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1. INTRODUCTION

The quantum field theory in curved space-time has
been a matter of great interest in recent years because
of its applications to cosmology and astrophysics. The
evidence of existence of strong gravitational fields in our
Universe led to the study of the quantum effects of ma-
terial fields in external classical gravitational field. After
the appearance of Parker’s paper on scalar fields [1] and
spin- 1

2 fields, [2] several authors have studied this subject.
Although the Universe seems homogenous and isotropic
at present, there are no observational data guarantying
the isotropy in the era prior to the recombination. In fact,
there are theoretical arguments that sustain the existence
of an anisotropic phase that approaches an isotropic one
[3]. Interest in studying Klein-Gordon and Dirac equa-
tions in anisotropic models has increased since Hu and
Parker [4] have shown that the creation of scalar particles
in anisotropic backgrounds can dissipate the anisotropy
as the Universe expands.

A Bianchi type-I (B-I) Universe, being the straightfor-
ward generalization of the flat Robertson-Walker (RW)
Universe, is one of the simplest models of an anisotropic
Universe that describes a homogenous and spatially flat
Universe. Unlike the RW Universe which has the same
scale factor for each of the three spatial directions, a
B-I Universe has a different scale factor in each direc-
tion, thereby introducing an anisotropy to the system. It
moreover has the agreeable property that near the singu-

larity it behaves like a Kasner Universe, even in the pres-
ence of matter, and consequently falls within the general
analysis of the singularity given by Belinskii et al [5]. Also
in a Universe filled with matter for p = γ ε, γ < 1, it
has been shown that any initial anisotropy in a B-I Uni-
verse quickly dies away and a B-I Universe eventually
evolves into a RW Universe [6]. Since the present-day
Universe is surprisingly isotropic, this feature of the B-
I Universe makes it a prime candidate for studying the
possible effects of an anisotropy in the early Universe
on present-day observations. In light of the importance
of mentioned above, several authors have studied linear
spinor field equations [7,8] and the behavior of gravita-
tional waves (GW’s) [9–11] in a B-I Universe. Nonlinear
spinor field (NLSF) in external cosmological gravitational
field was first studied by G.N. Shikin in 1991 [12]. This
study was extended by us for the more general case where
we consider the nonlinear term as an arbitrary function
of all possible invariants generated from spinor bilinear
forms. In that paper we also studied the possibility of
elimination of initial singularity especially for the Kas-
ner Universe [13]. For few years we studied the behavior
of self-consistent NLSF in a B-I Universe [14,15] both in
presence of perfect fluid and without it that was followed
by the Refs., [16–18] where we studied the self-consistent
system of interacting spinor and scalar fields. The pur-
pose of the paper is to study the role of the cosmological
constant (Λ) in the Lagrangian which together with New-
ton’s gravitational constant (G) is considered as the fun-
damental constants in Einstein’s theory of gravity [19].

2. FUNDAMENTAL EQUATIONS AND

GENERAL SOLUTIONS

The Lagrangian for the self-consistent system of spinor
and gravitational fields can be written as

L =
R+ 2Λ

2κ
+
i

2

[

ψ̄γµ∇µψ −∇µψ̄γ
µψ

]

−mψ̄ψ + LN ,

(2.1)
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with R- being the scalar curvature, κ- being the Ein-
stein’s gravitational constant. The nonlinear term LN

describes the self-interaction of a spinor field and in
this particular case is chosen as an arbitrary function
of S = ψ̄ψ, i.e. LN = F (S).

Variation of (2.1) with respect to spinor field gives non-
linear Dirac equations

iγµ∇µψ − Φψ = 0, (2.2a)

i∇µψ̄γ
µ + Φψ̄ = 0, (2.2b)

with Φ = m−∂F/∂S, whereas variation of (2.1) with re-
spect to metric tensor gµν gives the Einstein’s field equa-
tion

Rµ
ν − 1

2
δµ
νR = −8κT µ

ν + Λδµ
ν (2.3)

where Rµ
ν is the Ricci tensor; R = gµ νRµ ν is the Ricci

scalar; and T µ
ν is the energy-momentum tensor of matter

field defined as

T ρ
µ =

igρν

4

(

ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ
)

−δρ
µLsp. (2.4)

Lsp with respect to (2.2) takes the form

Lsp = −1

2

(

ψ̄
∂F

∂ψ̄
+
∂F

∂ψ
ψ

)

− F. (2.5)

In (2.2) and (2.4) ∇µ denotes the covariant derivative
of spinor, having the form [20,21]

