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We address the old question of whether or not a uniformly accelerated charged particle
radiates, and consequently, if weak equivalence principle is violated by electrodynamics.
We show that radiation has different meanings; some absolute, some relative. Detecting
photons or electromagnetic waves is not absolute, it depends both on the electromagnetic
field and on the state of motion of the antenna. An antenna used by a Rindler observer
does not detect any radiation from a uniformly accelerated co-moving charged particle.
Therefore, a Rindler observer cannot decide whether or not he is in an accelerated lab
or in a gravitational field. We also discuss the general case.
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1. INTRODUCTION

An accelerated charged particle radiates. Einstein’s equivalence principle, on the other
hand, tells us that the laws of physics in a constant gravitational field are the same
as the laws of physics in an accelerated rocket. It is tempting therefore to conclude
that a charged particle located on the table of our lab radiates. (Since according to
the inertial freely falling observer, this charged particle is accelerating.) However, us-
ing the Maxwell’s equations coupled to a static gravitational field, one can show that
it does not radiate. It seems that either Einstein’s equivalence principle is violated by
electrodynamics, or a uniformly accelerated charged particle does not radiate.

The problem of radiation of a uniformly accelerated charged particle has an in-
teresting and controversial history. In brief, based on a work by M. Born in 1909 [1],
first W. Pauli [2] and then M. von Laue [3] gave arguments saying that such a charge
does not radiate. Independently, G. A. Schott [4] derived the fields and concluded that
such a charge radiates [5]. (His work was discussed in more detail by S. M. Milner [6].)
Then in 1949, D. L. Drukey [7] published a short note in favour of radiation. In 1955, M.
Bondi and T. Gold [8] have asserted that the Born solution did not treat the singularity
of the potentials on the light cone correctly.

In 1960, T. Fulton and F. Röhrlich [9] published a paper discussing the problem in
detail and concluding that: 1) “If the Maxwell-Lorentz equations are taken to be valid,
and we consider retarded potentials only, and if radiation is defined in the usual Lorentz
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invariant manner, a uniformly accelerated charge radiates at a constant non vanishing
rate.” 2) “If one accepts the equations of motion based on the Abraham four-vector or
on Dirac’s classical electrodynamics, the radiation reaction vanishes, but energy is still
conserved.” 3) “a charged and a neutral particle in a homogeneous gravitational field
behave exactly alike, except for the emission of radiation from the charged particle.”
However, they argued, 4) “Radiation is defined by the behaviour of the fields in the
limit of large distance from the source. Correspondingly, an observer who wants to
detect radiation cannot do so in the neighbourhood of the particle’s geodesic.”

In 1963 F. Röhrlich [10] concluded that a freely falling observer in a static grav-
itational field with vanishing Riemann tensor, would see a supported charge radiating,
and vice versa, i.e. a supported observer would see a freely falling charge also radiating.
Röhrlich’s conclusions, which is in agreement with Einstein’s principle of equivalence,
was re-derived by a different and more transparent method by A. Kovetz and G. E.
Tauber in 1969 [11], and entered into the Problems of a text book by W. Rindler (prob-
lem 1.10 of [12]). In 1979, D. G. Boulware [13] wrote an article to show that “the
equivalence principle paradox that the co-accelerating observer measures no radiation
while a freely falling observer measures the standard radiation of an accelerated charge
is resolved by noting that all the radiation goes into a region of space time inaccessible
to the co-accelerating observer”.

In 1995, A. Singal [14] published a paper claiming again, and by a different
method, that a uniformly accelerated charged particle does not radiate. This method
and its conclusion is recently challenged by S. Parrott [15]. Parrott somewhere else [16]
argued that “purely local experiments can distinguish a stationary charged particle is a
static gravitational field from an accelerated particle in (gravity-free) Minkowski space”,
in contradiction with Einstein’s principle of equivalence.

We see that, in addressing this problem some physicists argue that a uniformly
accelerated charged particle does not radiate at all, while some other say that electro-
dynamics violates Einstein’s equivalence principle; and it seems that the problem is still
not resolved. In this article, we show that this paradox is due to a misuse of the word
radiation.

