they substituted all partial

derivatives in Maxwell-Lorenz equations by the total ones and separated all field quantities

into two independent classes with explicit {}∗ and implicit {}0 time dependence, respectively.

Another attempt to modify the equations of eletromagnetism is connected with the existence

of the third family of multipole moments, namely the toroid one. This theory was developed

by us during the recent years. Recently we introduced toroid moments in Maxwell equations

exploiting Lagrangian formalism [5]. In the Sec. 2 of this paper we give a brief description

of this formalism. Moreover, here we develop an alternative method to introduce toroid

moments in the equation of electromagnetism. In Sec. 3 we develop two potential formalism

suggested by us earlier.

2. INTRODUCTION OF TOROID MOMENTS IN THE EQUATIONS OF

ELECTROMAGNETISM

Ya. Zel’dovich [6] was the first to introduce anapole in connection with the global elec-

tromagnetic properties of a toroid coil that are impossible to describe within the charge or

magnetic dipole moments in spite of explicit axial symmetry of the toroid coil. Further, in
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1974 Dubovik and Cheskov [7] determined the toroid moment in the framework of classical

electrodynamics. Recently a principally new type of magnetism known as aromagnetism

was observed in a class of organic substances, suspended either in water or in other liq-

uids [8]. Later, it was shown that this phenomena of aromagnetism cannot be explained in a

standard way, e.g., by ferromegnetism, since the organic molecules do not possess magnetic

moments of either orbital or spin origin. It was also shown that the origin of aromagnetism

is the interaction of vortex electric field induced by alternative magnetic one with the axial

toroid moments in aromatic elements [9]. These experimental results force the introduction

of toroid moments in the framework of conventional classical electrodynamics that in its

part inevitably leads to the modification of the equations of electromagnetism. In the two

following subsection we give two alternative schemes of introduction of toroid moments in

the electromagnetic equations.

A. Lagrangian Formalism

As a starting point we consider the interacting system of electromagnetic field and non-

relativistic charged particles given by the Lagrangian density [10]

L = Lpar + Lrad + Lint (2.1)

Lpar =
1

2

∑

α

mα q̇2
α −

1

2

∑

α6=β

eα eβ

|qα − qβ|

Lrad =
1

8π

∫

[
Ȧ

2

c2
− (curlA)2] dr

Lint =
1

c

∫

J(r) · A(r) dr =
∑

α

eα

c
q̇α · A(qα, t).

Here Lpar is the Lagrangian appropriate to a system of charged particles interacting solely

through instantaneous Coulomb force; it has the simple form of ”kinetic energy minus po-

tential energy”. Lrad is the Lagrangian for a radiation field far removed from the charges

and currents, and has the form of ”electric field energy minus magnetic field energy”. The

interaction Lagrangian Lint couples the particle variables to the field ones. It can be eas-
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ily verified that variation with respect to the particle coordinates gives the second law of

Newton with the Lorentz force

mα q̈α = eα E(qα, t) +
eα

c
q̇α × B(qα, t). (2.2)

Variation of the Lagragian (2.1) with respect to field variables gives the equation of motion

for the vector potential

curl curlA +
1

c2

∂2A

∂t2
= −

4π

c
J (2.3)

Defining B = curl A and E = −Ȧ/c one obtains

curl B =
1

c

∂E

∂t
+

4π

c
J (2.4)

It should be emphasized that E in (2.2) and (2.4) is the transverse part of the total electric

field. The longitudinal electric field in question is entirely electrostatic. The Hamiltonian,

corresponding to the Lagrangian (2.1) reads

H [Π,A; p, q] =
∑

α

pα · q̇α +
∫

Π · Ȧdr − L

=
∑

α

1

2mα

[pα −
eα

c
A(q, t)]2 +

1

2

∑

α6=β

eα eβ

|qα − qβ|
(2.5)

+
1

8π

∫

[(4π cΠ)2 + (curlA)2] dr,

where the corresponding conjugate momenta are

pα = m q̇α + (eα/c)A(q, t), Π(r) = (4πc2)−1Ȧ.

It is well known that in classical dynamics the addition of a total time derivative to a

Lagrangian leads to a new Lagrangian with the equations of motion unaltered. Lagrangians

obtained in this manner are said to be equivalent. In general, the Hamiltonians following

from the equivalent Lagrangians are different. Even the relationship between the conjugate

and the kinetic momenta may be changed [11]. Moreover, let us notice that the basic

equations of any new theory cannot be introduced strictly deductively. Usually, either
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they are postulated in differential form based on the partial integral conservation laws or

transformations of basic dynamical variables, whose initial definitions usually have some

analog in mechanics. Let us remark that we need to do so not only by inertia of thinking

but also because of the fact that most of our measurements have its objects as individual

particles or use them as test one. The situation is the same in electromagnetism and in

gravitation. In general geometrical interpretation of dynamical variables plays the crucial

role. An equivalent Lagrangian to that of (2.1) is [5]

