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Abstract

The Generalized Lotka-Volterra (GLV) model:

wi(t + 1) = λwi(t) + aw̄(t) − cw̄(t)wi(t) , i = 1, ......, N

provides a general method to simulate, analyze and understand a wide

class of phenomena that are characterized by power-law probability distribu-

tions:

P (w)dw ∼ w−1−αdw (α ≥ 1)

and truncated Levy flights fluctuations Lα(w̄).

I. INTRODUCTION

Many natural and man-made phenomena are known to involve power-law probability

distributions (e.g. Pareto 1897; Zipf 1949; Mandelbrot 1961, 1951, 1963; Atkinson and

Harrison 1978; Bak et al. 1997; Bouchaud et al. 97; Cahalan and Joseph 1989; Mantegna

and Stanley 1994, 1995, 1996, 1997; Stanley et al. 1995; Sornette et.al. 1997; Zanette and

Manrubia 1997, Zhang et al 1997).

∗To appear in Econophysics 97, (Kluver 1998), eds. Imre Kondor and Janos Kertes
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Power-laws are common in systems composed of units that have no characteristic size,

and in systems made of auto-catalytic elements (Yule 1924; Champernowne 1953; Simon

and Bonini 1958; Ijiri and Simon 1977, Anderson 1995). Moreover it has been shown that in

systems which are not separable into energetically independent parts, the power laws take

naturally the place of the usual exponential (Boltzmann) distribution (Tsallis 1988).

It has been shown both theoretically (Solomon 1998; Solomon and Levy 1996) and using

numerical simulations (Biham et al. 1998) that the Generalized Lotka-Volterra (GLV) model

produces power-law distributions, but doesn’t suffer from the problems and limitations of

previous similar models. Since the GLV requires only a few, and not too restrictive pre-

conditions, it may be expected to be widely applicable.

The GLV involves three scalar parameters, and a probability distribution, each having

clear roles in the model’s interpretation. Certain model properties are ”universal” i.e. inde-

pendent of some of the model’s parameters. This conceptual simplicity makes the GLV easily

adaptable to different systems, and makes it possible to use it as a descriptive, understanding

and comparison tool.

The features listed above make the GLV a candidate for a general method to simulate,

analyze and understand a wide class of phenomena which are characterized by power-law

probability distributions and multiscale fluctuations.

The aim of this paper is to provide a practical introduction to GLV modeling. We describe

the basic theory, how to construct a numerical simulation of the GLV and applications to

practical interesting systems.

For didactic reasons we will present a few previous and simpler models before introducing

the GLV. This will nicely partition the topics involved into more manageable parts. The

models described in this paper are:

• Single-agent random multiplicative process without barrier eq. (7).

• Single-agent multiplicative process with fixed lower barrier eq. (20).

• Multiple agent process with barrier coupled to the mean eq. (40-42).
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• Single-agent linear (stochastic multiplicative/additive) process eq. (50)

• Generalized Lotka-Volterra (autocatalytic competing) agents eq. (52).

II. SOME BASIC CONCEPTS

Microscopic representation or agent-oriented simulation is a relatively new way of gen-

erating and expressing knowledge about complex systems (see Solomon 1995 for a physicist

oriented review and Kim and Markowitz 1989 for an early pioneering work in finance and

ZhangWB 1991 for a synergetically inspired view).

One idea this document tries to convey is the basic difference between standard methods

of explanation, which are based on a global parameterization of a macroscopic dynamics and

the “microscopic representation” or “agent-oriented” simulation method of explanation.

To illustrate the older methods, think of the high-school textbook problem of computing

the trajectory of a stone under the influence of gravitation. The stone is treated as a

point mass (that is the global parameterization), and we use Newton’s Laws (that’s the

macroscopic dynamics).

This kind of explanation is not always useful. For instance in order to study the cracking

and crumbling of the stone under pressure, one would have to consider its structure made of

clusters of (of clusters ...) of smaller stone parts. In many physical, economic etc situations,

we find it is most natural to view the system under study as a collection of “microscopic”

similar units (or “agents”), which interact among themselves in some well-defined way and

(co-)evolve in time.

Experience have shown that even a simple dynamics applied to a system consisting of

many similar interacting agents may produce interesting macroscopic effects. The proper-

ties which arise from the collective behavior of many similar elements are called emergent

properties.

Some examples of systems with emergent properties are:
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Animal (and human) populations (cities/countries) are composed of individuals which

are constantly born (and die), and compete with other members of their species (for food,

mates etc).

The classical (scalar) Lotka-Volterra system:

w(t + 1) = (1 + birth − death) ∗ w(t) − competition ∗ w(t)2 (1)

was invented specifically in order to model the time evolution of such populations w(t).

We will show that its straightforward multi-agent generalization eq. (2) which treats the

population as a collection of sub-populations wi, presents emergent properties very different

from the eq. (1) which treats the entire population as a single variable (similarly to the

stone/point mass example above).

