
ar
X

iv
:g

r-
qc

/0
10

40
89

v1
  2

6 
A

pr
 2

00
1

Nonlinear Spinor and Scalar Fields in General Relativity

Bijan Saha
Laboratory of Information Technologies

Joint Institute for Nuclear Research, Dubna
141980 Dubna, Moscow region, Russia

e-mail: saha@thsun1.jinr.ru, bijan@cv.jinr.ru

G.N. Shikin
Department of Theoretical Physics

Peoples’ Friendship University of Russia
6, Miklukho Maklay Street

117198 Moscow, Russia

Abstract

We consider a system of nonlinear spinor and scalar fields with minimal

coupling in general relativity. The nonlinearity in the spinor field Lagrangian

is given by an arbitrary function of the invariants generated from the bilinear

spinor forms S = ψ̄ψ and P = iψ̄γ5ψ; the scalar Lagrangian is chosen as an

arbitrary function of the scalar invariant Υ = ϕ,αϕ
,α, that becomes linear at

Υ → 0. The spinor and the scalar fields in question interact with each other

by means of a gravitational field which is given by a plane-symmetric metric.

Exact plane-symmetric solutions to the gravitational, spinor and scalar field

equations have been obtained. Role of gravitational field in the formation of

the field configurations with limited total energy, spin and charge has been

investigated. Influence of the change of the sign of energy density of the

spinor and scalar fields on the properties of the configurations obtained has

been examined. It has been established that under the change of the sign of

the scalar field energy density the system in question can be realized physically

iff the scalar charge does not exceed some critical value. In case of spinor field

no such restriction on its parameter occurs. In general it has been shown that
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the choice of spinor field nonlinearity can lead to the elimination of scalar

field contribution to the metric functions, but leaving its contribution to the

total energy unaltered.

Key words: Nonlinear spinor field (NLSF), nonlinear scalar field, plane-symmetric metric

PACS: 03.65.P, 04.20.H

1. INTRODUCTION

Nonlinear phenomena have been one of the most popular topics during last years. Nev-
ertheless, it must be admitted that nonlinear classical fields have not received general con-
sideration. This is probably due to the mathematical difficulties which arise because of the
nonrenormalizability of the Fermi and other nonlinear couplings [1].

Nonlinear selfcouplings of the spinor fields may arise as a consequence of the geometrical
structure of the space-time and, more precisely, because of the existence of torsion. As soon
as 1938, Ivanenko [2–4] showed that a relativistic theory imposes in some cases a fourth
order selfcoupling. In 1950 Weyl [5] proved that, if the affine and the metric properties of
the space-time are taken as independent, the spinor field obeys either a linear equation in a
space with torsion or a nonlinear one in a Riemannian space. As the selfaction is of spin-spin
type, it allows the assignment of a dynamical role to the spin and offers a clue about the
origin of the nonlinearities. This question was further clarified in some important papers by
Utiyama, Kibble and Sciama [6–8] In the simplest scheme the selfaction is of pseudovector
type, but it can be shown that one can also get a scalar coupling [9]. An excellent review
of the problem may be found in [10].

Nonlinear quantum Dirac fields were used by Heisenberg [11,12] in his ambitious unified
theory of elementary particles. They are presently the object of renewed interest since the
widely known paper by Gross and Neveu [13]

Nonlinear spinor field (NLSF) in external cosmological gravitational field was first studied
by G.N. Shikin in 1991 [14]. This study was extended by us for the more general case where
we consider the nonlinear term as an arbitrary function of all possible invariants generated
from spinor bilinear forms. In that paper we also studied the possibility of elimination of
initial singularity especially for the Kasner Universe [15]. For few years we studied the
behavior of self-consistent NLSF in a B-I Universe [16,17] both in presence of perfect fluid
and without it that was followed by the Refs., [18–20] where we studied the self-consistent
system of interacting spinor and scalar fields. In a series of paper we also thoroughly
studied the interacting scalar and electromagnetic fields in spherically and cylindrically
space-time [21–25]. The purpose of the paper is to study the role of nonlinear spinor and
scalar field in the formation of configurations with localized energy density and limited total
energy, spin and charge of the spinor field.

2. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

The Lagrangian of the nonlinear spinor, scalar and gravitational fields can be written in
the form

L =
R

2κ
+ Lsp + Lsc (2.1)
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with

Lsp =
i

2

[

ψ̄γµ∇µψ −∇µψ̄γ
µψ

]

−mψ̄ψ + LN , (2.2)

and

Lsc = Ψ(Υ), Υ = ϕ,αϕ
,α. (2.3)

Here R is the scalar curvature and κ is the Einstein’s gravitational constant. The nonlinear
term LN in spinor Lagrangian describes the self-interaction of a spinor field and can be
presented as some arbitrary functions of invariants generated from the real bilinear forms of
a spinor field having the form

S = ψ̄ψ, P = iψ̄γ5ψ, vµ = (ψ̄γµψ), Aµ = (ψ̄γ5γµψ), T µν = (ψ̄σµνψ),

where σµν = (i/2)[γµγν − γνγµ]. Invariants, corresponding to the bilinear forms, look like

I = S2, J = P 2, Iv = vµ v
µ = (ψ̄γµψ) gµν(ψ̄γ

νψ),

IA = Aµ A
µ = (ψ̄γ5γµψ) gµν(ψ̄γ

5γνψ), IT = Tµν T
µν = (ψ̄σµνψ) gµαgνβ(ψ̄σαβψ).

According to the Pauli-Fierz theorem, [27] among the five invariants only I and J are
independent as all other can be expressed by them: Iv = −IA = I + J and IT = I − J.
Therefore we choose the nonlinear term LN = F (I, J), thus claiming that it describes the
nonlinearity in the most general of its form.

