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Abstract

Dividing sentences in chunks of words is
a useful preprocessing step for parsing, in-
formation extraction and information re-
trieval. (Ramshaw and Marcus, 1995)
have introduced a ”convenient” data rep-
resentation for chunking by converting it
to a tagging task. In this paper we will
examine seven different data representa-
tions for the problem of recognizing noun
phrase chunks. We will show that the the
data representation choice has a minor in-
fluence on chunking performance. How-
ever, equipped with the most suitable data
representation, our memory-based learning
chunker was able to improve the best pub-
lished chunking results for a standard data
set.

1 Introduction

The text corpus tasks parsing, information ex-
traction and information retrieval can benefit
from dividing sentences in chunks of words.
(Ramshaw and Marcus, 1995) describe an error-
driven transformation-based learning (TBL) method
for finding NP chunks in texts. NP chunks (or
baseNPs) are non-overlapping, non-recursive noun
phrases. In their experiments they have modeled
chunk recognition as a tagging task: words that are
inside a baseNP were marked I, words outside a
baseNP received an O tag and a special tag B was
used for the first word inside a baseNP immediately
following another baseNP. A text example:

original:
In [N early trading N ] in [N Hong Kong N ]
[N Monday N ] , [N gold N ] was quoted at
[N $ 366.50 N ] [N an ounce N ] .
tagged:

In/O early/I trading/I in/O Hong/I
Kong/I Monday/B ,/O gold/I was/O
quoted/O at/O $/I 366.50/I an/B ounce/I
./O

Other representations for NP chunking can be
used as well. An example is the representation used
in (Ratnaparkhi, 1998) where all the chunk-initial
words receive the same start tag (analogous to the B
tag) while the remainder of the words in the chunk
are paired with a different tag. This removes tag-
ging ambiguities. In the Ratnaparkhi representation
equal noun phrases receive the same tag sequence re-
gardless of the context in which they appear.

The data representation choice might influence
the performance of chunking systems. In this pa-
per we discuss how large this influence is. Therefore
we will compare seven different data representation
formats for the baseNP recognition task. We are
particularly interested in finding out whether with
one of the representation formats the best reported
results for this task can be improved. The second
section of this paper presents the general setup of
the experiments. The results can be found in the
third section. In the fourth section we will describe
some related work.

2 Methods and experiments

In this section we present and explain the data rep-
resentation formats and the machine learning algo-
rithm that we have used. In the final part we de-
scribe the feature representation used in our exper-
iments.

2.1 Data representation

We have compared four complete and three partial
data representation formats for the baseNP recogni-
tion task presented in (Ramshaw and Marcus, 1995).
The four complete formats all use an I tag for words
that are inside a baseNP and an O tag for words that
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IOB1 O I I O I I B O I O O O I I B I O
IOB2 O B I O B I B O B O O O B I B I O
IOE1 O I I O I E I O I O O O I E I I O
IOE2 O I E O I E E O E O O O I E I E O
IO O I I O I I I O I O O O I I I I O
[ . [ . . [ . [ . [ . . . [ . [ . .
] . . ] . . ] ] . ] . . . . ] . ] .

Table 1: The chunk tag sequences for the example sentence In early trading in Hong Kong Monday , gold
was quoted at $ 366.50 an ounce . for seven different tagging formats. The I tag has been used for words
inside a baseNP, O for words outside a baseNP, B and [ for baseNP-initial words and E and ] for baseNP-final
words.

are outside a baseNP. They differ in their treatment
of chunk-initial and chunk-final words:

IOB1 The first word inside a baseNP
immediately following an-
other baseNP receives a B
tag (Ramshaw and Marcus,
1995).

IOB2 All baseNP-initial words receive a
B tag (Ratnaparkhi, 1998).

IOE1 The final word inside a baseNP
immediately preceding another
baseNP receives an E tag.

IOE2 All baseNP-final words receive an
E tag.

We wanted to compare these data representa-
tion formats with a standard bracket representation.
We have chosen to divide bracketing experiments
in two parts: one for recognizing opening brackets
and one for recognizing closing brackets. Addition-
ally we have worked with another partial representa-
tion which seemed promising: a tagging representa-
tion which disregards boundaries between adjacent
chunks. These boundaries can be recovered by com-
bining this format with one of the bracketing for-
mats. Our three partial representations are:

[ All baseNP-initial words receive an
[ tag, other words receive a . tag.