The stock market is parametrized macroscopically by the index w(t) which is proportional

to the capitalization (total worth of the money invested) in the traded equities. For a fixed

amount of shares, this is a measure of the price of the shares traded in the market. Models

similar to the stone/point-mass/Newton law example above were introduced in the past

(Baillie and Bollerslev 1990) and lead to models which treat the index/share price w(t + 1)

as a single entity with time evolution governed by stochastic differential equations.

The microscopic representation method models the market index w̄(t) as an collective

quantity emerging from the interactions of a macroscopic number of traders.

More precisely, the ”microscopic representation” of the stock market is composed of

many investors i = 1, ...., N each having a certain personal wealth wi(t). The investors buy

and sell stocks, using more or less complicated strategies designed to maximize their wealth.

The resulting index is then proportional to the total sum of the individual investors wealth.

Another (”orthogonal”) way to characterize the financial markets is to consider as elemen-

tary degrees of freedom the individual stocks (i.e. the capitalization wi(t) of the individual

companies i traded in the market).

We are going to use the Generalized Lotka-Volterra (GLV) equation system

wi(t + 1) = λ(t)wi(t) + a(t)w̄(t) − c(t)w̄(t)wi(t) , i = 1, ....., N (2)
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to construct a very simple model of the stock market. In spite of being very simple, the

model yields (and in doing so - explains) the Pareto distribution of wealth, an economical

fact left for a long time (100 years!) without satisfactory explanation. In the case of the

previous example of populations/cities/countries sizes, the system eq. (2) results from the

assumption that the wi individuals belonging to each city/country i interact similarly (in the

stochastic sense) to all the individual members of the other cities/countries. More precisely,

eq. (2) would result from the following assumptions:

- for each of the wi citizen of a city, there is a λ probability that he will attract (or give

birth to) a new citizen. One may include as a negative contribution to λ the probability for

the citizen to die or leave the town without preferred destination.

- each of the wi citizens of a city has a probability c/N to be attracted by one of the Nw̄

citizens of the existing cities and leave the town i.

- the citizens which left own town but are not bound to a particular town, have the

probability a to end up in any of the i towns.

The analysis below shows that if the last term is negligible, the exponent α is likely to

be 1.

Systems made of auto-catalytic (terms λ and a) competing (term c) elements are wide-

spread in nature. Another example, very different from the previous: clouds are collections

of water droplets, which grow by taking in water vapor from the surrounding air. Agent-

oriented models may explain the observed distribution of cloud sizes and shapes without

going into all the very complicated physical details.

To make things more concrete, we will often use in the following discussion terminology

borrowed from the GLV model of the stock market. However, our results and insights will

be quite generic and applicable to other systems.

For example, we will often use the term ‘traders’ i instead of microscopic elements and

talk about the ‘wealth’ wi of each trader and the ”average wealth” w̄(t):

w̄(t) =
1

N

∑

i

wi(t) (3)

5



All these names should be suitably renamed when used in other contexts.

III. PROBABILITY DISTRIBUTIONS AS PREDICTIVE OUTPUT OF

MODELING

Modeling the stochastic evolution in time t = 1, ....., T of a system of type eq. (1)

produces a lot of raw data. It is not very useful to produce more and more sequences of

numbers

w(t); t = 1, ...., T

without a way to analyze this data.

A natural way is to collect a lot of such sequences and analyze them statistically. A way

to look at it is to imagine a large set of (uncoupled) traders wi, i = 1, ..., N , subject to the

same stochastic dynamics, and compute their distribution. More precisely, assuming each

data sequence i produced by eq. (1) describes the evolution of one trader i

wi(t); t = 1, ...., T

we may compute over a large set of traders i = 1, ...., N the number of traders Nt(w) with

wealth wi(t) in the interval (w, w+dw). In the limit of infinite N this defines the individual

wealth probability distribution

Pt(w)dw = Nt(w)/N (4)

This way of looking at the problem is conductive to a model like eq. (2) in which the

various traders do interact e.g. through terms including their average w̄. As we will see,

this is a key ingredient in solving some of the problems with the one-agent models of the

type eq. (1) and of course a way to make the models more realistic.
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IV. THE GENERAL SHAPE OF THE PROBABILITY DISTRIBUTIONS

It may be a little surprising, but in certain conditions, even for non-stationary interacting

non-linear dynamical systems of the type eq. (2), we may predict (without performing any

computer runs) how the wealth distributions Pt(w) produced by our models will look like.

Before going into a more detailed analysis we list here some obvious properties which

the probability distribution has to obey.

• The distribution vanishes for negative values.

P (w) = 0 for w < 0

This property follows from the way we choose the initial wealth values, and the na-

ture of the dynamics. In practice this corresponds to the fact that population sizes,

capitalization of companies, cloud sizes, etc. assume only positive values.

• The value zero usually has vanishing probability distribution P (0) = 0. This follows

from the continuity of the distribution, and the previous characteristic.

• The distribution has a tail which may obey a power-law

P (w) ∼ w−1−α (5)

or not. In any case, distributions must decay to zero at infinity:

lim
w−>∞

P (w) = 0 (6)

otherwise the probability to have finite wi values would vanish.

• The distribution has a maximum. A “nice” continuous and non-negative function will

have a maximum between two zeroes. Here we have one at zero, and one at infinity.

