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Interacting scalar and spinor fields in Bianchi type I universe filled with
magneto-fluid
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Self-consistent system of spinor, scalar and BI gravitational fields in presence of

magneto-fluid and Λ-term is considered. Assuming that the expansion of the BI

universe is proportional to the σ1
1 component of the shear tensor, exact solutions

for the metric functions, as well as for scalar and spinor fields are obtained. For

a non-positive Λ the initially anisotropic space-time becomes isotropic one in the

process of expansion, whereas, for Λ > 0 an oscillatory mode of expansion of the BI

model occurs.
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1. INTRODUCTION

The discovery of the cosmic microwave radiation has stimulated a growing interest
in anisotropic, general-relativistic cosmological models of the universe. The choice of
anisotropic cosmological models in the system of Einstein field equation enable us to study
the early day universe, which had an anisotropic phase that approaches an isotropic one [1].
Bianchi type I (BI) cosmological models that are anisotropic homogeneous universes play
an important role in understanding essential features of the universe, such as formation of
galaxies during its early stage of evolution. An LRS BI model containing a magnetic field
directed along one axis with a barotropic fluid was investigated by Thorne [2]. Jacobs [3, 4]
investigated BI models with magnetic field satisfying a barotropic equation of state. Bali
[5] studied the behavior of the magnetic field in a BI universe for perfect fluid distribution.

In this paper we study the self-consistent system of spinor, scalar and BI gravitational
fields in presence of magneto-fluid and cosmological constant. Solutions of Einstein equa-
tions coupled to a spinor and a scalar fields in BI spaces have been extensively studied
by Saha and Shikin [6, 7, 8, 9]. In the aforementioned papers, we considered spinor
field in BI universe where nonlinearity occurred either due self-coupling or induced by an
interacting massless scalar field. Here, considering the BI universe filled with magneto-
fluid we make an attempt to study a system, where all the four fields, i.e., scalar, spinor,
electro-magnetic and gravitational ones, play active part in the evolution process.
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2. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

We choose the action of the self-consistent system of spinor, scalar and gravitational
fields in the form

S (g;ψ, ψ̄,ϕ) =

∫

(R+L )
√
−gdΩ, (2.1)

where R is the Ricci scalar and L is the spinor and scalar field Lagrangian density chosen
in the form[6]

L =
i
2

[

ψ̄γµ∇µψ −∇µψ̄γµψ
]

−mψ̄ψ +
1
2

ϕ,αϕ ,α(1+λF). (2.2)

Here λ is the coupling constant and F is some arbitrary functions of invariants generated
from the real bilinear forms of a spinor field. We choose F to be the function of I = S2 =
(ψ̄ψ)2 and J = P2 = (iψ̄γ5ψ)2, i.e., F = F(I,J), that describes the nonlinearity in the most
general of its form [8]. As one sees, for λ = 0 we have the system with minimal coupling.

The gravitational field in our case is given by a Bianchi type I (BI) metric in the form

ds2 = a2
0(dx0)2−a2

1(dx1)2−a2
2(dx2)2−a2

3(dx3)2, (2.3)

with a0 = 1, x0 = ct and c = 1. The metric functions ai (i = 1,2,3) are the functions of
time t only.

Variation of (2.1) with respect to spinor field ψ (ψ̄) gives nonlinear spinor field equa-
tions

iγµ∇µψ −mψ +Dψ +G iγ5ψ = 0, (2.4a)

i∇µψ̄γµ +mψ̄ −Dψ̄ −G iψ̄γ5 = 0, (2.4b)

where we denote
D = λSϕ,αϕ ,α∂F/∂ I, G = λPϕ,αϕ ,α∂F/∂J,

whereas, variation of (2.1) with respect to scalar field yields the following scalar field
equation

1√−g
∂

∂xν

(√−ggνµ(1+λF)ϕ,µ

)

= 0. (2.5)

Varying (2.1) with respect to metric tensor gµν one finds the gravitational field equation
which in account of cosmological constant Λ has the form

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= κT 1

1 −Λ, (2.6a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
= κT 2

2 −Λ, (2.6b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= κT 3

3 −Λ, (2.6c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
= κT 0

0 −Λ. (2.6d)
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Here κ is the Einstein gravitational constant and over-dot means differentiation with
respect to t. The energy-momentum tensor of the system is given by

T ρ
µ =

i
4

gρν
(

ψ̄γµ ∇νψ + ψ̄γν ∇µψ −∇µ ψ̄γν ψ −∇ν ψ̄γµ ψ
)

(2.7)

+(1−λF)ϕ,µϕ ,ρ −δ ρ
µ L +T ν

mµ .