The scalar Lagrangian Lsc is an arbitrary function of invariant Υ = ϕ,αϕ
,α, satisfying

the condition

lim
Υ→0

Ψ(Υ) =
1

2
Υ + · · · (2.4)

The static plane-symmetric metric we choose in the form

ds2 = e2ρdt2 − e2αdx2 − e2β(dy2 + dz2), (2.5)

where the metric functions ρ, α, β depend on the spatial variable x only and obey the coor-
dinate condition

α = 2β + ρ. (2.6)

Variation of (2.1) with respect to spinor field ψ (ψ̄) gives nonlinear spinor field equations

iγµ∇µψ − Φψ + iGγ5ψ = 0, (2.7a)

i∇µψ̄γ
µ + Φψ̄ − iGψ̄γ5 = 0, (2.7b)

with

Φ = m−D = m− 2S
∂F

∂I
, G = 2P

∂F

∂J
,

whereas, variation of (2.1) with respect to scalar field yields the following scalar field equation

1√−g
∂

∂xν

(√
−ggνµdΨ

dΥ
ϕ,µ

)

= 0. (2.8)
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Varying (2.1) with respect to metric tensor gµν we obtain the Einstein’s field equation

Rµ
ν − 1

2
δµ
νR = −κT µ

ν (2.9)

which in view of (2.5) and (2.6) is written as follows

G0
0 = e−2α(2β ′′ − 2ρ′β ′ − β ′2) = −κT 0

0 (2.10a)

G1
1 = e−2α(2ρ′β ′ + β ′2) = −κT 1

1 (2.10b)

G2
2 = e−2α(β ′′ + ρ′′ − 2ρ′β ′ − β ′2) = −κT 2

2 (2.10c)

G3
3 = G2

2, T 3
3 = T 2

2 . (2.10d)

Here prime denotes differentiation with respect to x and T µ
ν is the energy-momentum tensor

of the spinor and scalar fields

T ν
µ = T ν

sp µ + T ν
sc µ. (2.11)

The energy-momentum tensor of the spinor field is

T ρ
sp µ =

i

4
gρν

(

ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ
)

− δρ
µLsp (2.12)

where Lsp with respect to (2.7) takes the form

Lsp = −1

2

(

ψ̄
∂F

∂ψ̄
+
∂F

∂ψ
ψ

)

− F, (2.13)

and the energy-momentum tensor of the scalar one is

T ν
sc µ = 2

dΨ

dΥ
ϕ,µϕ

,ν − δν
µΨ, Υ = −(ϕ′)2e−2α, ϕ′ =

dϕ

dx
. (2.14)

In (2.7) and (2.12) ∇µ denotes the covariant derivative of spinor, having the form [28,29]

∇µψ =
∂ψ

∂xµ
− Γµψ, (2.15)

where Γµ(x) are spinor affine connection matrices. γ matrices in the above equations are
connected with the flat space-time Dirac matrices γ̄ in the following way

gµν(x) = ea
µ(x)eb

ν(x)ηab, γµ(x) = ea
µ(x)γ̄a, (2.16)

where ηab = diag(1,−1,−1,−1) and ea
µ is a set of tetrad 4-vectors. Using (2.16) we obtain

γ0(x) = e−ργ̄0, γ1(x) = e−αγ̄1, γ2(x) = e−βγ̄2, γ3(x) = e−βγ̄3. (2.17)

From

Γµ(x) =
1

4
gρσ(x)

(

∂µe
b
δe

ρ
b − Γρ

µδ

)

γσγδ, (2.18)

one finds
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Γ0 = −1

2
γ̄0γ̄1e−2βρ′, Γ1 = 0, Γ2 =

1

2
γ̄2γ̄1e−(ρ+β)β ′, Γ3 =

1

2
γ̄3γ̄1e−(ρ+β)β ′. (2.19)

Flat space-time matrices γ̄ we will choose in the form, given in [30]:

γ̄0 =

























1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

























, γ̄1 =

























0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

























,

γ̄2 =

























0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

























, γ̄3 =

























0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

























.

Defining γ5 as follows,

γ5 = − i

4
Eµνσργ

µγνγσγρ, Eµνσρ =
√
−gεµνσρ, ε0123 = 1,

γ5 = −i√−gγ0γ1γ2γ3 = −iγ̄0γ̄1γ̄2γ̄3 = γ̄5,

we obtain

γ̄5 =

























0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

























.

The scalar field equation (2.8) has the solution

dΨ

dΥ
ϕ′ = ϕ0, ϕ0 = const. (2.20)

The equality (2.20) for a given Ψ(Υ) is an algebraic equation for ϕ′ that is to be defined
through metric function eα(x).

We will consider the spinor field to be the function of the spatial coordinate x only
[ψ = ψ(x)]. Using (2.15), (2.17) and (2.19) we find

γµΓµ = −1

2
e−αα′γ̄1. (2.21)

Then taking into account (2.21) we rewrite the spinor field equation (2.7a) as
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iγ̄1
(

∂

∂x
+
α′

2

)

ψ + ieαΦψ + eαGγ5ψ = 0. (2.22)

Further setting V (x) = eα/2ψ(x) with

V (x) =

























V1(x)

V2(x)

V3(x)

V4(x)

























for the components of spinor field from (2.22) one deduces the following system of equations:

V ′
4 + ieαΦV1 − eαGV3 = 0, (2.23a)

V ′
3 + ieαΦV2 − eαGV4 = 0, (2.23b)

V ′
2 − ieαΦV3 + eαGV1 = 0, (2.23c)

V ′
1 − ieαΦV4 + eαGV2 = 0. (2.23d)

As one sees, the equation (2.23) gives following relations

V 2
1 − V 2

2 − V 2
3 + V 2

4 = const. (2.24)

Using the solutions obtained one can write the components of spinor current:

jµ = ψ̄γµψ. (2.25)