The remaining non-trivial issues are:
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• The behavior of the tail, in particular whether it decreases as a power-law eq. (5),

log-normal, exponential or some other shape.

• The location and height of the maximum

• The behavior of the rising part

• The relation between the tail shape and the parameters of the model. We will see that

in certain conditions, the tail behavior is quite universal in as far as it is quantitatively

independent on most of the parameters and it is preserved even in generically non-

stationary conditions.

In this article we will be interested mainly in the shape of the tail of the probability

distribution P (w), in particular whether it is a power-law eq. (5) or not.

The importance of the power laws is far from purely academic: the power laws are the

bridges between the simple microscopic elementary laws acting at the individual level and

the complex macroscopic phenomena acting at the collective level. They insure that the

dynamics does cover many dynamical scales rather than acting only at the smallest and/or

largest scales of the system.

Moreover, power laws insure that the dynamics of the intermediate scales of the system

is largely independent on the microscopic details and the macroscopic external conditions

constraining the system. Consequently the macroscopic complexity is not the direct and lin-

ear result of the microscopic details but rather a generic consequence of the self-organization

taking place in systems with many interacting parts and inter-related feedback loops.

This means that one can hope to extract macroscopic and mesoscopic laws which hold

for large classes of microscopic laws in an universal way.

This unifying and predictive power of the power laws made them the central objects

in many branches of science starting with quantum field theory and statistical mechanics

and ending with ecology and economics. In fact the necessity for such laws in fundamental

physics lead to very ”un-natural” (t’Hooft 1979) fine-tuning procedures designed to enforce
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them.

One can say that the emergence of the power laws is a sine qua non condition for the

emergence of the macroscopic world out of local microscopic elementary laws of nature. As

such, it becomes a fundamental natural law on its own.

The present paper shows that power laws emerge generically in the most

simple and natural models which were considered in the past in the modeling

of chemical, biological and social systems.

V. MULTIPLICATIVE RANDOM DYNAMICS AND LOG-NORMAL

DISTRIBUTIONS

Power-law probability distributions eq. (5) with exponent −1 (i.e. α = 0), can be

obtained analytically from a multiplicative process (Redner 1990; Shlesinger 1982):

w(t + 1) = λ(t)w(t) (7)

where the random variables λ(t) are extracted from a fixed probability distribution Π(λ)

with positive support.

Indeed, in order to obtain the distribution of w(t) in the large t limit, one takes the

logarithm on both sides of eq. (7) and uses the notations µ = ln λ, x = ln w. With these

notations eq. (7) becomes:

x(t + 1) = µ(t) + x(t) (8)

The respective probability distributions ρ(µ) and P(x) for µ and x are related to the distri-

butions for λ and w by the identities:

ρ(ln λ)d(lnλ) = Π(λ)dλ (9)

and respectively

P(ln w)d(lnw) = P (w)dw (10)
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which mean:

ρ(µ)dµ = (exp µ)Π(exp µ)dµ (11)

and respectively

P(x)dx = (exp x)P (exp x)dx (12)

The interpretation of eq. (8) is that x(t + 1) is the sum of the constant x(0) = ln w(0),

and t random variables µ(t) = ln λ(t) extracted from the fixed distribution ρ(µ). Under the

general conditions of the Central Limit Theorem (CLT) we get for x(t) at large t the normal

distribution:

Pt(x) ∼
1

√

2πσ2
ln λt

exp−
(x− < x >)2

2σ2
ln λt

(13)

where

< x >= tv ≡ t < ln λ > (14)

and

σ2
ln λ =< (ln λ)2 > − < ln λ >2 (15)

Note that the width of the normal distribution Pt(x) (the denominator of the expression

in the exponential in eq. (13)) is

σ2
x = tσ2

ln λ (16)

and increases indefinitely with time. This means that the distribution Pt(x) becomes inde-

pendent of x

Pt(x) ∼
1

√

2πσ2
ln λt

(17)

in an ever-increasing neighborhood of < x > (where the exponential is close to 1).

Transforming eq. (17) back to the w variables by using eq. (10) one gets
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P (w)dw =
1

√

2πσ2
ln λt

d(lnw) (18)

i.e.

P (w)dw ∼ 1/w dw (19)

Graphically, this means that as the time goes to infinity, P (w) is an ever “flattening”

distribution approaching w−1 in an ever expanding neighborhood.

VI. NON-INTERACTIVE MULTIPLICATIVE PROCESSES WITH FIXED

LOWER BOUND

In order to obtain a power-law probability distributions P (w) ∼ w−1−α with exponent

α > 0 the multiplicative process eq. (7) has to be modified (Yule 1924, Champernowne

1953, Simon and Bonini 1958, Ijiri and Simon 1977) in such a way that the variation of w(t)

under eq. (7) will be constrained by a lower bound (or barrier) wmin

w(t) > wmin. (20)

In terms of x(t) = lnw(t) , eq. (8) becomes supplemented by the lower bound:

x(t) > xmin ≡ ln(wmin) (21)

More specifically the dynamics of w(t) consists at each time t in the updating eq. (7)

(or - equivalently - eq. (8)) except if this results in w(t + 1) < wmin (or, equivalently

x(t + 1) < xmin = ln(wmin)) in which case the updated new value is w(t + 1) = wmin

(respectively x(t + 1) = xmin).