The energy-momentum tensor of the magneto-fluid is chosen to be

T ν
µ (m) = (ε + p)vµvν − pδ ν

µ +Eν
µ , (2.8)

where Eµν is the electro-magnetic field given by Lichnerowich [10]

Eν
µ = µ̄

[

|h|2
(

uµuν − 1
2

δ ν
µ

)

−hµ hν
]

. (2.9)

Here uµ is the flow vector satisfying

gµνuµuν = 1, (2.10)

µ̄ is the magnetic permeability and hµ is the magnetic flux vector defined by

hµ =
1
µ̄

⋆Fνµuν , (2.11)

where ⋆Fµν is the dual electro-magnetic field tensor defined as

⋆Fµν =

√−g
2

εµναβ Fαβ . (2.12)

Here Fαβ is the electro-magnetic field tensor and εµναβ is the totally anti-symmetric Levi-

Civita tensor with ε0123= +1. Here the comoving coordinates are taken to be u0 = 1, u1 =
u2 = u3 = 0. We choose the incident magnetic field to be in the direction of x-axis so that
the magnetic flux vector has only one nontrivial component, namely h1 6= 0. In view of
the aforementioned assumption from (2.11) we obtain F12 = F13 = 0. We also assume that
the conductivity of the fluid is infinite. This leads to F01 = F02 = F03 = 0. Thus we have
only one non-vanishing component of Fµν which is F23. Then from the first set of Maxwell
equation

Fµν;β +Fνβ ;µ +Fβ µ;ν = 0, (2.13)

where the semicolon stands for covariant derivative, one finds

F23 = I , I = const. (2.14)

Then from (2.11) in account of (2.12) one finds

h1 =
a1I

µ̄a2a3
. (2.15)

Finally, for Eν
µ we find the following non-trivial components

E0
0 = E1

1 = −E2
2 = −E3

3 =
I 2

2µ̄a2
2a2

3

. (2.16)
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In (2.8) ε and p are the energy and pressure of the fluid, respectively. In this note we
assume that the equation of state

p = ζ ε (2.17)

holds. Here ζ varies between the interval 0 ≤ ζ ≤ 1, whereas ζ = 0 describes the dust
Universe, ζ = 1

3 presents radiation Universe, 1
3 < ζ < 1 ascribes hard Universe and

ζ = 1 corresponds to the stiff matter. The Dirac matrices γµ(x) of curve space-time are
connected with those of Mincowski space as

γµ = γ̄µ/aµ , γµ = γ̄aµ , µ = 0,1,2,3. (2.18)

In the Eqs. (2.4) and (2.7) ∇µ is the covariant derivatives acting on a spinor field as
[11]

∇µψ =
∂ψ
∂xµ −Γµψ, ∇µψ̄ =

∂ψ̄
∂xµ + ψ̄Γµ , (2.19)

where Γµ are the Fock-Ivanenko spinor connection coefficients defined by

Γµ =
1
4

γσ
(

Γν
µσ γν −∂µ γσ

)

. (2.20)

For the metric (2.3) one has the following components of the spinor connection coefficients

Γµ = (1/2)ȧµ γ̄µ γ̄0. (2.21)

We study the space-independent solutions to the spinor and scalar field Eqs. (2.4) and
(2.5) so that ψ = ψ(t) and ϕ = ϕ(t). defining

τ = a0a1a2a3 =
√−g (2.22)

from (2.5) for the scalar field we have

ϕ = C
∫

[τ(1+λF)]−1dt. (2.23)