Taking into account that ψ̄ = ψ†γ̄0, where ψ† = (ψ∗
1 , ψ

∗
2, ψ

∗
3, ψ

∗
4) and ψj = e−α/2Vj, j =

1, 2, 3, 4 for the components of spinor current we write

j0 = [V ∗
1 V1 + V ∗

2 V2 + V ∗
3 V3 + V ∗

4 V4]e
−(α+ρ), (2.26a)

j1 = [V ∗
1 V4 + V ∗

2 V3 + V ∗
3 V2 + V ∗

4 V1]e
−2α, (2.26b)

j2 = −i[V ∗
1 V4 − V ∗

2 V3 + V ∗
3 V2 − V ∗

4 V1]e
−(α+β), (2.26c)

j3 = [V ∗
1 V3 − V ∗

2 V4 + V ∗
3 V1 − V ∗

4 V2]e
−(α+β). (2.26d)

Since we consider the field configuration to be static one, the spatial components of spinor
current vanishes, i.e.,

j1 = 0, j2 = 0, j3 = 0. (2.27)

This supposition gives additional relation between the constant of integration. The compo-
nent j0 defines the charge density of spinor field that has the following chronometric-invariant
form

̺ = (j0 · j0)1/2. (2.28)

The total charge of spinor field is defined as

Q =

∞
∫

−∞

̺
√

−3gdx (2.29)
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(in (2.29) integrations by y and z are performed in the limit (0, 1)).
Let us consider the spin tensor [30]

Sµν,ǫ =
1

4
ψ̄{γǫσµν + σµνγǫ}ψ. (2.30)

We write the components Sik,0 (i, k = 1, 2, 3), defining the spatial density of spin vector
explicitly. From (2.30) we have

Sij,0 =
1

4
ψ̄{γ0σij + σijγ0}ψ =

1

2
ψ̄γ0σijψ (2.31)

that defines the projection of spin vector on k axis. Here i, j, k takes the value 1, 2, 3 and
i 6= j 6= k. Thus, for the projection of spin vectors on the X, Y and Z axis we find

S23,0 = [V ∗
1 V2 + V ∗

2 V1 + V ∗
3 V4 + V ∗

4 V3]e
−α−2β−ρ, (2.32a)

S31,0 = [V ∗
1 V2 − V ∗

2 V1 + V ∗
3 V4 − V ∗

4 V3]e
−2α−β−ρ, (2.32b)

S12,0 = [V ∗
1 V1 − V ∗

2 V2 + V ∗
3 V3 − V ∗

4 V4]e
−2α−β−ρ. (2.32c)

The chronometric invariant spin tensor takes the form

Sij,0
ch = (Sij,0S

ij,0)1/2, (2.33)

and the projection of the spin vector on k axis is defined by

Sk =

∞
∫

−∞

Sij,0
ch

√

−3gdx. (2.34)

(In (2.34), as well as in (2.29) integrations by y and z are performed in the limit (0, 1)).
From (2.7) one can write the equations for S = ψ̄ψ, P = iψ̄γ5ψ and A = ψ̄γ̄5γ̄1ψ

S ′ + α′S + 2eαG A = 0, (2.35a)

P ′ + α′P + 2eαΦA = 0, (2.35b)

A′ + α′A+ 2eαΦP + 2eαGS = 0. (2.35c)

Note that, A in (2.35) is indeed the pseudo-vector A1. Here for simplicity, we use the
notation A. From (2.35) immediately follows

S2 + P 2 − A2 = C0e
−2α, C0 = const. (2.36)

Let us now solve the Einstein equations. To do it we first write the expression for the
components of the energy-momentum tensor explicitly. Using the property of flat space-time
Dirac matrices and the explicit form of covariant derivative ∇µ, for the spinor field one finds

T 1
sp1 = mS − F (I, J), T 0

sp0 = T 2
sp2 = T 3

sp3 = DS + GP − F (I, J). (2.37)

On the other hand, taking into account that the scalar field ϕ is also a function of x only
[ϕ = ϕ(x)] for the scalar field one obtains

T 1
sc1 = 2Υ

dΨ

dΥ
− Ψ(Υ), T 0

sc0 = T 2
sc2 = T 3

sc3 = −Ψ(Υ). (2.38)
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In view of T 0
0 = T 2

2 , subtraction of Einstein equations (2.10a) and (2.10c) leads to the
equation

β ′′ − γ′′ = 0, (2.39)

with the solution

β(x) = γ(x) +Bx, (2.40)

where B is the integration constant. The second constant has been chosen to be trivial,
since it acts on the scale of Y and Z axes only. In account of (2.39) from (2.6) one obtains

β ′′ =
1

3
α′′, γ′′ =

1

3
α′′. (2.41)

Solutions to the equation (2.41) together with (2.6) and (2.40) lead to the following expres-
sion for β(x) and γ(x)

β(x) =
1

3
(α(x) +BX), γ(x) =

1

3
(α(x) − 2Bx). (2.42)

Equation (2.10b), being the first integral of (2.10a) and (2.10c), is a first order differential
equation. Inserting β and γ from (2.42) and T 1

1 in account of (2.11), (2.37) and (2.38) into
(2.10b) for α one gets

α′2 − B2 = −3κe2α
[

mS − F (I, J) + 2Υ
dΨ

dΥ
− Ψ(Υ)

]

. (2.43)

AS one sees from (2.35) and (2.36), the invariants are the functions of α, so is the right hand
side of (2.43), hence can be solved in quadrature. In the sections to follow, we analyze the
equation (2.43) in details given the concrete form of nonlinear term in spinor Lagrangian.

3. ANALYSIS OF THE RESULTS

In this section we shall analyze the general results obtained in the previous section for
concrete nonlinear term.