These modifications are obviously not allowed by the Central Limit Theorem, and conse-

quently, the derivation in the previous section which led to the log-normal distribution eqs.

(13)(19) cannot be applied.

Instead, one can obtain intuition on the modified system eq. (7)(20) by realizing that in

fact the system eq. (8) with the constraint eq. (21) can be interpreted as the vertical motion
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of a molecule in the earth gravitational field above the earth surface. In this case the “earth

surface” is xmin, the gravitationally induced downward drift is v =< x > /t =< ln λ > and

the diffusion per unit time is parametrized by the squared standard deviation σ2
ln λ.

For v < 0 this is the barometric problem and it has the static solution:

P (x) ∼ exp−x/kT (22)

which when re-expressed in terms of w’s becomes (cf. eq. (10)):

P (w)dw ∼ e−(ln w)/kT d lnw (23)

i.e.

P (w) ∼ w−1−1/kT (24)

In order to estimate the value of the exponent

α = 1/kT (25)

one can substitute the form eq. (24) in the master equation which governs the evolution of

the probability distribution of the process eq. (7). The master equation expresses the flow

of probability between the various values of w as w(t) is updated to w(t+1) = λw(t). More

precisely, the probability for w(t + 1) = λw(t) to equal a certain value w is the integral over

λ (weighted by Π(λ)) of the probabilities that w(t) = w/λ. This leads in equilibrium to the

relation:

P (w) =
∫

Π(λ)P (w/λ)d(w/λ) (26)

i.e., substituting (24)(25) into eq. (26):

w−1−α =
∫

Π(λ)(w/λ)−1−αd(w/λ) (27)

or, by dividing both members by w−1−α:

1 =
∫

λαΠ(λ)dλ (28)
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This means that the value of α is given by the transcendental equation: (Solomon and Levy

1996):

< λα >= 1 (29)

One may wonder why this equation does not hold for the problem in the previous section

(the system eq. (11) without the lower bound eq. (20)) since the lower bound wmin does

not seem to appear in the formula eq. (29). The answer is that in the absence of the lower

bound, there is no stationary equation (26) as the system evolves forever towards the non-

normalizable solution P (w) ∼ w−1. In fact, formally, α = 0 is a solution of eq. (29). This

”solution” is in fact the relevant one in the case < ln λ >≥ 0.

Another nontrivial fact is that the limit wmin → 0 leads to α → 1 rather than α → 0

(which is the value in the total absence of a lower bound). This nonuniform behavior of

the limits N → ∞ and wmin → 0 is related to the non-trivial thermodynamic limit of the

system (Biham et al. 1998).

One of the problems with the solution to eq. (29) is that while it is independent on wmin,it

is highly dependent on the shape and position of the distribution Π(λ) of the random factor

λ(t) and consequently it is highly dependent on the changes in the dynamics eq. (11).

In the systems introduced in the following sections, the situation will be the opposite:

the characteristics of Π(λ) will be largely irrelevant and the lower bound eq. (20) will play

a central role.

In particular, the distribution of the social wealth P (w) and the inflation (dw̄/dt) of the

system will depend on the social security policy, i.e. on the poverty bound wmin below of

which the individuals are subsidized (Anderson 1995). The relevant parameter is the ratio

q = wmin/w̄ (30)

between the minimal wealth wmin and the average wealth:

w̄ = 1/N
∑

i

wi (31)
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In the presence of inflation, it is q rather then wmin which has to be fixed since a fixed minimal

wealth independent on the changes in the average wealth would be not very effective for long

time periods.

To prepare the formalism for those more sophisticated applications we will deduce below

an identity relating the exponent α = 1/kT to the ratio q eq. (30).

Such a relation can be obtained using in eq. (24)(25) the fact that the total probability

is 1:

∫

∞

wmin

P (w)dw = 1 (32)

i.e.

Const.
∫

∞

wmin

w−1−αdw = 1 (33)

and the fact that the average of w is w̄:

∫

∞

wmin

wP (w)dw = w̄ (34)

i.e

Const.
∫

∞

wmin

w−αdw = w̄ (35)

By extracting Const from eq. (33):

Const = αwα
min (36)

and introducing this value in eq. (35) one gets the relation:

αwα
min[−w1−α

min /(1 − α)] = w̄ (37)

By dividing both members by w̄ α
1−α

one obtains:

− wmin/w̄ = 1/α − 1 (38)

Considering the definition eq. (30) this reads:
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α = 1/(1 − q) (39)

This is a quite promising result because for the natural range of the lower bound ratio

0 < q < 1/2 it predicts 1 < α < 2 which is the range of exponents observed in nature (which

is far from the log-normal value α = 0).

The main problem with the power-low generating mechanism based on the single-agent

dynamics eq. (11)(20) is that it works only for negative values of < ln λ > (the barometric

equation does not hold for a gravitational field directed upwards).

This means that (except for the neighborhood of wmin) w(t+1) is typically smaller than

w(t). This is not the case in nature where populations, economies are expanding (at least

for certain time periods).