The scheme of the paper is as follows. In section II, we review the meaning of
radiation. In section III, we address the problem of detecting radiation of a uniformly
accelerated charge by a Rindler observer, and show that no radiation is detected, simply
because no magnetic field is measured. In section IV, we show that this is due to a
symmetry of the Minkowski spacetime: the symmetry with respect to Lorentz boosts,
and we show that the same thing happens whenever the spacetime is static. We also
show that in a stationary spacetime, there is an electromagnetic energy-like quantity,
which is conserved for stationary charge distributions. In sections V and VI, we address
the question of radiation in terms of the world line of the particle. There, we conclude
that a freely falling charge, or a charge whose four-velocity is proportional to a static
time-like vector in a static spacetime, does not radiate. Finally, section VII contains the
concluding remarks.

2. RADIATION

The word radiation reminds us three concepts:

1. Flowing to infinity of energy in the form of electromagnetic waves.

2. Detection of photons by a suitable device such as a photographic plate or an
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antenna.

3. Deviation of the world-line of a charged particle from that of a neutral one of the
same mass experiencing the same force.

The first notion is the one which is always used to define radiation in standard text
books. The second notion seems to lead to the following argument: If a system radiates,
one can detect it by counting photons. The energy or momentum of these photons
may differ for different observers but, since the number of them must be the same, we
conclude that radiation is in some sense absolute, i.e., whether or not a system radiates
does not depend on the observer. (See for example p. 506 of [9].) This argument, which
is the basis for the paradox mentioned, is false. The important point is that radiation
has different notions, some are absolute some are relative. (The absolute notion is, in
fact, the third one.)

Consider a system of charged particles and the electromagnetic field produced by
them. The divergence of the total energy-momentum tensor T µν = T µν

e +T µν
m vanishes.

If ξµ is a Killing vector field, T µνξµ is a conserved current. (Note that this is a local
conservation law.)

Conservation of the corresponding quantity depends only on the system (through
T µν) and the symmetry of the spacetime (through ξµ) and is not related to the observer
or coordinate patch. In Minkowski spacetime the vector field ∂t is a Killing vector field
which is everywhere time-like. Gauss’ theorem then, leads to the standard definition
of radiation as flowing energy to infinity by electromagnetic waves. This is an absolute

notion of radiation, which is closely related to the third concept of radiation as well.
But we must note that for a curved spacetime this argument may fail. For example,
there may be no time-like Killing vector field; or there may be an event horizon which
prevents us to enclose the charges with an sphere at infinity; etc. These difficulties make
it sometimes impossible to define radiation as flowing energy to infinity.

The second notion of radiation, viz. the detection of photons, is related to both
the system and to the observer. Let uµ be the four-velocity of a local observer (not the
source). This observer uses an apparatus to detect the electromagnetic flux of energy (or
photons). Let σν be the space-like vector describing the direction of the apparatus used
by him, and T µν

e the energy-momentum tensor of the electromagnetic field. The amount
of electromagnetic energy detected by the observer in proper time dτ is proportional to
the area dΣ of the apparatus used, and is equal to

dE = −T µν
e uµσνdΣdτ. (1)

The quantity ε := −T µν
e uµσν is the flux of the electromagnetic energy through the

surface dΣ of the apparatus, and depends both on the system and on the world-line of
the observer.

Here it must be stressed that Fulton and Röhrlich’s definition of radiation (refer-
ring to Synge [19]) is different [9, p. 506]. To define radiation they use the quantity

I = T µνvQ
µ nν (2)

where vQ
µ is the velocity four-vector of the source of radiation. (A minus sign is not

here because they use different conventions.) Then, they look at this quantity at the
null infinity. In doing this, one must transport vQ

µ away from the source location. This
can be done only in Minkowski (flat) spacetime. In curved spacetimes, this is not a well
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defined quantity.

3. DISCUSSION OF THE PARADOX

Consider a charged particle S located inside a rocket, which is uniformly accelerated
with respect to an inertial frame I. (Specifically, we mean a Rindler rocket; see pp. 49–
51 and 156-157 of [12].) The question is whether or not the Rindler observer sees this
charged particle radiating, i.e., whether or not he can detect photons. If he can, then
he can deduce that he is inside an accelerating lab and not in a constant gravitational
field. But we show that he cannot, and therefore, Einstein’s principle of equivalence is
not violated. Concretely speaking, we show:

1. If the Rindler observer uses a local static antenna, he will not detect photons.

2. There is a conserved current of the form −T µν
e Ξµ, where Ξ is the generator of

translation in Rindler time. It is quite natural to call the corresponding conserved
quantity the energy.