∇µψ =
∂ψ

∂xµ
− Γµψ, (2.6)

where Γµ(x) are spinor affine connection matrices. γ ma-
trices in the above equations are connected with the flat
space-time Dirac matrices γ̄ in the following way

gµν(x) = ea
µ(x)eb

ν(x)ηab, γµ(x) = ea
µ(x)γ̄a,

where ηab = diag(1,−1,−1,−1) and ea
µ is a set of tetrad

4-vectors.
Let us now choose Bianchi type-I space-time in the

form [22]

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.7)

with a, b and c being the functions of t only.
For the space-time (2.7) Einstein equations (2.3) now

read

b̈

b
+
c̈

c
+
ḃ

b

ċ

c
= 8πGT 1

1 − Λ, (2.8a)

c̈

c
+
ä

a
+
ċ

c

ȧ

a
= 8πGT 2

2 − Λ, (2.8b)

ä

a
+
b̈

b
+
ȧ

a

ḃ

b
= 8πGT 3

3 − Λ, (2.8c)

ȧ

a

ḃ

b
+
ḃ

b

ċ

c
+
ċ

c

ȧ

a
= 8πGT 0

0 − Λ, (2.8d)

where point means differentiation with respect to t.
From

Γµ(x) =
1

4
gρσ(x)

(

∂µe
b
δe

ρ
b − Γρ

µδ

)

γσγδ, (2.9)

one finds

Γ0 = 0, Γ1 =
1

2
ȧ(t)γ̄1γ̄0,

(2.10)

Γ2 =
1

2
ḃ(t)γ̄2γ̄0,Γ3 =

1

2
ċ(t)γ̄3γ̄0.

Flat space-time matrices γ̄ we will choose in the form,
given in [23].

We will study the space-independent solutions to
spinor field equation (7) so that ψ = ψ(t). Setting

τ = abc =
√
−g (2.11)

in this case equation (2.2a) we write as

iγ̄0

(

∂

∂t
+

τ̇

2τ

)

ψ − Φψ = 0. (2.12)

Further putting Vj(t) =
√
τψj(t), j = 1, 2, 3, 4, from

(2.12) one deduces the following system of equations:

V̇1 + iΦV1 = 0,

V̇3 − iΦV3 = 0,

}

(2.13a)

V̇2 + iΦV2 = 0,

V̇4 − iΦV4 = 0.

}

(2.13b)

From (2.13) one easily obtains

ψ1,2 =
C1,2√
τ
e−iΩ, ψ3,4 =

C3,4√
τ
eiΩ, (2.14)

where Ω =
∫

Φdt and Cj are the constants of integration.
From (2.12) we will also find the equation for bilinear

spinor form S = ψ̄ψ:

Ṡ +
τ̇

τ
S = 0, (2.15)

with the solution

S =
C0

τ
(2.16)

where C0 is the constant of integration. As one can see
the constants C0 and Cj are connected with each other
as

C0 = C2
1 + C2

2 − C2
3 − C2

4 .

Putting (2.16) into (2.4), we obtain the following ex-
pressions for the components of the energy-momentum
tensor
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T 0
0 = mS − F (S), T 1

1 = T 2
2 = T 3

3 =
∂F

∂S
S − F (S).

(2.17)

From (2.17) in view of (2.16) it is obvious that for the
linear spinor field

T 0
0 = mS = mC0/τ, T 1

1 = T 2
2 = T 3

3 = 0. (2.18)

The sign of C0 is defined from the requirement of posi-
tivity of energy density T 0

0 of linear spinor field. Hence,
from (2.18) emerges C0 > 0. In view of (2.17) from (2.8)
we derive [13–15]

a(t) = (D2
1D3)

1/3τ1/3 exp[(2X1 +X3)ϑ], (2.19a)

b(t) = (D−1
1 D3)

1/3τ1/3 exp[−(X1 −X3)ϑ], (2.19b)

c(t) = (D1D
2
3)

−1/3τ1/3 exp[−(X1 + 2X3)ϑ]. (2.19c)

where we define ϑ =
∫

[1/3τ(t)]dt.
As one sees, both spinor field and metric functions are

in some functional dependent on τ . Let us define the
equation for τ . Summation of Einstein equations (2.8a),
(2.8b),(2.8c) and (2.8d) multiplied by 3 gives

τ̈ =
3κτ

2

(

T 1
1 + T 0

0

)

− 3Λτ (2.20)

The right-hand-side of (2.20) is a function of τ only,
namely

3κ

2

(

mC0 +
∂F

∂S
C0 − 2Fτ

)

− 3Λτ := F(τ),

the solution to this equation is well-known for any arbi-
trary function F(τ) [24] and can be written in quadrature

∫

dτ
√

2
∫

F(τ)dτ
= t+ t0 (2.21)

where t0 is some constant that can be set zero. Given the
explicit form of the nonlinear term F (S) from (2.21) one
finds the concrete solution for τ . Thus the initial systems
of Einstein and Dirac equations have been completely
integrated.