Moreover, the exponent α of the power law is highly unstable to fluctuations in the

parameters of the system. In particular, trying to model large changes in w̄ one is lead to

large fluctuations of q and consequently (cf. eq. (39)) to large variations in the exponent

α. This again is in disagreement with the extreme stability of the exponents α observed in

nature.

We will see later how the multi-agent GLV solves these problems. The key feature is to

introduce interactions between the individual elements wi through the inclusion of terms (or

lower bounds) proportional to w̄.

VII. MULTIPLICATIVE PROCESSES COUPLED THROUGH THE LOWER

BOUND

In the previous section we showed that power-laws eq (24) can be obtained from multi-

plicative stochastic dynamics with lower bound in the same way that the exponential laws

eq. (22) can be obtained in additive stochastic dynamics eq. (8) bounded from below eq.

(21).

The problematic points were: the instability of the exponent α to variations in the

average wealth/population and the fact that the mechanism accounts only for “deflat-
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ing”/“shrinking” of w.

However, the solution of these difficulties is already apparent in eq. (39): we consider

a system of N degrees of freedom wi (with i = 1, ...N) which is governed by the following

dynamics:

at each time t, one of the wi’s is chosen randomly to be updated according to the formula:

wi(t + 1) = λ(t)wi(t) (40)

while all the other wi’s are left unchanged. At each instance, the random factor λ is extracted

anew from an i-independent probability distribution Π(λ).

The only exception to the prescription eq. (40) is if following the updating eq. (40)

wi(t + 1) (or other wk’s) end up less then a certain fixed fraction 0 < q < 1 of the average

w̄:

wi(t + 1) < qw̄(t) (41)

The prescription, if eq. (41) happens, is to further update the affected wj’s to:

wj(t + 1) = qw̄(t). (42)

The wonderful property of the system eq. (40–42) is that when re-expressed in terms of the

variables

vi(t) = wi(t)/w̄(t) (43)

it leads to a system very close to the system eq. (7),(20):

vi(t + 1) = λ̃(t)vi(t) (44)

vi(t + 1) > q (45)

where the effective multiplicative factor in eq. (44) is:

λ̃(t) = λ(t)w̄(t)/w̄(t + 1) (46)
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Note that this solves the problem of < ln λ >> 0 because the multiplication with the

(“renormalization”) factor w̄(t)/w̄(t + 1) takes care that the v distribution is never running

to infinity (in fact it insures that v̄(t) = 1 always).

Another way to see how this solves the problems with the single “particle” dynamics

eqs. (7)(20) is to realize that now, with a qw̄ lower bound, even if the average w̄(t) runs to

infinity, the lower bound runs after it in such a way as to insure a stationary value of α.

Indeed, according to eq. (24), the vi dynamics eq. (44–45) leads to a vi distribution

P (v) ∼ v−1−α (47)

which in turn implies

P (w) ∼ w−1−α (48)

Since we do not have a close analytic formula for λ̃ eq. (46) in terms of the model parameters,

the transcendental equation eq. (29) is not useful here.

However, since v̄ = 1 by definition, one gets according eq. (39) the following close formula

for the exponent α:

α = 1/(1 − q) (49)

This means that even for significantly time-varying distributions Πt(λ) in eq. (40), the

exponent of the power law remains time-invariant.

The above results are quite non-trivial in as far as they predict the stochastic

behavior of highly interactive and time non-stationary systems eqs. (40)-(42) by

relating them formally to non-interacting static statistical systems eqs. (7)(20).

We will continue this line in the following sections an reduce the highly nontrivial GLV

system to a rather simple single-agent linear stochastic equation.

VIII. THE SINGLE-AGENT LINEAR STOCHASTIC EQUATION

The discrete equation below is a more elaborate version of the single-agent model intro-

duced in Section 6. Here the lower bound is supplied effectively by an additive random term
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ρ, instead of an explicit barrier eq. (20):

w(t + 1) = λ(t)w(t) + ρ(t) (50)

The equation (50) may (crudely) describe the time-evolution of wealth for one trader in the

stock market. In this context w may represent the wealth of one trader, who performs at

each time-step a stock transaction. w(t) is the wealth at time t, and w(t + 1) is the wealth

at time t + 1.

λ and ρ are random variables extracted from positive probability distributions. λ may

be called the “success factor”, and ρ is a “restocking term”, which takes into account the

wealth acquired from external sources (e.g. using the state built infra-structure, subsidies

etc).

The dynamics eq. (50) leads to a power-law distribution P (w) ∼ w−1−α, if < ln λ >< 0.

More precisely, the P (w) has a power-tail for values of w for which ρ(t) is negligible with

respect to λ(t)w(t). If < ln λ >≥ 0 the distribution is a log-normal expanding in time, which

in the infinite time limit corresponds to a power-law with exponent −1 − α = −1. I.e. the

mechanism eq. (50) does not explain expanding economies with α > 0.

Since the distributions (and initial values of w) are positive, the ρ(t) term keeps the

value of w(t) above a certain minimal value of order ρ̄. Therefore, for large enough values

of w the dynamics is indistinguishable from our previous model, the multiplicative process

(7) with fixed barrier eq. (20).