The proof of these two statements is based on a symmetry of the Rindler spacetime.
Rindler frame is given by the following 3 parameter family of time-like world-lines:

x2 − t2 = X2, y = Y, z = Z. (3)

For the spatial coordinate, the Rindler observer uses (X, Y, Z), while for the time he uses
the Lorentz boost parameter (or rapidity) ω := tanh−1 t/x. The proper time measured
by a clock at (X, Y, Z) is τ = ω/X . The world-line of an observer located at (X, Y, Z)
can be obtained by hyperbolic rotations in the (t, x) plane. Rindler time ω is simply the
hyperbolic angle of this rotation.

Now suppose there is a charged particle located at (Xs, Ys, Zs) and an antenna at
(Xo, Yo, Zo). These objects are moving in the Minkowski spacetime. Since the Green’s
function for the 3+1 dimensional wave equation in Minkowski spacetime is non-zero only
on the light-cone, we know that what O measures at a Rindler time ωo is due to the
state of motion of S at the retarded time, i.e., at the intersection of the past light-cone
of the event (ωo, Xo, Yo, Zo) with the world-line of S.

To write the Poynting vector at Rindler instant ωo for the local observer who is
seated at (Xo, Yo, Zo), we can write everything in the instantaneous rest frame of the
source S at the retarded time and then use the Lorentz boost that transforms this frame
to the instantaneous rest frame of O (at the moment of observation).

Since S is uniformly accelerated, its acceleration at its instantaneous rest frame
is αs = 1/Xs. From electrodynamics we know that at the event (to, xo, yo, zo), the
electromagnetic fields are given by

E = q

[

r̂ − v

γ2 (1 − v · r̂) r2

]

ret

+ q

[

r̂× {(r̂ − v) × v̇}
(1 − v · r̂)3 r

]

ret

, (4)

B = [̂r × E]ret . (5)

Here a hat means unit vector and the subscript ret means that everything must be
computed at the retarded event (ts, xs, ys, zs). Therefore, the electromagnetic field at
the observation event is

E =
q

r2
+

qα

r
r̂ × (r̂ × x̂) , (6)
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B =
qα

r
x̂ × r̂. (7)

It is important, however, to notice that these expressions are in the instantaneous rest
frame of S. To obtain electromagnetic fields as measured by the observer O, we must
use the Lorentz transformations

E′ = γ (E + v × B) − γ2

γ + 1
vv ·E, (8)

B′ = γ (B− v × E) − γ2

γ + 1
vv ·B. (9)

We have chosen the inertial coordinate system such that at the retarded event the
source’s velocity vs = ts/xs vanishes; therefore, at the retarded event ts = 0. The
world-line of the source is x2

s − t2s = X2
s = α−2

s = constant. From this it follows that the
acceleration of the source at the retarded time is α = 1/xs.

From x2
o − t2o = X2

o = α−2
o = constant, which describes the world-line of the

antenna (i.e. local observer), it follows that v = to/xo. We also note that r = (to − ts) =
to and x̂ · r = xo − xs. From these ingredients, it is easy to see that

B′ = 0. (10)

This shows that a local Rindler observer O, whose world-line is given by

x2
o − t2o = X2

o , yo = Yo, zo = Zo, (11)

sees a pure electric field and, therefore, no radiation.
It is worthy of mention that Pauli’s argument, based on the fields derived by

Born, is also the vanishing of the magnetic field. However, as mentioned by Bondi and
Gold [8], and Fulton and Röhrlich [9], the basis of his derivation is not true. Here again
we see that the magnetic field vanishes for the (Rindler) co-moving observer, and we see
this by exactly computing the fields as measured by this observer.

The argument given above depends deeply on a symmetry of the Minkowski
spacetime, viz. the existence of the time-like Killing vector field t∂x +x∂t, which for the
Rindler observer is just ∂ω. In the next section we discuss the general case.