Lequiv = L −
1

c

d

dt
[
∫

{P(r) + curlTe(r)} · A(r) dV ], (2.6)

where the toroid contribution has been taken into account. Here Te is axial toroid moment

(ATM) is electrical by nature (toroid dipole polarization vector of electric type). Writing it

in the explicit form we get The field conjugate to the vector potential A is now

4πcΠ(r) := −D(r) = −(E(r) + 4π(P(r) + curlTe(r)))

Since only the free field E is generated due to the change of magnetic field B one writes

curlD(r) = −
1

c
Ḃ(r) + 4π(curlP(r) + curl curlTe(r)), (2.7)

under curlE(r) = −Ḃ(r)/c. The new Lagrangian is a function of the variables qα, q̇α and a

functional of the field variables A, Ȧ, and the equations of motion follow from the variational

principle. Applying the Euler-Lagrange equations of motion one gets [5]

curlB(r) =
1

c
Ḋ(r) +

4π

c
jfree + 4π(curlM(r) + curl curlTm(r)) (2.8)

Here the currents were divided into free and bound state (due to electric polarization and

magnetization) one as [12]

J(r) = jfree + c curlM(r) + Ṗ(r) (2.9)

and an additional condition on Te is imposed

curlTm,e = ±
1

c
Ṫ

e,m
(2.10)
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where Tm is the toroid dipole polarization vector of magnetic type. The relation (2.10)

demands some comments. Both Te and Tm represent the closed isolated lines of electric

and magnetic fields. So they have to obey the usual differential relations similar to the

free Maxwell equations [13,14]). However, remark that signs here are opposite to the corre-

sponding one in Maxwell equations because the direction of electric dipole is accepted to be

chosen opposite to its inner electric field [15]. If we define the auxiliary field H to be

H(r) = B(r) − 4π (M(r) + curlTm(r)) (2.11)

then it deduces to

curlH =
1

c
Ḋ +

4π

c
jfree

But the latter formula is unsatisfactory from the physical point of view. It is easy to image

the situation when B and M are absent, because the medium may be composed from isolated

aligned dipoles Tm [16–18] and each Tm is the source of free-field (transverse-longitudinal)

potential but not B [19]. So the transition to the description by means of potentials is

inevitable. The Hamiltonian, corresponding to the equivalent Lagrangian in this case reads

Hequiv[Π,A; p, q] =
∑

α

1

2mα

[pα −
eα

c
A(q, t)]2 +

1

2

∑

α6=β

eα eβ

|qα − qβ |

+
1

8π

∫

{[4π(P + curlTe) − D]2 + (curlA)2}dr (2.12)

+
1

c

∫

J · Adr−
∫

M · Bdr−
∫

B · curlTmdr.

B. Gauge-like Transformation

The Maxwell equations for electromagnetic fields in media can be written as

curlH −
1

c

∂D

∂t
=

4π

c
jfree (2.13a)

divD = 4πρ (2.13b)

curlE +
1

c

∂B

∂t
= 0 (2.13c)

divB = 0 (2.13d)
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where

D = E + 4πP (2.14a)

H = B − 4πM (2.14b)

In the previous subsection we introduced toroid moments into Maxwell equation through

Lagrangian formalism. In doing so we first constructed an equivalent Lagrangian. Here we

do the same using in an alternative way which looks rather a gauge transformation. To this

end we introduce two vectors Tm and Te (toroid dipole polarization vector of magnetic type

and toroid dipole polarization of electric type, respectively) such that

P =⇒ P + curlTe (2.15a)

M =⇒ M + curlTm (2.15b)

It can be easily shown that the system (2.13) is invariant under the transformation (2.15) if

we impose the additional condition (2.10), i.e.,

curlTe,m = ±
1

c

∂Tm,e

∂t
(2.16)

In account of (2.15) and (2.16) we rewrite the system (2.13) as

curlB =
1

c

∂D

∂t
+

4π

c
jfree + 4π{curlM + curl curlTm} (2.17a)

divD = 4πρ (2.17b)

curlD = −
1

c

∂B

∂t
+ 4π{curlP + curl curl Te} (2.17c)

divB = 0 (2.17d)

As is seen the equations (2.17a) and (2.17c) of the system (2.17) completely coincide

with (2.8) and (2.7) of the previous subsection. Thus we introduced toroid moments in

Maxwell equations using two different formalisms.

3. TWO POTENTIAL FORMALISM

It is commonly believed that the divergence equations of the Maxwell system are ”redun-

dant”. Recently Krivsky a.o. [20] claimed that to describe the free electromagnetic field it is
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sufficient to consider the curl-subsystem of Maxwell equations since the equalities divE = 0

and divB = 0 are fulfilled identically. Contrary to this statement, Jiang and Co [21] proved

that the divergence equations are not redundant and that neglecting these equations is at

the origin of spurious solutions in computational electromagnetics. Here we construct gen-

eralized formulation of Maxwell equations including both curl and divergence subsystems.