It is therefore not surprising that it can be rigorously proven (Kesten 1973) that eq. (50)

leads to a power law eq. (24) with exponent α given by the transcendental equation (29):

< λα >= 1 (51)

It is again notable that (as in the case of the wmin lower bound), the exponent α is totally

independent on the distribution of the additive term ρ while it is highly sensitive to the shape

and position of the Π(λ) distribution. We will see that in GLV the situation is reversed.
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IX. THE GENERALIZED LOTKA-VOLTERRA SYSTEM

The GLV (Solomon and Levy 96) implements a more complex dynamics than the eq.

(50). The advantages however overweight the difficulties:

• The GLV model insures a stable exponent α of the power-law P (w) ∼ w−1−α even in

the presence of large fluctuations of the parameters.

• The value of < λ > and the average w̄ can vary during the run (and between the runs)

without affecting the exponent α of the power-law distribution.

• λ can take typical values both larger or smaller than 1.

The GLV is an interactive multi-agent model. We have N traders, each having wealth

wi, and each wi is evolving in time according to:

wi(t + 1) = λ(t)wi(t) + a(t)w̄(t) − c(t)w̄(t)wi(t) (52)

Here w̄ is the average wealth, which supplies the coupling between the traders:

w̄ = (w1 + w2 + . . . + wN)/N (53)

λ is a positive random variable with a probability distribution Π(λ) similar to the λ success

factor we used in eq. (50) in the previous section. The dramatic difference is that now, λ

can take systematically values larger than 1 and in fact its distribution can vary in time

(and have time intervals with < ln λ > both smaller and larger than 0).

The coefficients a and c are in general functions of time, reflecting the changing conditions

in the environment.

The coefficient a expresses the auto-catalytic property of wealth at the social level, i.e. it

represents the wealth the individuals receive as members of the society in subsidies, services

and social benefits. That is the reason it is proportional to the average wealth.

The coefficient c originates in the competition between each individual and the rest of

society. It has the effect of limiting the growth of w̄ to values sustainable for the current

conditions and resources.
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X. REDUCING GLV TO A SET OF INDEPENDENT EQUATIONS (50)

Summing the GLV eq. (52) over i, and taking the local time average one gets for the

local time average < w̄ > (t) an equation similar to the scalar LV equation eq. (1).

N < w̄ >=< λ > N < w̄ > + < a(t) > N < w̄ > − < c(t) > N < w̄ >2 (54)

which gives :

< w̄ >=
−1+ < λ > + < a(t) >

< c(t) >
(55)

Neglecting the fluctuations of the average < w̄ > (t) during the updating of a single

individual i, one can substitute < w̄ > (t) for w̄ it in the last term of eq. (52) and regroup

the terms linear in wi:

wi(t + 1) = [1 + λ(t)− < λ(t) > − < a(t) >]wi(t) + a(t)w̄(t) (56)

Introducing like we did in eq. (43) wealth values normalized by the average wealth:

vi(t) = wi(t)/w̄(t) (57)

the equation (56) becomes:

vi(t + 1) = [1 + λ(t)− < λ(t) > − < a(t) >)]vi(t) + a(t) (58)

where we neglected again the fluctuation of w̄ during the time t→t + 1 and put w̄(t)
w̄(t+1)

= 1.

This can be justified rigorously for α > 1 in the large N limit because then the size of the

largest wi is (cf. Solomon 1998) of order O(w̄N1−α) << 1 and therefore the changes in w̄(t)

induced by any wi updating are negligible of the leading order. In finite systems N < ∞

and for α < 1, there are (computable) corrections.

The key observation now is that the system eq. (58) has the form of N decoupled

equations of the form (50) with the effective multiplicative stochastic factor

λ̃ = 1 + λ(t)− < λ(t) > − < a(t) > (59)
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This means that the results of the single linear stochastic agent model eq. (50) can be

applied now to the vi(t)’s in order to obtain

P (v) ∼ v−1−α (60)

which in turn implies

P (w) ∼ w−1−α (61)

with the exponent α dictated by the equation eq. (51)(59):

< [1 + λ(t)− < λ(t) > −a(t)]α >= 1 (62)

This shows that the wealth distribution in a economic model based on GLV is a power

law. In addition, it is easy to see using (58) that the elementary steps in the time variations of

the average wealth are distributed by a (truncated) power law. Accordingly, it was predicted

that the market returns will be distributed by Lα(w̄) a truncated Levy distribution of index

α (Solomon 1998). This turned out to be in accordance with the actual experimental data

(Mantegna and Stanley 1996).

Note that similarly to the passage from the single agent system eq. (7)(20) to the many

agents system coupled by the lower bound eq. (40)(41), here too, the formal reduction of

the GLV to a single agent system implies very different properties in the actual ”physical”

system.