4. RADIATION IN TERMS OF THE ELECTROMAGNETIC

ENERGY-MOMENTUM TENSOR

A stationary spacetime is a spacetime with a time-like Killing vector ξ := ∂/∂t. In
such a spacetime, one can chose a coordinate system in which, the metric compo-
nents are tstationary charge distribution Jµ in a stationary spacetime: ∂0J

µ = 0, and

∂µ

(

√

|g|Jµ
)

= ∂i

(

√

|g|J i
)

= 0. Using a t-independent ansatz for the four-potential

Aµ, it is easily seen that the field-strength tensor Fµν is t-independent. Moreover, the
source-full Maxwell equation

1
√

|g|

(

gµαgνβFαβ

√

|g|
)

,ν
= Jµ, (12)

shows that there is no inconsistency in taking Fµν independent of t, because both jµ

and gµν are t-independent. In fact, if Fµν(t, r) is a solution to (12), Fµν(t +∆, r) is also
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a solution. So, if the Maxwell equations have a unique solution in this spacetime, the
field-strength tensor should be t-independent.

Since ξ is a Killing vector, we have

(−T µνξν);µ =
1

√

|g|

(

−
√

|g|T µ
0

)

,µ
= 0. (13)

So, a conserved current J µ := −T µ
0 exists. One can define a corresponding current

for the electromagneti c part of the energy-momentum tensor. However, as T µν
e is t-

independent, it is seen that

∫

Σ

(−T µ
0)em

√

|g|dSµ =

∫

Σ′

(−T µ
0)em

√

|g|dSµ, (14)

where Σ is any hyper-surface, and Σ′ is the hypersurface formed by translating Σ along
the Killing vector field ξ by some value ∆. This means that the energy-like quantity
of the electromagnetic field in any hypersurface (any portion of space), including or
excluding the charge(s), does not change. In this sense, one can say that a stationary
charge distribution in a stationary spacetime does not radiate.

A static spacetime is a stationary spacetime, for which there exists a family of
space-like hyper-surfaces normal to the time-like Killing vector field ξ. This means that
there exists a suitable choice of coordinates, for which g0i = g0i = 0, and gµν ’s are
all t-independent. In such a spacetime, consider a static charge distribution. A static
charge distribution is a stationary one with the additional condition J i = 0. For the
field produced by a static distribution one can take the ansatz: Ai = 0 and ∂0A0 = 0.
From this, and the fact that the metric is t-independent and block-diagonal, it is easy
to see that

Fij = Fi
j = F ij = 0. (15)

This shows that the source-full Maxwell equation is identically satisfied for µ 6= 0. For
µ = 0,

− 1
√

|g|

(

g00gij
√

|g|∂jA0

)

,i
= J0. (16)

This equation is consistent, since the left-hand side is t-independent, as well as the
right-hand side.

This solution to the static charge distribution has no magnetic field, and has
a t-independent electric field. By magnetic field (in a covariant form) we mean the
tensor Bµν := Fαβhα

µhβ
ν . Here hµν is the projector normal to ξ, that is hµν :=

gµν −(ξµξν) / (ξ · ξ). Note that for the choice of coordinates introduced above, hij = gij ,
h00 = hi0 = 0, Bij = Fij , and B0i = 0. The electric field is similarly defined through
Eµ := Fµνξν/

√−ξ · ξ.
From (15), we have −T i

e 0 = −hµ
νT ν

e αξα = 0. Consider an observer with the
four-velocity uµ = ξµ/

√
−ξ · ξ. For this observer the magnetic field is just Bµν , and

the electric field is Eµ. So, this observer measures a t-independent electric field and no
magnetic field. Moreover, what this observer measures as the Poynting vector is

Sµ := −uνT ανhµ
α

= −uνF βνFβ
αhµ

α

= EβBµ
β , (17)
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which is identically zero. This means that, in terms of the Poynting vector, this observer
measures no radiation, simply because the magnetic field is zero for this observer. This
conclusion is stronger than that of the last subsection. That meant no net flux of the
electromagnetic energy is observed by the stationary observers. This means that, be-
sides, no electromagnetic energy current is observed by such an observer.

5. RADIATION AND THE WORLD-LINE OF CHARGED

PARTICLES

Is it true that, in a gravitational filed, charged particles fall the same as uncharged
particles? This problem is also related to the paradox mentioned at the beginning of
this paper.