In this section we develop two potential formalism (a similar formalism was developed by

us earlier with the curl-subsystem taken into account only). Note that in the ordinary one

potential formalism (A, ϕ) the second set of Maxwell equations are fulfilled identically. So

that all the four Maxwell equations bring their contribution individually, in our view, one

has to rewrite the Maxwell equation in terms of two vector and two scalar potentials. Be-

cause of introduction of toroid moments (see Sec. 2) now B and D have lost their initial

meaning, hence should be reinterpreted. It means the deduction of the equation of evolution

by inserting B = curlA and E = −Ȧ/c is valid no longer and we have to introduce some new

potential that could explain the new B and D. To this end we introduce so-called double

potential [22,23,5]. As was mentioned, due to introduction of toroid moments the vectors

B and D should be redefined. We denote these new quantities as β and δ, respectively. In

account of it, the system (2.17) should be rewritten as

curlβ =
1

c

∂δ

∂t
+

4π

c
jfree + 4π{curlM + curl curlTm} (3.1a)

divδ = 4πρ (3.1b)

curlδ = −
1

c

∂β

∂t
+ 4π{curlP + curl curlTe} (3.1c)

divβ = 0 (3.1d)

Before developing the two potential formalism we first rewrite system (2.13) in terms of

vector and scalar potentials A, φ such that B = curlA, E = −∇ϕ−(1/c)(∂A/∂t). Following

any text book we can write system (2.13) as

✷A = −
4π

c
jtot = −

4π

c
[jfree +

∂P

∂t
+ c curlM] (3.2a)

✷φ = −4π[ρ − div P] (3.2b)
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under Lorentz gauge, i.e., div A + (1/c)(∂φ/∂t) = 0 and

✷A = −
4π

c
[jtot −

1

4π
∇

∂φ

∂t
] (3.3a)

∇2φ = −4π[ρ − divP] (3.3b)

under Coulomb gauge, i.e., divA = 0. Here ✷ = ∇2 − (1/c2)(∂2/∂t2). Note that to ob-

tain (3.2) or (3.3) it is sufficient to consider (2.13a) and (2.13b) only since the two others are

fulfilled identically. Let us now develop two potential formalism. Two potential formalism

was first introduced in [22] and further developed in [23,5]. In both papers we introduce

only two vector potentials αm, αe and use only the curl-subsystem of the Maxwell equations

with the additional condition divαm,e = 0. Thus, in our view our previous version of two

potential formalism lack of completeness. In the present paper together with the vector

potentials αm, αe we introduce two scalar potentials ϕm and ϕe such that

β = curlαm +
1

c

∂αe

∂t
+ ∇ϕm, (3.4a)

δ = curlαe −
1

c

∂αm

∂t
−∇ϕe (3.4b)

It can be easily verified that system of equations (3.1) are invariant under this transformation

and take the form

✷αm = −
4π

c
[j + c curlM + c curl curlTm], (3.5a)

✷ϕm = 0 (3.5b)

✷αe = −
4π

c
[curlP + curl curlTe], (3.5c)

✷ϕe = −4π ρ (3.5d)

under div αm,e + (1/c)(∂ϕe,m/∂t) = 0 and

✷αm = −
4π

c
[j + c curlM + c curl curlTm −

1

4π
∇

∂ϕe

∂t
] (3.6a)

∇2 ϕm = 0 (3.6b)

✷αe = −
4π

c
[curlP + curl curlTe −

1

4π

∂ϕm

∂t
] (3.6c)

∇2 ϕe = −4π ρ (3.6d)
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under div αm,e = 0. The solutions to the systems (3.5) and (3.6) can be written as follows

(see for example [5,25]): The solutions to the d’Alembert equation

✷F (r, t) = f(r, t) (3.7)

look

F (r, t) = −
1

4π

∫

all space

f(r′, t′)dr′

|r − r′|

∣

∣

∣

∣

∣

t′=t−|r−r′|/c

(3.8)

whereas the solutions to the Poisson equation

∇2F (r) = f(r) (3.9)

read

F (r) = −
1

4π

∫

f(r′)dr′

|r− r′|
(3.10)

It is necessary to emphasize that the potential descriptions electrotoroidic and magneto-

toroidic media are completely separated. The properties of the magnetic and electric poten-

tials αm and αe under the temporal and spatial inversions are opposite [13]. The potential

αe (αm) is related to the toroidness of the medium Te (Tm) as B (D) to M (P). Note

that if divδ 6= 0 and there does exist free current in the medium we have to use the di-

rect method for finding all constrains in the theory suggested by Dirac. Dirac applied his

method to electrodynamics and found that electromagnetic potentials have only two degrees

of freedom described by transverse components of vector potential. This method was devel-

oped by Dobovik and Shabanov [24], where classical and quantum dynamics of a system of

non-relativistic charged particles were considered.

4. CONCLUSION

The modified equations of electrodynamics has been obtained in account of toroid mo-

ment contributions. The two-potential formalism has been further developed for the equa-

tions obtained. Note that introduction of free magnetic current jmfree and magnetic charge



V.M. Dubovik and B. Saha 11

ρm in the equations (3.1c) and (3.1d) respectively leads to the equations obtained by Sin-

gleton [3].
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