] All baseNP-final words receive a ]
tag, other words receive a . tag.

IO Words inside a baseNP receive an I

tag, others receive an O tag.

These partial representations can be combined in
three pairs which encode the complete baseNP struc-
ture of the data:

[ + ] A word sequence is regarded as a
baseNP if the first word has re-
ceived an [ tag, the final word has
received a ] tag and these are the
only brackets that have been as-
signed to words in the sequence.

[ + IO In the IO format, tags of words
that have received an I tag and an
[ tag are changed into B tags. The
result is interpreted as the IOB2
format.

IO + ] In the IO format, tags of words
that have received an I tag and a
] tag are changed into E tags. The
result is interpreted as the IOE2
format.

Examples of the four complete formats and the
three partial formats can be found in table 1.

2.2 Memory-Based Learning

We have build a baseNP recognizer by training a
machine learning algorithm with correct tagged data
and testing it with unseen data. The machine learn-
ing algorithm we used was a Memory-Based Learn-
ing algorithm (MBL). During training it stores a
symbolic feature representation of a word in the
training data together with its classification (chunk
tag). In the testing phase the algorithm compares
a feature representation of a test word with every
training data item and chooses the classification of
the training item which is closest to the test item.

In the version of the algorithm that we have used,
ib1-ig, the distances between feature representa-
tions are computed as the weighted sum of dis-
tances between individual features (Daelemans et
al., 1998). Equal features are defined to have dis-
tance 0, while the distance between other pairs is
some feature-dependent value. This value is equal to
the information gain of the feature, an information
theoretic measure which contains the normalized en-



word/POS context Fβ=1

IOB1 L=2/R=1 89.17
IOB2 L=2/R=1 88.76
IOE1 L=1/R=2 88.67
IOE2 L=2/R=2 89.01
[ + ] L=2/R=1 + L=0/R=2 89.32

[ + IO L=2/R=0 + L=1/R=1 89.43
IO + ] L=1/R=1 + L=0/R=2 89.42

Table 2: Results first experiment series: the best Fβ=1 scores for different left (L) and right (R) word/POS
tag pair context sizes for the seven representation formats using 5-fold cross-validation on section 15 of the
WSJ corpus.

tropy decrease of the classification set caused by the
presence of the feature. Details of the algorithm can
be found in (Daelemans et al., 1998)1.

2.3 Representing words with features

An important decision in an MBL experiment is the
choice of the features that will be used for represent-
ing the data. ib1-ig is thought to be less sensitive
to redundant features because of the data-dependent
feature weighting that is included in the algorithm.
We have found that the presence of redundant fea-
tures has a negative influence on the performance of
the baseNP recognizer.

In (Ramshaw and Marcus, 1995) a set of trans-
formational rules is used for modifying the classifi-
cation of words. The rules use context information
of the words, the part-of-speech tags that have been
assigned to them and the chunk tags that are asso-
ciated with them. We will use the same information
as in our feature representation for words.

In TBL, rules with different context information
are used successively for solving different problems.
We will use the same context information for all
data. The optimal context size will be determined
by comparing the results of different context sizes on
the training data. Here we will perform four steps.
We will start with testing different context sizes of
words with their part-of-speech tag. After this, we
will use the classification results of the best context
size for determining the optimal context size for the
classification tags. As a third step, we will evaluate
combinations of classification results and find the
best combination. Finally we will examine the influ-
ence of an MBL algorithm parameter: the number
of examined nearest neighbors.

1
ib1-ig is a part of the TiMBL software package

which is available from http://ilk.kub.nl

3 Results

We have used the baseNP data presented in
(Ramshaw and Marcus, 1995)2. This data was di-
vided in two parts. The first part was training data
and consisted of 211727 words taken from sections
15, 16, 17 and 18 from the Wall Street Journal cor-
pus (WSJ). The second part was test data and con-
sisted of 47377 words taken from section 20 of the
same corpus. The words were part-of-speech (POS)
tagged with the Brill tagger and each word was clas-
sified as being inside or outside a baseNP with the
IOB1 representation scheme. The chunking classifi-
cation was made by (Ramshaw and Marcus, 1995)
based on the parsing information in the WSJ corpus.