Of course, this question must be answered experimentally (and the experiment is
more difficult than it seems, cf. [18].) But let us study the answer given by the known
theory of electrodynamics. The question is not trivial, for acceleration causes radiation
and this may causes a damping. It seems therefore that a charged particle does not fall
the same as an uncharged particle. To answer this question we have to know the form of
the radiation reaction force. The best candidate for this, is the Lorentz-Abraham-Dirac
force from which it follows that charged particles fall the same as neutral particles, i.e.
the weak equivalence principle is fulfilled. To our knowledge, this was first noticed by
Röhrlich [10]. Here, we present a heuristic argument in favour of the conclusion that
equivalence principle is not violated by charged particles.

To begin with, let us consider a stationary charged particle in the Minkowski
spacetime. The world-line of such a particle is

−∞ < ts < ∞, xs = const. > 0, ys = zs = 0. (18)

A Rindler observer sees only the segment −xs < t < xs; by the following world-line:

−∞ < ωs < ∞, Xs = xs/ coshωs, Ys = Zs = 0. (19)

Trivially, this world-line is a geodesic describing the motion of the particle approaching
the horizon as ω → ±∞. Now let’s interpret the Rindler spacetime as a gravitational
field. Since we know that in the Minkowski spacetime the charged particle follows a
geodesic, a little reflection shows that in the Rindler gravitational field a free charged
particle falls the same as a free uncharged particle. To this problem, let’s apply Einstein’s
equivalence principle. In the comoving freely falling lab, which is a local inertial frame,
the charged particle is at rest and therefore it does not radiate. The comoving observer
sees no reason for the charged particle to move in the lab, simply because it is completely
free. Therefore, with respect to the freely falling lab, the charged particle is always at
the same position. Transforming this result to the Rindler frame, we conclude that in
the gravitational field of the Rindler spacetime, charged particles fall the same as the
uncharged particles. The electromagnetic field produced by this charged particle as seen
by the inertial comoving observer is purely electric, a Rindler observer, however, sees
also a magnetic field and a non-vanishing Poynting vector; and sees that the charged
particle goes to the horizon X = 0 as ω → ∞. If the Rindler observer uses a local
device, such as a camera, he will observe some photons, i.e. he will receive some energy
which causes an effect on his photographic plate. This effect, however, is not radiation.
To convince, suppose a charged particle is in uniform rectilinear motion relative to an
inertial observer. If this observer uses an antenna, his antenna does receive some energy,
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simply because the Poynting vector at the position of antenna is non-zero (and it is
even time varying). However, this is simply the result of an interaction of antenna with
the moving charge, (and of course, as a result of this interaction the charged particle’s
trajectory is affected).

In the previous sections, it was shown that a uniformly accelerated charge in a
Minkowski spacetime does not radiate, in the sense that for the Rindler observer the
Poynting vector vanishes, and an energy-like quantity for the electromagnetic field is
constant. This means that, according to Rindler observers, no extra force is needed to
maintain the uniform acceleration of such a charged particle (of course no extra force
beside the force needed for a neutral particle of the same mass to have that acceleration).
In other words, the world-line of the charged particle will be the same as that of a neutral
particle.

Now consider a Rindler gravitational field, in which a charged particle is station-
ary. One can obtain the electromagnetic field of this particle in a manner exactly the
same as that of section III, which shows that there is no radiation.

Do, in some sense, these two problems differ? Some authors [16] argue that to
support a charged particle in a gravitational field a rocket is needed, and this rocket
spends more fuel than a rocket needed to do the same thing for a neutral particle.

However, the results of previous sections, in terms of the electromagnetic en-
ergy, make no difference between charged and neutral particles in any of the two cases.
According to Rindler observers, no extra force is needed for the charge, and as the four-
vector of force is zero according to one observer, it should be zero according to other
observers as well. So the result of the above gedanken experiment should be null.

Another problem is that of a freely falling charge in a Rindler gravitational field.
Such a charge moves uniformly according to Minkowski observers, so that it does not
radiate according to them, and its world-line should be the same as that of a neutral
particle. In fact, this problem, in terms of energy considerations, is the same as the
problem of a stationary (or uniformly moving) charge in Minkowski spacetime. These
results are also in agreement with Einstein’s equivalence principle.