A. Case with linear spinor and scalar fields

Let us consider the self-consistent system of linear spinor and massless scalar field equa-
tions. By doing so we can compare the results obtained with those of the self-consistent
system of nonlinear spinor and scalar field equations, hence clarify the role of nonlinearity
of the fields in question in the formation of regular localized solutions such as static solitary
wave or solitons [32,33].

In this case for the scalar field we have Ψ(Υ) = 1
2
Υ. Inserting this into (2.20) we obtain

ϕ′(x) = ϕ0. (3.1)

From (2.38) in account of (3.1) we get
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− T 1
sc1 = T 0

sc0 = T 2
sc2 = T 3

sc3 = −1

2
Υ =

1

2
ϕ2

0e
−2α. (3.2)

On the other hand for the linear spinor field we have

T 1
sp1 = mS, T 0

sp0 = T 2
sp2 = T 3

sp3 = 0. (3.3)

As one can easily verify, for the linear spinor field the equation (2.35a) results

S = C0e
−α. (3.4)

Taking this relation into account and the fact that α′(x) = − 1
S

dS
dx

from (2.43) we write

∫

dS
√

(1 + κ̄/2)B2S2 − 3κC2
0S

= x, κ̄ = 3κϕ2
0/B

2, (3.5)

with the solution

S(x) =
M2

H2
cosh2(H̃x), M2 = 3κC2

0 , H2 = B2(1 + κ̄/2), H̃ = H/2. (3.6)

Further we define the functions ψj . Taking into account that in this case

F(S) = mC0/S
√
H2S2 −M2S,

for N1,2 in view of (3.6) we find

N1,2(x) = ±(2H/3κC0)tanh(H̃x) +R1,2.

We can then finally write

ψ1,2(x) = ia1,2E(x)cosh[f(x) +R1,2],

(3.7)

ψ3,4(x) = a2,1E(x)sinh[f(x) +R2,1],

where E(x) =
√

3κmC0/H2cosh(H̃x) and f(x) = (2H/3κC0)tanh(H̃x). For the scalar field
energy density we find

T 0
sc0(x) =

1

2
ϕ2

0e
−2α =

M4ϕ2
0

2C2
0H

4
cosh4(H̃x). (3.8)

It is clear from (3.8) that the scalar field energy density is not localized.
Let us consider the case when the scalar field possesses negative energy density. Then

we have Ψ(Υ) = −(1/2)Υ and

− T 1
sc1 = T 0

sc0 = T 2
sc2 = T 3

sc3 =
1

2
Υ = −1

2
ϕ2

0e
−2α. (3.9)

Then for S we get

∫

dS
√

(1 − κ̄/2)B2S2 − 3κC2
0S

= x. (3.10)
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As one sees, the field system considered here is physically realizable iff 1− κ̄/2 > 0, i.e., the

scalar charge |ϕ0| <
√

2/3κB. Moreover, in the specific case with B = 0, independent to
the quantity of scalar charge ϕ0, the existence of scalar field with negative energy density
in general relativity is impossible (even in absence of linear spinor field).

For the total charge Q of the system in this case we have

Q = 2a2

∞
∫

−∞

cosh
[ 4H

3κC0
tanh(H̃x) + 2R

]( C0H
2

M2cosh2(H̃x)

)3/2
e2Bx/3 dx <∞. (3.11)

It can be shown that, in case of linear spinor and scalar fields with minimal coupling both
charge and spin of spinor field are limited. The energy density of the system, in view of
(3.3) is defined by the contribution of scalar field only:

T 0
0 (x) = T 0

sc0(x) =
1

2

ϕ2
0M

4

C2
0H

4
cosh4(H̃x). (3.12)

From (3.12) follows that, the energy density of the system is not localized and the total

energy of the system E =
∞
∫

−∞
T 0

0

√
−3gdx is not finite.

B. Nonlinear spinor and linear scalar fields

Case I: F = F(I). Let us consider the case when the nonlinear term in spinor field
Lagrangian is a function of I (S) only, that leads to G = 0. From (2.35) as in case of linear
spinor field we find S = C0e

−α(x). Proceeding as in foregoing subsection, for S from (2.43)
we write

dS

dx
= ±L(S), L(S) =

√

B2S2 − 3κC2
0

[

mS − F (S) + 2Υ
dΨ

dΥ
− Ψ(Υ)

]

(3.13)

with the solution
∫

dS

L(S)
= ±(x+ x0). (3.14)

Given the concrete form of the functions F (S) and Ψ(Υ), from (3.14) yields S, hence α, β, ρ.
Let us now go back to spinor field equations (2.23). Setting Vj(x) = Uj(S), j = 1, 2, 3, 4

and taking into account that in this case G = 0, for Uj(S) we obtain

dU4

dS
+ iF(S)U1 = 0, (3.15a)

dU3

dS
+ iF(S)U2 = 0, (3.15b)

dU2

dS
− iF(S)U3 = 0, (3.15c)

dU1

dS
− iF(S)U4 = 0, (3.15d)

with F(S) = ΦL(S)C0/S. Differentiating (3.15a) with respect to S and inserting (3.15d)
into it for U4 we find
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d2U4

dS2
− 1

F
dF
dS

dU4

dS
−F2U4 = 0 (3.16)

that transforms to

1

F
d

dS

( 1

F
dU4

dS

)

− U4 = 0, (3.17)

with the first integral

dU4

dS
= ±

√

U2
4 + C1 · F(S), C1 = const. (3.18)

For C1 = a2
1 > 0 from (3.18) we obtain

U4(S) = a1sinhN1(S), N1 = ±
∫

F(S)dS +R1, R1 = const. (3.19)

whereas, for C1 = −b21 < 0 from (3.18) we obtain

U4(S) = a1coshN1(S) (3.20)

Inserting (3.19) and (3.20) into (3.15d) one finds

U1(S) = ia1coshN1(S), U1(S) = ib1sinhN1(S). (3.21)

Analogically, for U2 and U3 we obtain

U3(S) = a2sinhN2(S), U3(S) = b2coshN2(S). (3.22)

and

U2(S) = ia2coshN2(S), U2(S) = ib2sinhN2(S). (3.23)

where N2 = ± ∫ F(S)dS+R2 and a2, b2 and R2 are the integration constants. Thus we find
the general solutions to the spinor field equations (3.15) containing four arbitrary constants.