In particular while in the single agent system the average of λ was crucial in the fixing of

the exponent α and in fact λ had to have an average less then 1, in the multi agent model,

the average of λ cancels in the expression (59) for λ̃. On the other hand, while the additive

term in eq (50) had no role in the fixing of α, the corresponding term a is one of the crucial

factors determining α in GLV (cf. eq. (62)). Moreover, while the parameters in the eq. (50)

model allowed time variations in the w̄ only at the price of variations in the exponent α,

in the GLV system, one can arbitrarily change the ecological/economic conditions c so as

to vary the total population/wealth by orders of magnitude (cf. eq. (55)) without affecting

the power law and its exponent (λ̄ is independent on c and so is the solution of < λ̃α >= 1.
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XI. THE FINANCIAL INTERPRETATION OF GLV

In this section we discuss the various terms appearing in the equations, their interpreta-

tion in the financial markets applications, their effects and their implications for the financial

markets phenomenology.

We first discuss the assumption that the individual investments/gains/losses are propor-

tional to the individual wealth:

w(t + 1) = λw(t)

This is actually not true for the low income/wealth individuals whom incomes do not orig-

inate in the stock market. In fact the additive term aw̄ tries to account for the departures

related to additional amounts originating in subsidies, salaries and other fixed incomes.

However, for the range of wealth where one expects power laws to hold (w > w̄) it is well

documented that the investment policies, the investment decisions and the measured yearly

income are in fact proportional to the wealth itself.

The statistic uniformity of the relative gains and losses of the market participants is

a weak form to express the fairness of the market and the lack arbitrage opportunities

(opportunities to obtain systematically higher gains λ− 1 than the market average without

assuming higher risks): for instance, if the distribution of λ would be systematically larger

for small-w-investors, then the large-w-investors would only have to split their wealth in

independently managed parts to mimic that low-w superior performance. This would lead

to an equalization of their λ to the λ of the low-w investors. Therefore in the end, the

distribution Π(λ) will end up w-independent as we assumed it to be in GLV from the

beginning.

Almost every realistic microscopic market model we have studied in the past shares this

characteristics of w-independent Π(λ) distribution.

Turning to the terms relevant for the lower-bound w region, the assumption that the

average wealth contributes to the individual wealth aw̄ and the alternative mechanism as-

suming a lower bound proportional to the average qw̄ are both simplified mechanisms to
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prevent the wealth to decrease indefinitely.

In practice they might be objectionable: it is not very clear that the state subsidies can

be invoked to save bankrupt investors (though this happens often when large important

employers are at risk or when their collapse would endanger the stability of the entire

system). In any case the term aw̄ is appropriately taking into account the arbitrariness

of the money denominations. More precisely, assume that (by inflation or by currency

renaming) the nominal value of all the money in the economy becomes 10 times larger.

Then the subsidies term aw̄ will become 10 times larger preserving in this way the actual

absolute value. So to speak, multiplying a quantity by w̄ expresses it in ”absolute currency”.

These mechanisms controlling the lower bound behavior of the system may be considered

as just parametrizations of the continuum flow of investors/capital to and from the large-w

investor ranges relevant for the financial markets trading. It is however possible that the

subsidies to the very poorest tumble their way (through the multiplicative random walk) into

the middle classes and end-up in the large-w scaling region in the way our models suggest.

More theoretical and experimental research is necessary in order to discriminate between

the various alternatives (or in order to recognize them as facets of the same phenomenon).

For instance one can look at the relation between q and α as basically kinematic in the

sense that given the power law, it is unavoidable that the lower bound qw̄ would govern the

exponent of the power law.

It would still be interesting to study in detail how the wealth pumped at the lower-bound

barrier makes its way to the large w tail and or, alternatively in the case of stationary w̄

to find the way in which the additive subsidies to the low-w individuals in our models are

covered by the ”middle classes”.

For instance in the qw̄ lower-bound model, the dominant mechanism of extracting wealth

from the middle class seems to be the accelerated inflation: the updating of the individual

wi’s induces changes in w̄ which in turn induces changes in the position of the lower bound

qw̄ which leads to the necessity to subsidize immediately all the wi’s situated between the

old and the new poverty line. This in turn leads to increase in the w̄ and to the completion

23



of the positive feedback loop. When looking at the normalized wealth vi = wi/w̄, this

accelerated inflation is effectively a proportional tax which reduces the λ gains to smaller

relative gains λ̃ = λw(t)/w(t + 1).

In the case of the GLV model, there is no inflation (for constant c, w̄ is - modulo local

fluctuations - constant in time). The extraction from the middle class of the money for

subsidies is quite explicit from the way the subsidies term aw̄ is affecting negatively (−a)

the λ̃ gain value eq. (39). However most of the loss in λ̃ eq. (39) is the term (− < λ >)

and is due mainly to the competition between the large traders −cwiw̄. This term is in

fact equivalent with enforcing a proportional tax. The best way to see it is to recall from

above analysis that multiplying the wealth-proportional quantity cwi by w̄ expresses it in

”absolute currency”.

It would appear that the government has the choice of enforcing such a proportional tax

and keep w̄ roughly constant, or just print the money which it dispenses to the poor and

let the inflation tax the other classes. One can of course make compromises between these

2 extremes by allowing both taxation and inflation. In any case, the net result can be only

variations in the relative size of the middle class (variations of α) as the generic emergence

of the power law will be very difficult to avoid.