6. RADIATION REACTION FORCE

We show that these results are also true in terms of the damping force, so that there
is no rocket paradox. We show that this force is zero in certain cases, which are the
generalisations of the above cases.

When a particle radiates, it experiences a force due to its radiation. (The original
derivation of the reaction force is due to Dirac [17]. A recent derivation is given by A.
Gupta and T. Padmanabhan [20].) The relativistic form of the Abraham-Lorentz-Dirac
force, experienced by an accelerated charge is

fµ
ALD =

e2

6π

(

D2uµ

Dτ2
+ uµuα

D2uα

Dτ2

)

, (20)

where e is the charge of the particle, u is its four-velocity, and D/Dτ is covariant differ-
entiation with respect to the proper time τ . To obtain this self-force, it is assumed that
the power radiated by an accelerated charge, in its instantaneous rest frame, is

P =
e2

6π

dv

dt
· dv

dt
, (21)

which is proved by calculating the amount of the electromagnetic energy escaping to
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the infinity, for a localised accelerated charge in the Minkowski spacetime. Moreover,
to obtain (20) from (21), an integration by part is needed, which is also valid (the
boundary terms vanish) provided the charge is localised. Neither (21), nor (20) can be
proved for non-localised accelerated charges. However, if one assumes that the self-force
experienced by a particle is local, that is, it depends only on the status of the charge
in an infinitesimal neighbourhood of an instant, one can generalise (20) for the case
where the charge is not localised, or the spacetime is not Minkowskian. This does not

necessarily mean that (21), or its relativistic generalisation

P =
e2

6π

Du

Dτ
· Du

Dτ
, (22)

are also valid in these more general cases.
Now consider the Abraham-Lorentz-Dirac force in two special cases:

A- A charge, the four-velocity of which is proportional to a static time-like Killing vector
field, i.e., a Killing vector field for which there exists a family of hyper-surfaces normal
to it. It is obvious that this situation may only happen in a static spacetime. In this
case, u0 = 1/

√
−ξ · ξ, and ui = 0. Also note that d (ξ · ξ) /dτ = 0, and that in a static

spacetime Γ0
00 = Γi

0j = 0, which shows that

Du0

Dτ
= 0, (23)

Dui

Dτ
= Γi

00

(

u0
)2

, (24)

and
D2ui

Dτ2
=

(

u0
)2

Γi
0j

Duj

Dτ
= 0. (25)

Therefore
fµ
ALD = 0. (26)

So this charge experiences no self-force, even though its four-acceleration may be nonzero
(if ξ · ξ is space-dependent). In other words, the force needed to accelerate a charge to
this specific four-velocity (u0 = 1/

√−ξ · ξ, and ui = 0) is the same as the force needed
to accelerate an uncharged particle of the same mass. This is in agreement with the
conclusion of section IV: “An accelerated charge distribution does not radiate accord-
ing to certain observers, whenever the charged particles and the observers move along
the same static Killing vector field.” The case of a uniformly accelerated charge in the
Rindler rocket, discussed in section III is a special case.
B- A freely falling charge, in an arbitrary spacetime. In this case, the four-acceleration
is zero (Duµ/Dτ = 0) which shows that the self-force is zero. Note that in a general
spacetime, it may be impossible to define an energy-like quantity, since there may be
no time-like Killing vector field. The above conclusion in a sense shows that a freely
falling charge does not radiate; in the sense that the world-line of a freely falling charged
particle is the same as that of an uncharged particle.

7. CONCLUSIONS

The notion of radiation in terms of receiving electromagnetic energy by an observer
is not absolute, but this relative notion is consistent with the principle of equivalence.
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That is, in a static spacetime, a supported charge does not radiate according to another
supported observer; neither does a freely falling charge according to a freely falling ob-
server. Also, a freely falling charge does radiate according to a supported observer, and
a supported charge does radiate according to a freely falling observer.

The absolute meaning of radiation, i.e. radiation according to world line of the
charge, was also discussed. We saw that a supported charge in a static spacetime, or
a freely falling charge, do not radiate, in the sense that no extra force is needed to
maintain their world-line the same as that of a neutral particle.
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