Using the solutions obtained, from (2.26) we find the components of spinor current

j0 = [a2
1cosh(2N1(S)) + a2

2cosh(2N2(S))]e−(α+ρ), (3.24a)

j1 = 0, (3.24b)

j2 = −[a2
1sinh(2N1(S)) − a2

2sinh(2N2(S))]e−(α+β), (3.24c)

j3 = 0. (3.24d)

The supposition (2.27) leads to the following relations between the constants: a1 = a2 = a
and R1 = R2 = R, since N1(S) = N2(S) = N(S). The chronometric-invariant form of the
charge density and the total charge of spinor field are

̺ = 2a2cosh(2N(S))e−α, (3.25)

Q = 2a2

∞
∫

−∞

cosh(2N(S))eα−ρdx. (3.26)
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From (2.31) we find

S12,0 = 0, S13,0 = 0, S23,0 = a2cosh(2N(S))e−2α. (3.27)

Thus, the only nontrivial component of the spin tensor is S23,0 that defines the projection
of spin vector on X axis. From (2.33) we write the chronometric invariant spin tensor

S23,0
ch = a2cosh(2N(S))e−α, (3.28)

and the projection of the spin vector on X axis

S1 = a2

∞
∫

−∞

cosh(2N(S))eα−ρdx. (3.29)

(in (2.34), as well as in (2.29) integrations by y and z are performed in the limit (0, 1)).
Note that the integrants both in (3.26) and (3.29) coincide.

Let us now analyze the result obtained choosing the nonlinear term in the form F (I) =
λSn = λIn/2 with n ≥ 2 and λ is the parameter of nonlinearity. For n = 2 we have
Heisenberg-Ivanenko type nonlinear spinor field equation [34]

ie−αγ̄1(∂x +
1

2
α′)ψ −mψ + 2λ(ψ̄ψ)ψ = 0. (3.30)

Setting F = S2 into (3.14) we come to the expression for S that is similar to that for linear
case with

H2 → H2
1 = B2 + 3κλC0 + 3κϕ2

0/2. (3.31)

Let us write the functions ψj explicitly. In this case we have

F(S) = m(C0 − 2λS)/S
√

H2
1S

2 −M2S,

and
N1,2(x) = (2H1/3κC0)tanh(H̄1x) − 2λC0x+R1,2, H̄1 = H1/2.

We can then finally write

ψ1,2(x) = ia1,2

√
3κmC0

H1
cosh(H̄1x)coshN1,2(x),

(3.32)

ψ3,4(x) = ia2,1

√
3κmC0

H1
cosh(H̄1x)coshN2,1(x).

Let us consider the energy-density distribution of the field system:

T 0
0 = (λ+

1

2

ϕ2
0

C2
0

)
M4

H4
1

cosh4(H̄1x). (3.33)

From (3.33) follows that, the energy density of the system is not localized and the total

energy of the system E =
∞
∫

−∞
T 0

0

√
−3gdx is not finite. Note that, the energy density of the

system can be trivial, if
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λ +
1

2

ϕ2
0

C2
0

= 0. (3.34)

It is possible, iff the sign of energy density of spinor and scalar fields are different.
Let us write the total charge of the system.

Q = 2a2

∞
∫

−∞

cosh
[ 4H1

3κC0
tanh(H̄1x) − 4λC0x+ 2R

]( C0H
2
1

M2cosh2(H̄1x)

)3/2
e2Bx/3 dx. (3.35)

If 12λ2C2
0 + λC0(4B − κC0) − κϕ2

0/2 < 0, the integral (3.35) converges, that means the
possibility of existence of finite charge and spin of the system.

In case of n > 2, the energy density of the system in question is

T 0
0 = λ(n− 1)Sn +

1

2

ϕ2
0

C2
0

S2, (3.36)

which shows that the regular solutions with localized energy density exists iff S = ψ̄ψ is a
continuous and limited function and lim

x→±∞
S(x) → 0. The condition, when S possesses the

properties mentioned above is

∫ dS
√

(1 + κ̄/2)B2S2 − 3κC2
0(mS − λSn)

= x. (3.37)

As one sees from (3.37), for m 6= 0 at no value of x S becomes trivial, since as S → 0,
the denominator of the integrant beginning from some finite value of S becomes imaginary.
It means that for S(x) to be trivial at spatial infinity (x → ∞), it is necessary to choose
massless spinor field setting m = 0 in (3.37). Note that, in the unified nonlinear spinor
theory of Heisenberg, the massive term is absent, and according to Heisenberg, the particle
mass should be obtained as a result of quantization of spinor prematter [35]. It should be
emphasized that in the nonlinear generalization of classical field equations, the massive term
does not possess the significance that it possesses in the linear one, as it by no means defines
total energy (or mass) of the nonlinear field system [36]. Thus without losing the generality
we can consider massless spinor field putting m = 0. Note that in the sections to follow
where we consider the nonlinear spinor term as F = P n, or F = (K±)n with K± = (I ± J),
we will study the massless spinor field only.