A government may try to get a more equalitarian distributions (increasing α) by in-

creasing q. However this would bring an even larger population in the neighborhood of the

poverty line. This would require more and more frequent subsidies to enforce and conse-

quently (according to the analysis above) larger taxes and/or faster inflation.

Fearing this, another government might decide for low values of α. This would not

only mean an increase of the ratio between the richest and poorest which might be morally

questionable but also lead to dramatically unstable fluctuations in the market (e.g. in w̄).

Indeed, one can show that typically the largest trader owns O(N1−α) of the total wealth. For

finite N and very low q, α may be shown to drop below 1 (contrary to eq. (49)). This would

imply that almost all the wealth is owned by the largest wi. It is well know however that

the single agent discrete logistic map eq. (1) leads generically to chaotic unstable dynamical
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regime (May 1976).

In between these extremes it might be that there is no much choice of dynamically

consistent α values outside the experimentally measured range 1.4 < α < 1.7. These values

correspond (through eq. (49)) to poverty lines between 0.3 < q < 0.4. Larger values of

q would imply that almost everybody is subsidized while a significantly lower value would

mean the poorest cannot literally live: the average wages in an economy are automatically

tuned as to insure that a family of 3 can fulfill the needs considered basic by the society on

a one-salary income. Somebody earning less than 1
3
w̄ will therefore have serious problems

to live a normal life. In fact, such a person might be exposed to hunger (even in very rich

economies) since even the prices of the basic food are tuned to the level of affordability of

the average family in the given economy.

Far from implying a fatalistic attitude of the economic facts of life, the analysis of our

simplified models might lead in more realistic instances to ideas and prescriptions for dy-

namically steering the social economic policies to optimal parameters both from the techni-

cal/efficiency and from the human/moral point of view.

They might help transcend (through unification) the traditional dichotomy by which

science is only in charge with deciding true from false while humanities are in charge only

with discerning good from bad.

XII. FURTHER ECONOMICS APPLICATIONS OF GLV

As mentioned a few times, the GLV systems can be applied to many power laws.

Even within the financial framework there are a few apparently different realizations of

the GLV dynamics and of the power laws.

For instance, one can consider the market as a set of companies i = 1, ....., N whose

shares are traded and whose prices vary in time accordingly.

One can interpret then wi as the capitalization of the company i i.e. the total wealth of

all the market shares of the company.
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The time evolution of wi can still be represented by eq. (2). In this case, λ represents

the fluctuations in the market worth of the company. For a given total number of shares λ

is measured by the change in the individual share price. These changes take place during

individual transactions and are typically fractions of the nominal share price (measured in

percents or in points).

With such an interpretation, a represents the correlation between the worth of each

company and the market index. This correlation is similar for entire classes of shares and

differences in the a’s of various economic sectors result in the modern portfolio theory in

”risk premia” which affect their effective returns λ̃ in a way similar to our formulae in a

previous section (low correlation a corresponds to larger effective incomes).

c represents the competition between the companies for the finite amount of money in

the market (and express also the limits in their own absolute worth). We do not need to

consider c a constant. Time increases in the resources may lead to lower values of c which in

turn lead to increases in w̄. However, as seen before, such changes do not affect the exponent

of the power law distribution.

In this interpretation, the GLV model will predict the emergence of a power-law in the

probability distribution of company sizes (capitalization). In particular, this would imply

that the weights of the various companies composing the S&P 500 are distributed by a

power law. In turn this would imply that the S&P fluctuations follow a truncated Levy

distribution of corresponding index.

Yet another interpretation is to consider wi as the size of coordinated trader sets (i.e.

the number of traders adopting a similar investment policy) and assuming that the sizes of

these sets vary self-catalytically according to the random factor λ while the a term represents

the diffusion of traders between the sets. Such an autocatalytic dynamics for the trading

schools is not surprising as their decision processes involve elements similar to the use of

common language, common values, which are central in the dynamics of languages and

nations (which fulfill power laws) too. The nonlinear term c represents then the competition

between these investing schools for individual traders membership. In fact if a and c fulfill
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the relation a/c = w̄, the corresponding two terms in GLV taken together represent (in

”absolute currency” w̄) the act of each of the schools loosing (shedding) a certain c fraction

of its followers which are then spread uniformly between the schools.

Such an interpretation of the GLV would predict a power-law in the distribution of trader

schools sizes (similar to countries sizes). Again, such a distribution would account for the

truncated Levy distribution of market fluctuations (with index equal to the exponent of the

power-law governing trader sets sizes).

It would be interesting to discriminate between the validity of the various GLV in-

terpretations by studying experimentally the market fluctuations and the distributions of

respectively individual wealth, companies capitalization and correlated investors sets. It is

not ruled out that some of these interpretations may be consistent one with the other. This

would be consistent in turn with the modern portfolio theory claim on the existence of a

”market portfolio” (stochastically) common to most of the traders.

Further developments of the GLV model will include introducing variable number of

agents N , studying the role of the discretization of the wi changes (due to indivisible units

like people, shares, etc), taking into account the influence of the history of w(t) on λ (like

in the case of investing strategies, crashes memory, etc.).
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