The performance of the baseNP recognizer can
be measured in different ways: by computing the
percentage of correct classification tags (accuracy),
the percentage of recognized baseNPs that are cor-
rect (precision) and the percentage of baseNPs in
the corpus that are found (recall). We will fol-
low (Argamon et al., 1998) and use a combination
of the precision and recall rates: Fβ=1 = (2*preci-
sion*recall)/(precision+recall).

In our first experiment series we have tried to dis-
cover the best word/part-of-speech tag context for
each representation format. For computational rea-
sons we have limited ourselves to working with sec-
tion 15 of the WSJ corpus. This section contains
50442 words. We have run 5-fold cross-validation
experiments with all combinations of left and right
contexts of word/POS tag pairs in the size range 0
to 4. A summary of the results can be found in table
2.

The baseNP recognizer performed best with rel-
atively small word/POS tag pair contexts. Differ-
ent representation formats required different con-
text sizes for optimal performance. All formats with

2The data described in (Ramshaw and Marcus, 1995)
is available from ftp://ftp.cis.upenn.edu/pub/chunker/



word/POS context chunk tag context Fβ=1

IOB1 L=2/R=1 1/2 90.12
IOB2 L=2/R=1 1/0 89.30
IOE1 L=1/R=2 1/2 89.55
IOE2 L=1/R=2 0/1 89.73
[ + ] L=2/R=1 + L=0/R=2 0/0 + 0/0 89.32

[ + IO L=2/R=0 + L=1/R=1 0/0 + 1/1 89.78
IO + ] L=1/R=1 + L=0/R=2 1/1 + 0/0 89.86

Table 3: Results second experiment series: the best Fβ=1 scores for different left (L) and right (R) chunk
tag context sizes for the seven representation formats using 5-fold cross-validation on section 15 of the WSJ
corpus.

word/POS chunk tag combinations Fβ=1

IOB1 2/1 1/1 0/0 1/1 2/2 3/3 90.53
IOB2 2/1 1/0 2/1 89.30
IOE1 1/2 1/2 0/0 1/1 2/2 3/3 90.03
IOE2 1/2 0/1 1/2 89.73
[ + ] 2/1 + 0/2 0/0 + 0/0 - + - 89.32

[ + IO 2/0 + 1/1 0/0 + 1/1 - + 0/1 1/2 2/3 3/4 89.91
IO + ] 1/1 + 0/2 1/1 + 0/0 0/1 1/2 2/3 3/4 + - 90.03

Table 4: Results third experiment series: the best Fβ=1 scores for different combinations of chunk tag context
sizes for the seven representation formats using 5-fold cross-validation on section 15 of the WSJ corpus.

explicit open bracket information preferred larger
left context and most formats with explicit closing
bracket information preferred larger right context
size. The three combinations of partial represen-
tations systematically outperformed the four com-
plete representations. This is probably caused by the
fact that they are able to use two different context
sizes for solving two different parts of the recognition
problem.

In a second series of experiments we used a ”cas-
caded” classifier. This classifier has two stages (cas-
cades). The first cascade is similar to the classifier
described in the first experiment. For the second cas-
cade we added the classifications of the first cascade
as extra features. The extra features consisted of the
left and the right context of the classification tags.
The focus chunk tag (the classification of the cur-
rent word) accounts for the correct classification in
about 95% of the cases. The MBL algorithm assigns
a large weight to this input feature and this makes
it harder for the other features to contribute to a
good result. To avoid this we have refrained from
using this tag. Our goal was to find out the optimal
number of extra classification tags in the input. We
performed 5-fold cross-validation experiments with
all combinations of left and right classification tag
contexts in the range 0 tags to 3 tags. A summary

of the results can be found in table 33. We achieved
higher Fβ=1 for all representations except for the
bracket pair representation.

The third experiment series was similar to the sec-
ond but instead of adding output of one experiment
we added classification results of three, four or five
experiments of the first series. By doing this we sup-
plied the learning algorithm with information about
different context sizes. This information is available
to TBL in the rules which use different contexts. We
have limited ourselves to examining all successive
combinations of three, four and five experiments of
the lists (L=0/R=0, 1/1, 2/2, 3/3, 4/4), (0/1, 1/2,
2/3, 3/4) and (1/0, 2/1, 3/2, 4/3). A summary of
the results can be found in table 4. The results for
four representation formats improved.