Setting Vj(t) =
√

τψ j(t), j = 1,2,3,4, in view of (2.19) and (2.21) from (2.4a) one
deduces the following system of equations:

V̇1+ i(m−D)V1−GV3 = 0, (2.24a)

V̇2+ i(m−D)V2−GV4 = 0, (2.24b)

V̇3− i(m−D)V3+GV1 = 0, (2.24c)

V̇4− i(m−D)V4+GV2 = 0. (2.24d)

From (2.4a) we also write the equations for the bilinear spinor forms S, P and A0 =
ψ̄ γ̄5γ̄0ψ

Ṡ0−2G A0
0 = 0, (2.25a)

Ṗ0−2(m−D)A0
0 = 0, (2.25b)

Ȧ0
0 +2(m−D)P0+2G S0 = 0, (2.25c)

where Q0 = τQ, leading to the relation S2+P2+(A0)2 =C2/τ2, C2 = const. As one sees,
for F = F(I) (2.25a) gives S = C0/τ , whereas for the massless spinor field with F = F(J)
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(2.25b) yields P = D0/τ . In view of it for F = F(I) we obtain the following expression for
the components of spinor field

ψ1(t) = C1τ−1/2e−iβ , ψ2(t) = C2τ−1/2e−iβ ,

(2.26)

ψ3(t) = C3τ−1/2eiβ , ψ4(t) = C4τ−1/2eiβ ,

with Ci being the integration constants and are related to C0 as C0 = C2
1 +C2

2 −C2
3 −C2

4.
Here β =

∫

(m−D)dt. In case of F = F(J) for the massless spinor field we get

ψ1 = τ−1/2(D1eiσ + iD3e−iσ)

, ψ2 = τ−1/2(D2eiσ + iD4e−iσ)

,

(2.27)

ψ3 = τ−1/2(iD1eiσ +D3e−iσ)

, ψ4 = τ−1/2(iD2eiσ +D4e−iσ)

.

The integration constants Di are connected to D0 by D0 = 2(D2
1+D2

2−D2
3−D2

4). Here we
set σ =

∫

G dt.
Once the spinor functions are known explicitly, one can write the components of spinor

current jµ = ψ̄γµψ, the charge density of spinor field ρ = ( j0 · j0)1/2, the total charge of

spinor field Q =
∞
∫

−∞
ρ
√

−3gdxdydz, the components of spin tensor Sµν,ε = 1
4ψ̄

{

γεσ µν +

σ µνγε}ψ and other physical quantities.
Let us now solve the Einstein equations. In doing so we first write the expressions for

the components of the energy-momentum tensor explicitly:

T 0
0 = mS +C2/2τ2(1+λF)+ ε +

I 2

2µ̄a2
2a2

3

, (2.28a)

T 1
1 = DS +G P−C2/2τ2(1+λF)− p+

I 2

2µ̄a2
2a2

3

, (2.28b)

T 2
2 = DS +G P−C2/2τ2(1+λF)− p− I 2

2µ̄a2
2a2

3

, (2.28c)

T 3
3 = DS +G P−C2/2τ2(1+λF)− p− I 2

2µ̄a2
2a2

3

, (2.28d)

(2.28e)

In view of T 2
2 = T 3

3 from (2.6b), (2.6c) we find

a2 = a3Dexp
(

X
∫

dt
τ

)

, (2.29)

with the constants of integration D and X being integration constants.
Following Bali [5] let us assume that the expansion (θ) in the model is proportional to

the eigenvalue σ1
1 of the shear tensor σ ν

µ . Since for the BI space-time

θ =
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
, (2.30)

σ1
1 = −1

3

(

4
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)

, (2.31)
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the aforementioned condition leads to

a1 =
(

a2a3
)N

, (2.32)

with N being the proportionality constant.
In account of (2.22) from (2.29) and (2.32) after some manipulation for the metric

functions one finds

a1 = τN/(N+1), (2.33a)

a2 =
√

Dτ1/2(N+1) exp
[X

2

∫

dt
τ

]

, (2.33b)

a3 =
1√
D

τ1/2(N+1) exp
[

−X
2

∫

dt
τ

]