From (3.37) for m = 0, λ > 0 and n > 2 for S(x) we obtain

S(x) =
[

−H1/
√

3κλC2
0(ζ

2 − 1)
]2/(n−2)

, ζ = cosh[(n− 2)H̄1x] (3.38)

from which follows that lim
x→0

|S(x)| → ∞. It means that T 0
0 (x) is not bounded at x = 0 and

the initial system of equations does not possess solutions with localized energy density.
If we set in (3.37) m = 0, λ = −Λ2 < 0 and n > 2, then for S we obtain

S(x) =
[

H1/
√

3κλC2
0ζ

]2/(n−2)
(3.39)

It is seen from (3.39) that S(x) has maximum at x = 0 and lim
x→±∞

S(x) → 0. For energy

density we have

T 0
0 = −Λ2(n− 1)Sn +

1

2

ϕ2
0

C2
0

S2, (3.40)
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where S is defined by (3.39). In view of S it follows that T 0
0 (x) is an alternating function.

Let us find the condition when the total energy of the system is bound

E =

∞
∫

−∞

T 0
0

√

−3gdx <∞. (3.41)

For this we write the integrant of (3.41)

ε(x) = T 0
0

√

−3g = (3.42)

= C
5/3
0

[ ϕ2
0

2C2
0

− (n− 1)H2
1ζ

2

3κλC2
0

][ H2
1ζ

3κΛ2C2
0

]1/3(n−2) · e2Bx/3.

From (3.42) follows that lim
x→−∞

ε(x) → 0 for any value of the parameters, while lim
x→+∞

ε(x) →
0 iff H > 2B or κϕ2

0 > 2B2. Note that in this case the contribution of scalar field to the
total energy in positive and finite:

T 0
sc0 =

ϕ2
0

2C2
0

S2, Esc =

∞
∫

−∞

T 0
sc0

√

−3gdx <∞. (3.43)

Note that in the case considered the scalar field is linear and massless. As far as in absence
of spinor field energy density of the linear scalar field is not localized and the total energy
in not finite, in the case considered the properties of the field configurations are defined by
those of nonlinear spinor field. The contribution of nonlinear spinor field to the total energy
is negative. Moreover, it remains finite even in absence of scalar field for n > 2 [37].

The components of spinor field in this case have the form

ψ1,2(x) = ia1,2E(x)coshN1,2(x),

(3.44)

ψ3,4(x) = a2,1E(x)sinhN2,1(x),

where

E(x) = (1/
√

C0)
[

H1/
√

3κΛ2C2
0ζ

]1/(n−2)

and

N1,2(x) = −2nH1

√
ζ2 − 1

3κC0(n− 2)ζ
+R1,2.

For the solutions obtained we write the chronometric-invariant charge density of the
spinor field ̺:

̺(x) =
2a2

C0
cosh

{

−4nH1

√
ζ2 − 1

3κC0(n− 2)ζ
+ 2R

}{ H2
1

3κΛ2C2
0ζ

2

}1/(n−2)
. (3.45)

As one sees from (3.45), the charge density is localized, since lim
x→±∞

̺(x) → 0. Neverthe-

less, the charge density of the spinor field, coming to unit invariant volume ̺
√
−3g, is not

localized:

̺
√

−3g = 2a2cosh[2N(x)]eα−γ = 2a2cosh[2N(x)](C0/S)2/3e2Bx/3. (3.46)
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It leads to the fact that the total charge of the spinor field is not bounded as well. As far as
the expression for chronometric-invariant tensor of spin (3.28) coincides with that of ̺(x)/2,
the conclusions made for ̺(x) and Q will be valid for the spin tensor S23,0

ch and projection of
spin vector on X axis S1, i.e., S23,0

ch is localized and S1 is unlimited.
The solution obtained describes the configuration of nonlinear spinor and linear scalar

fields with localized energy density but with the metric that is singular at spatial infinity,
as in this case

e2α = (C0/S)2 = C2
0

{3κΛC2
0ζ

H2
1

}2/(n−2)∣
∣

∣

x→±∞
→ ∞ (3.47)

Let us consider the massless spinor field with

F = −Λ2S−ν , ν = constant > 0. (3.48)

In this case the energy density of the system of nonlinear spinor and linear scalar fields with
minimal coupling takes the form

T 0
0 = Λ2(ν + 1)S−ν +

ϕ2
0

2C2
0

S2 (3.49)

For S in this case we get

∫ dS
√

(1 + κ̄/2)B2S2 − 3κC2
0Λ2S−ν

= x (3.50)

with the solution

S(x) =
[3κΛ2C2

0

H2
1

ζ2
1

]1/(ν+2)
, ζ1 = cosh[(ν + 2)H̄1x]. (3.51)

For energy density in this case we have

T 0
0 (x) = Λ2(ν + 1)

[ H2
1

3κC2
0Λ

2ζ2
1

]ν/(ν+2)
+

ϕ2
0

2C2
0

[3κC2
0Λ

2ζ2
1

H2
1

]2/(ν+2)
. (3.52)

It follows from (3.52) that the contribution of the spinor field in the energy density is localized
while for the scalar field it is not the case.

The energy density distribution of the field system, coming to unit invariant volume is

ε(x) = T 0
0

√

−3g =
[

Λ2(ν + 1)S−ν +
ϕ2

0

2C2
0

S2
]

e2α−γ

=
{H2

1 (ν + 1)

3κζ2
1

+
ϕ2

0

2

}{ H2
1

3κC2
0Λ

2ζ2
1

}1/3(ν+2)
e2Bx/3. (3.53)

As one sees from (3.53) ε(x) is a localized function, i.e., lim
x→±∞

ε(x) → 0, if H > 2B or

κϕ2
0 > 2B2. In this case the total energy is also finite.
The components of spinor field in this case have the form

ψ1,2(x) = ia1,2E(x)coshN1,2(x),

(3.54)

ψ3,4(x) = a2,1E(x)sinhN2,1(x),
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where

E(x) = (1/
√

C0)
[

√

3κΛ2C2
0

H2
1

ζ1
]1/(ν+2)

and

N1,2(x) = −
2Hν

√

ζ2
1 − 1

3κC0(ν + 2)ζ1
+R1,2.