In the fourth experiment series we have exper-
imented with a different value for the number of
nearest neighbors examined by the ib1-ig algorithm
(parameter k). This algorithm standardly uses the
single training item closest to the test item. How-

3In a number of cases a different base configuration in
one experiment series outperformed the best base config-
uration found in the previous series. In the second series
L/R=1/2 outperformed 2/2 for IOE2 when chunk tags
were added and in the third series chunk tag context 1/1
outperformed 1/2 for IOB1 when different combinations
were tested.



word/POS chunk tag combinations Fβ=1

IOB1 3/3(k=3) 1/1 0/0(1) 1/1(1) 2/2(3) 3/3(3) 90.89 ± 0.63
IOB2 3/3(k=3) 1/0 3/3(3) 89.72 ± 0.79
IOE1 2/3(k=3) 1/2 0/0(1) 1/1(1) 2/2(3) 3/3(3) 90.12 ± 0.27
IOE2 2/3(k=3) 0/1 2/3(3) 90.02 ± 0.48
[ + ] 4/3(3) + 4/4(3) 0/0 + 0/0 - + - 90.08 ± 0.57

[ + IO 4/3(3) + 3/3(3) 0/0 + 1/1 - + 0/1(1) 1/2(3) 2/3(3) 3/4(3) 90.35 ± 0.75
IO + ] 3/3(3) + 2/3(3) 1/1 + 0/0 0/1(1) 1/2(3) 2/3(3) 3/4(3) + - 90.23 ± 0.73

Table 5: Results fourth experiment series: the best Fβ=1 scores for different combinations of left and right
classification tag context sizes for the seven representation formats using 5-fold cross-validation on section
15 of the WSJ corpus obtained with ib1-ig parameter k=3. IOB1 is the best representation format but the
differences with the results of the other formats are not significant.

ever (Daelemans et al., 1999) report that for baseNP
recognition better results can be obtained by mak-
ing the algorithm consider the classification values
of the three closest training items. We have tested
this by repeating the first experiment series and part
of the third experiment series for k=3. In this re-
vised version we have repeated the best experiment
of the third series with the results for k=1 replaced
by the k=3 results whenever the latter outperformed
the first in the revised first experiment series. The
results can be found in table 5. All formats bene-
fited from this step. In this final experiment series
the best results were obtained with IOB1 but the
differences with the results of the other formats are
not significant.

We have used the optimal experiment configura-
tions that we had obtained from the fourth exper-
iment series for processing the complete (Ramshaw
and Marcus, 1995) data set. The results can be
found in table 6. They are better than the results
for section 15 because more training data was used
in these experiments. Again the best result was
obtained with IOB1 (Fβ=1=92.37) which is an im-
provement of the best reported Fβ=1 rate for this
data set ((Ramshaw and Marcus, 1995): 92.03).

We would like to apply our learning approach to
the large data set mentioned in (Ramshaw and Mar-
cus, 1995): Wall Street Journal corpus sections 2-21
as training material and section 0 as test material.
With our present hardware applying our optimal ex-
periment configuration to this data would require
several months of computer time. Therefore we have
only used the best stage 1 approach with IOB1 tags:
a left and right context of three words and three
POS tags combined with k=3. This time the chun-
ker achieved a Fβ=1 score of 93.81 which is half a
point better than the results obtained by (Ramshaw
and Marcus, 1995): 93.3 (other chunker rates for
this data: accuracy: 98.04%; precision: 93.71%; re-

call: 93.90%).

4 Related work

The concept of chunking was introduced by Abney
in (Abney, 1991). He suggested to develop a chunk-
ing parser which uses a two-part syntactic analysis:
creating word chunks (partial trees) and attaching
the chunks to create complete syntactic trees. Ab-
ney obtained support for such a chunking stage from
psycholinguistic literature.