. (2.33c)

As one sees from (2.33) for τ ∼ tn with n > 1 the exponent tends to unity at large t.
In this case the anisotropic model becomes isotropic one iff D = 1 and N = 1/2. Let us
also write the invariants of gravitational field. They are the Ricci scalar I1 = R ≈ 1/τ2,

I2 = RµνRµν ≡ Rν
µRµ

ν ≈ 1/τ4 and the Kretschmann scalar I3 = Rαβ µν Rαβ µν ≈ 1/τ4. As we
see, the space-time becomes singular at a point where τ = 0, as well as the scalar and
spinor fields. Thus we see, all the functions in question are expressed via τ . In what
follows, we write the equation for τ and study it in details.

Summation of Einstein Eqs. (2.6a), (2.6b), (2.6c) and (2.6d) multiplied by 3 gives

τ̈
τ

=
3
2

κ
(

mS +DS +G P+ ε − p+
2I 2

3µ̄(a2a3)2

)

−3Λ. (2.34)

For the right hand side of Eq. (2.34) to be a function of τ only, the solution to this
equation is well known [12]. In what follows we study this equation for some concrete
form of F. In doing so let us demand the energy-momentum to be conserved, i.e., T ν

µ;ν = 0,
which in our case takes the form

1
τ
(

τT 0
0

)·− ȧ1

a1
T 1

1 − ȧ2

a2
T 2

2 − ȧ3

a3
T 3

3 = 0. (2.35)

In account of the equation of state (2.17) and

(m−D)Ṡ0−G Ṗ0 = 0

which follows from (2.25), after a little manipulation from (2.35) we obtain

ε = ε0/τ1+ζ , p = ζ ε0/τ1+ζ . (2.36)

Let us recall that we consider F as a function of I, J or I ± J. If we choose F = F(I),
then setting m = 0 we come to the analogical equation corresponding to the massless
spinor case with F = F(J) or F = F(I±J), whereas setting λ = 0 we have the system with
minimal coupling. Under this assumption from (2.25) one finds

S =
C0

τ
. (2.37)
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In view of (2.37), (2.36) and the fact that a2a3 = τ1/(N+1), Eq. (2.34) can be rewritten as

τ̈ =
3
2

κ
(

mC0+DC0 + ε0(1−ζ )/τζ +
2I 2

3µ̄
τ(N−1)/(N+1)

)

−3Λ. (2.38)

Recalling the definition of D the solution to Eq. (2.38) can be written in quadrature

∫

dτ
√

κ
(

mC0τ +C2/2(1+λF)+ ε0τ1−ζ +((N +1)I 2/3µ̄N)τ2N/(N+1)
)

−Λτ2 +E

=
√

3t,

(2.39)
with E being some integration constant. It should be mentioned that being the volume-
scale τ is non-negative. At the points where τ = 0 there occurs space-time singularity. On
the other hand, the radical in (2.39) should be positive. This fact leads to the conclusion
that for Λ > 0 the value of τ is bound from above as well, giving rise to an oscillatory
mode of expansion of the BI universe. For a non-positive Λ, we have picture with fast
expanding τ with time.

3. CONCLUSIONS

A self-consistent system of spinor, scalar and gravitation fields has been studied in
presence of magneto-fluid and cosmological term Λ. With the presence of F23 component
of electro-magnetic field tensor, the system can be viewed as one where all the four fields,
i.e., scalar, electro-magnetic, spinor and gravitational ones, are taken into consideration.
Assuming that the expansion of the BI space-time is proportional to the σ1

1 component of
the shear tensor, solutions for the metric functions ai(t) are obtained explicitly in terms
of volume-scale τ . Expressions for the scalar and spinor fields are also obtained in terms
of τ . For the non-positive Λ we obtain exponentially expanding BI universe, which means
the initially anisotropic space-time becomes isotropic one in the process of expansion.
For a positive Λ an oscillatory mode of expansion takes place. Choosing the integration
constant E and initial value value of τ it is possible to obtain solutions those are regular
everywhere. A detailed numerical study of the Eq. (2.38) we plan to perform in short.
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