The chronometric-invariant charge density of the spinor field coming to unit invariant
volume with a1 = a2 = a and N1 = N2 reads

̺
√

−3g = 2a2cosh[2N(x)]eα−γ = (3.55)

= 2a2(C0)
2/3cosh

{

2R−
4H1ν

√

ζ2
1 − 1

3κC0(ν + 2)ζ1

}{ H2
1

3κC2
0Λ

2ζ2
1

}2/3(ν+2)
e2Bx/3.

It follows from (3.55) that ̺
√
−3g is a localized function and the total charge Q is finite.

The spin of spinor field is limited as well.
Case II: F = F(J). Here we consider the massless spinor field with the nonlinearity

F = F (J). In this case from (2.35b) immediately follows

P = D0e
−α(x), D0 = const. (3.56)

From (2.23) we now have

V ′
4 − eαGV3 = 0, (3.57a)

V ′
3 − eαGV4 = 0, (3.57b)

V ′
2 + eαGV1 = 0, (3.57c)

V ′
1 + eαGV2 = 0, (3.57d)

with the solutions

V1 = C1sinh[−A + C2] (3.58a)

V2 = C1cosh[−A + C2] (3.58b)

V3 = C3sinh[A + C4] (3.58c)

V4 = C3cosh[A + C4] (3.58d)

with C1, C2, C3 and C3 being the constant of integration and A =
∫

eαGdx.
Using the solutions obtained, from (2.26) we now find the components of spinor current

j0 = [C2
1cosh[2(−A + C2)] + C2

3cosh[2(A + C4)]]e
−(α+ρ), (3.59a)

j1 = [2C1C3sinh(C2 + C4)]e
−2α, (3.59b)

j2 = 0, (3.59c)

j3 = −[2C1C3cosh[2A− C2 + C4)]e
−(α+β). (3.59d)

The supposition (2.27) that the spatial components of the spinor current are trivial leads at
least one of the constants (C1, C3) to be zero. Let us set C1 = 0. The chronometric-invariant
form of the charge density and the total charge of spinor field are

̺ = C2
3cosh[2(A + C4)]e

−α, (3.60)
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Q = C2
3

∞
∫

−∞

cosh[2(A + C4)]e
α−ρdx. (3.61)

From (2.31) we find

S12,0 = −C2
3e

−(2α+β+ρ), S31,0 = 0, S23,0 = C2
3sinh[2(A + C4)]e

−2α. (3.62)

Thus, in this case we have two nontrivial components of the spin tensor S23,0 and S12,0.
those define the projections of spin vector on X and Z axis, respectively. From (2.33) we
write the chronometric invariant spin tensor

S23,0
ch = C2

3 sinh[2(A + C4)]e
−α, (3.63a)

S23,0
ch = C2

3e
−α (3.63b)

and the projections of the spin vector on X and Z axes are

S1 = C2
3

∞
∫

−∞

sinh[2(A + C4)]e
α−ρdx, (3.64a)

S3 = C2
3

∞
∫

−∞

eα−ρdx. (3.64b)

Note that the equation for α, therefore for P will be the same as in previous case (i.e.,
for S with m = 0) with all the conclusions made there. So we will not proceed further with
this. We also note that for F = K± with K± = I ± J for massless spinor field we obtain
K± = K0e

−2α and the conclusions made above will be remain valid.

C. Nonlinear scalar field in absence of spinor one

Let us consider the system of gravitational and nonlinear scalar fields. As a nonlinear
scalar field equation we choose Born-Infeld one, given by the Lagrangian [33]

Ψ(Υ) = −1

σ
(1 −

√
1 + σΥ), (3.65)

with Υ = ϕαϕ
α and σ is the parameter of nonlinearity. From (3.65) we also have

lim
σ→0

Ψ(Υ) =
1

2
Υ · · · (3.66)

Inserting (3.65) into (2.20) for the scalar field we obtain the equation

ϕ′(x) =
ϕ0

√

1 + σϕ2
0e

−2α(x)
, (3.67)

that gives

Υ = −(ϕ′)2e−2α = − ϕ2
0e

−2α(x)

1 + σϕ2
0e

−2α(x)
. (3.68)
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From(3.67) follows that ϕ′|σ=0= ϕ0.
For the case considered in this section we have

T 0
sc0 = T 2

sc2 = T 3
sc3 = −Ψ(Υ) =

1

σ
(1 − 1/

√

1 + σϕ2
0e

−2α(x)), (3.69)

and

T 1
sc1 = 2Υ

dΨ

dΥ
− Ψ =

1

σ
(1 −

√

1 + σϕ2
0e

−2α(x)). (3.70)

Putting (3.70) into (2.43), in account of m = 0 and F (I, J) ≡ 0 for α we find

α′ = ±
√

B2 − 3κ

σ
e2α(1 −

√

1 + σϕ2
0e

−2α(x)). (3.71)

From(3.71) one finds

∫

dα
√

B2 − 3κ
σ
e2α(1 −

√

1 + σϕ2
0e

−2α(x))

= − 2

B
ln|ξ +

√

κ̄+ ξ2| +

+
1

B
√

1 + κ̄/2

[

ln
∣

∣

∣

√
2B

√

κ̄+ ξ2 +
√

2B
√

1 + κ̄ξ/2
∣

∣

∣ − ln
∣

∣

∣

√

3κϕ2
0(ξ

2 − 2)
∣

∣

∣

]

= x, (3.72)

with ξ2 = 1 +
√

1 + σϕ2
0e

−2α(x). As one sees from (3.72)

e2α(x)
∣

∣

∣

x→+∞
≈ σϕ2

0

2
e2
√

1+κ̄/2Bx → ∞, (3.73)

e2α(x)
∣

∣

∣

x→−∞
≈ σϕ2

0

2
e2Bx → 0. (3.74)