Ramshaw and Marcus used transformation-
based learning (TBL) for developing two chunkers
(Ramshaw and Marcus, 1995). One was trained to
recognize baseNPs and the other was trained to rec-
ognize both NP chunks and VP chunks. Ramshaw
and Marcus approached the chunking task as a tag-
ging problem. Their baseNP training and test data
from the Wall Street Journal corpus are still being
used as benchmark data for current chunking exper-
iments. (Ramshaw and Marcus, 1995) shows that
baseNP recognition (Fβ=1=92.0) is easier than find-
ing both NP and VP chunks (Fβ=1=88.1) and that
increasing the size of the training data increases the
performance on the test set.

The work by Ramshaw and Marcus has inspired
three other groups to build chunking algorithms.
(Argamon et al., 1998) introduce Memory-Based Se-
quence Learning and use it for different chunking
experiments. Their algorithm stores sequences of
POS tags with chunk brackets and uses this in-
formation for recognizing chunks in unseen data.
It performed slightly worse on baseNP recognition
than the (Ramshaw and Marcus, 1995) experiments
(Fβ=1=91.6). (Cardie and Pierce, 1998) uses a re-
lated method but they only store POS tag sequences
forming complete baseNPs. These sequences were
applied to unseen tagged data after which post-
processing repair rules were used for fixing some fre-
quent errors. This approach performs worse than



accuracy precision recall Fβ=1

IOB1 97.58% 92.50% 92.25% 92.37
IOB2 96.50% 91.24% 92.32% 91.78
IOE1 97.58% 92.41% 92.04% 92.23
IOE2 96.77% 91.93% 92.46% 92.20
[ + ] - 93.66% 90.81% 92.22

[ + IO - 91.47% 92.61% 92.04
IO + ] - 91.25% 92.54% 91.89

(Ramshaw and Marcus, 1995) 97.37% 91.80% 92.27% 92.03
(Veenstra, 1998) 97.2% 89.0% 94.3% 91.6

(Argamon et al., 1998) - 91.6 % 91.6% 91.6
(Cardie and Pierce, 1998) - 90.7% 91.1% 90.9

Table 6: The Fβ=1 scores for the (Ramshaw and Marcus, 1995) test set after training with their training data
set. The data was processed with the optimal input feature combinations found in the fourth experiment
series. The accuracy rate contains the fraction of chunk tags that was correct. The other three rates regard
baseNP recognition. The bottom part of the table shows some other reported results with this data set.
With all but two formats ib1-ig achieves better Fβ=1 rates than the best published result in (Ramshaw and
Marcus, 1995).

other reported approaches (Fβ=1=90.9).
(Veenstra, 1998) uses cascaded decision tree learn-

ing (IGTree) for baseNP recognition. This algorithm
stores context information of words, POS tags and
chunking tags in a decision tree and classifies new
items by comparing them to the training items. The
algorithm is very fast and it reaches the same per-
formance as (Argamon et al., 1998) (Fβ=1=91.6).
(Daelemans et al., 1999) uses cascaded MBL (ib1-

ig) in a similar way for several tasks among which
baseNP recognition. They do not report Fβ=1 rates
but their tag accuracy rates are a lot better than
accuracy rates reported by others. However, they
use the (Ramshaw and Marcus, 1995) data set in
a different training-test division (10-fold cross val-
idation) which makes it difficult to compare their
results with others.

5 Concluding remarks

We have compared seven different data formats
for the recognition of baseNPs with memory-based
learning (ib1-ig). The IOB1 format, introduced in
(Ramshaw and Marcus, 1995), consistently came out
as the best format. However, the differences with
other formats were not significant. Some represen-
tation formats achieved better precision rates, oth-
ers better recall rates. This information is useful
for tasks that require chunking structures because
some tasks might be more interested in high preci-
sion rates while others might be more interested in
high recall rates.

The ib1-ig algorithm has been able to improve
the best reported Fβ=1 rates for a standard data set

(92.37 versus (Ramshaw and Marcus, 1995)’s 92.03).
This result was aided by using non-standard param-
eter values (k=3) and the algorithm was sensitive for
redundant input features. This means that finding
an optimal performance or this task requires search-
ing a large parameter/feature configuration space.
An interesting topic for future research would be
to embed ib1-ig in a standard search algorithm,
like hill-climbing, and explore this parameter space.
Some more room for improved performance lies in
computing the POS tags in the data with a better
tagger than presently used.
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