3. ANALYSIS OF THE RESULTS

In this section we shall analyze the general results ob-
tained in the previous section for concrete nonlinear term.

Let us consider the nonlinear term as a power function
of τ , precisely F (S) = λSn with λ being the coupling
constant and n > 1. Inserting F (S) into (2.20) one ob-
tains

τ̈ =
3κC0

2

[

m+ λ(n− 2)
Cn−1

0

τn−1

]

− 3Λτ. (3.1)

The first integral of (3.1) has the form

τ̇2 = 3κC0

[

mτ − λCn−1
0 /τn−2 + τ0

]

− 3Λτ2 (3.2)

with τ0 being some positive constant. Finally, we obtain

∫

τ (n−2)/2dτ
√

κC0τ0τn−2 + κC0mτn−1 − Λτn − λCn
0

= ±
√

3t.

(3.3)

Depending on the sign of Λ and λ we have the following
pictures.

case 1. Λ = −ǫ2 < 0, λ > 0. In this case for n > 2
and t→ ∞ we find

τ(t) ≈ e
√

3ǫt (3.4)

Thus we see that the asymptotic behavior of τ does not
depend on n and defined by Λ - term. From (2.19) it is
obvious that the asymptotic isotropization takes place.

From (3.3) it also follows that τ cannot be zero at any
moment, since the intigrant turns out to be imaginary
as τ approaches to zero. Thus the solution obtained is
a nonsingular one thanks to the nonlinear term in the
Dirac equation and asymptotically isotropic.

Let us go back to the energy density of spinor field.
From

T 0
0 =

mC0

τ
− λCn

0

τn
(3.5)

follows that at

τn−1 <
λCn−1

0

m
(3.6)

the energy density of spinor field becomes negative, which
means that the absence of initial singularity in the consid-
ered cosmological solution appears to be consistent with
the violation of the dominant energy condition in the
Hawking-Penrose theorem [22], since in this case

T 1
1 = T 2

2 = T 3
3 =

λ(n− 1)Cn
0

τn
> 0. (3.7)

Consider the linear case with λ = 0. Then from (3.3)
follows

τ(t) =
1

4
e
√

3ǫt + e−
√

3ǫt
(κ2m2C2

0

4ǫ4
− κC0τ0

ǫ2

)

− κmC0

2ǫ2
.

(3.8)

As one sees

lim
t→∞

τ ≈ 1

4
e
√

3ǫt, (3.9)

that coincides with (3.4). from (3.8) follows

τ(0) =
1

4

(

1 − κmC0

ǫ2

)2

− κC0τ0
ǫ2

, (3.10)

that means, τ(0) is defined by the relation between the
constants.
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case 2. Λ > 0 and λ > 0. For n > 2 (3.3) admits
only nonsingular oscillating solutions, since τ > 0 and
bound from above. Consider the case with n = 4 and for
simplicity set m = 0. Then from (3.3) one gets

τ(t) =
1√
2Λ

[

κC0τ0 +
√

κ2C2
0τ

2
0 + 4ΛλC4

0 sin2
√

3Λt
]1/2

.

(3.11)

For a spinor field with Λ > 0 and λ > 0 and n = 10
a perspective view of τ is shown in FIG. 1. Period for
massive field (m 6= 0) is greater than that for massless
one (m = 0). The initial value of τ has been taken to
be unit, i.e., τ(0) = 1. For τ(0) = 10−2 for example, τ
increases tremendously at initial steps (from 10−2 to 1013

in first step) and amplitude in that case is 1016, whereas
the value of n (order of nonlinearity) defines the period
(the more is n the less is period).

0 1 2 3 4 5
t

0.95

1.15

1.35

1.55

τ

FIG. 1. Perspective view of τ showing the initially nonsin-
gular and oscillating behavior of the solutions

case 3. Λ < 0 and λ < 0. The solution is singular at
initial moment, that is

lim
t→0

τ ≈ [
√

−3λn2Cn
0 /4t]

2/n (3.12)

and at t→ ∞ asymptotic isotropization takes place since

lim
t→∞

τ ≈ e
√

3Λt. (3.13)

case 4. Λ > 0 and λ < 0. Solution is initially singular
and coincides with (3.12) and bound from the above, i.e.,
oscillating, since

lim
t→∞

τ ≈ sin
√

3Λt. (3.14)

4. CONCLUSION

Within the framework of the simplest nonlinear model
of spinor field it has been shown that the Λ term plays
very important role in Bianchi-I cosmology. In particu-
lar, it invokes oscillations in the model which is not the
case when Λ term remain absent. Growing interest in
studying the role Λ term by present day physicists of
various discipline witnesses its fundamental value. For
details on time depending Λ term one may consult [25]
and references therein.
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