Let us study the energy density distribution of nonlinear scalar field. From (3.69) we find

T 0
sc0(x)

∣

∣

∣

x=−∞
=

1

σ
, T 0

sc0(x)
∣

∣

∣

x=∞
= 0, (3.75)

which shows that the energy density of the scalar field is not localized. Nevertheless, the
energy density on unit invariant volume is localized if κϕ2

0 > 2B2:

ε(x) = T 0
sc0

√

−3g =
1

σ

(

1 − 1

1 + σϕ2
0e

−2α

)

e5α/3+2Bx/3

∣

∣

∣

∣

∣

x→±∞

→ 0. (3.76)

In this case the total energy of the scalar field is also bound. From (3.68) in account of
(3.73) and (3.74) we also have

Υ(x)
∣

∣

∣

x=−∞
= −1

σ
, Υ(x)

∣

∣

∣

x=+∞
= 0, (3.77)

showing that Υ(x) is kink-like.
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D. Nonlinear spinor and nonlinear scalar field

Finally we consider the self-consistent system of nonlinear spinor and scalar fields. We
choose the self-action of the spinor field as F = λSn, n > 2, where as the scalar field is
taken in the form (3.65). Using the line of reasoning mentioned earlier, we conclude that
the spinor field considered here should be massless. Taking into account that e−2α = S2/C2

0
for S we write

∫

dS
√

B2 + 3κC2
0 [λS

n + (
√

1 + σϕ2
0S

2/C2
0 − 1)/σ]

= x. (3.78)

From (3.78) one estimates

S(x)
∣

∣

∣

x→0
∼ 1

x2/(n−2)
→ ∞. (3.79)

On the other hand for the energy density we have

T 0
0 = λ(n− 1)Sn +

1

σ

(

1 − 1/
√

1 + σϕ2
0S

2/C2
0

)

(3.80)

that states that for T 0
0 to be localized S should be localized too and lim

x→±∞
S(x) → 0. Hence

from (3.79) we conclude that S(x) is singular and energy density in unlimited at x = 0.
For λ = −Λ2 and n > 2 we have

∫

dS
√

B2 + 3κC2
0 [−Λ2Sn + (

√

1 + σϕ2
0S

2/C2
0 − 1)/σ]

= x. (3.81)

In this case S(x) is finite and its maximum value is defined from

Sn(x) =
1

3κC2
0Λ

2
[B2S2 + 3κC2

0 (
√

1 + σϕ2
0S

2/C2
0 − 1)/σ]. (3.82)

Noticing that at spatial infinity effects of nonlinearity vanish, from (3.81) we find

S(x)
∣

∣

∣

x→−∞
∼ eHx → 0, S(x)

∣

∣

∣

x→+∞
∼ e−Hx → 0, (3.83)

with H =
√

B2 + 3κϕ2
0/2 = B

√

1 + κ̄/2. In this case the energy density T 0
0 defined by (3.80)

is localized and the total energy of the system in bound. Nevertheless, spin and charge of
the system unlimited.

Let us go back to the general case. For F = F (S) we now have

T 1
1 = mS − F (S) + 2Υ

dΨ

dΥ
− Ψ. (3.84)

It follows that for the arbitrary choice of Ψ(Υ), obeying (2.4), we can always choose nonlinear
spinor term that will eliminate the scalar field contribution in T 1

1 , i.e., by virtue of total
freedom we have here to choose F (S), we can write

F (S) = F1(S) + F2(S), F2(S) = 2Υ
dΨ

dΥ
− Ψ, (3.85)
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since Υ = Υ(S2). To prove this we go back to (2.20 that gives

Υ
(dΨ

dΥ

)2
= −ϕ

2
0S

2

C2
0

. (3.86)

Since Ψ is the function of Υ only, (3.86) comprises an algebraic equation for defining Υ as
a function of S2. For (3.85) takes place, we find

(α′)2 − B2 = −3κC2
0

S2
[mS − F1(S)]. (3.87)

As we see, the scalar field has no effect on space-time, but it contributes to energy density
and total energy of the system as in this case

T 0
0 = SF ′

1(S) − F1(S) + S
d

dΥ
(−2Υ

dΨ

dΥ
+ Ψ)

dΥ

dS
+ 2Υ

dΨ

dΥ
− Ψ. (3.88)

Note that in (3.84) with F (S) arbitrary, we cannot choose Ψ(Υ) such that

2Υ
dΨ

dΥ
− Ψ = F (S), (3.89)

due to the fact that Ψ(Υ) is not totally arbitrary, since it has to obey

lim
Υ→0

Ψ(Υ) → 1

2
Υ, lim

Υ→0
2Υ

dΨ

dΥ
− Ψ =

1

2
Υ =

ϕ2
0

2C2
0

S2 (3.90)

whereas at S → 0, F (S) behaves arbitrarily.

4. CONCLUSION

The system of nonlinear spinor and nonlinear scalar fields with minimal coupling has
been thoroughly studied within the scope of general relativity given by a plane-symmetric
space-time. Contrary to the scalar field, the spinor field nonliearity has direct effect on space-
time. Energy density and the total energy of the linear spinor and scalar field system are
not bounded and the system does not possess real physical infinity, hence the configuration
is not observable for an infinitely remote observer, since in this case

R =

∞
∫

−∞

√
g11dx =

∞
∫

−∞

eαdx =
4C0H

M2
<∞. (4.1)

But introduction of nonliear spinor term into the system eliminates these shortcomings
and we have the configuration with finite energy density and limited total energy which
is also observable as in this case the system possesses real physical infinity. Thus we see,
spinor field nonlinearity is crucial for the regular solutions with localized energy density. We
also conclude that the properties of nonlinear spinor and scalar field system with minimal
coupling are defined by that part of gravitational field which is generated by nonlinear spinor
one.
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