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We study the evolution of a homogeneous, anisotropic Universe given by a Bianchi

type-I cosmological model filled with viscous fluid, in the presence of a cosmological

constant Λ. The role of viscous fluid and Λ term in the evolution the BI space-time

is studied. Though the viscosity cannot remove the cosmological singularity, it plays

a crucial part in the formation of a qualitatively new behavior of the solutions near

singularity. It is shown that the introduction of the Λ term can be handy in the

elimination of the cosmological singularity. In particular, in case of a bulk viscosity,

it provides an everlasting process of evolution (Λ < 0), whereas, for some positive

values of Λ and the bulk viscosity being inverse proportional to the expansion, the

BI Universe admits a singularity-free oscillatory mode of expansion. In case of a

constant bulk viscosity and share viscosity being proportional to expansion, the

model allows oscillatory mode accompanied by an exponential growth even with a

negative Λ. Space-time singularity in this case occurs at t → −∞.

PACS numbers: 03.65.Pm, 04.20.Jb, and 04.20.Ha
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I. INTRODUCTION

The investigation of relativistic cosmological models usually has the energy momentum
tensor of matter generated by a perfect fluid. To consider more realistic models one must take
into account the viscosity mechanisms, which have already attracted the attention of many
researchers. Misner [1, 2] suggested that strong dissipative due to the neutrino viscosity
may considerably reduce the anisotropy of the blackbody radiation. Viscosity mechanism
in cosmology can explain the anomalously high entropy per baryon in the present universe
[3, 4]. Bulk viscosity associated with the grand-unified-theory phase transition [5] may lead
to an inflationary scenario [6, 7, 8].

A uniform cosmological model filled with fluid which possesses pressure and second (bulk)
viscosity was developed by Murphy [9]. The solutions that he found exhibit an interesting
feature that the big bang type singularity appears in the infinite past. Exact solutions of
the isotropic homogeneous cosmology for open, closed and flat universe have been found by
Santos et al [10], with the bulk viscosity being a power function of energy density.

The nature of cosmological solutions for homogeneous Bianchi type I (BI) model was
investigated by Belinsky and Khalatnikov [11] by taking into account dissipative process
due to viscosity. They showed that viscosity cannot remove the cosmological singularity
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but results in a qualitatively new behavior of the solutions near singularity. They found
the remarkable property that during the time of the big bang matter is created by the
gravitational field. BI solutions in case of stiff matter with a shear viscosity being the power
function of of energy density were obtained by Banerjee [12], whereas BI models with bulk
viscosity (η) that is a power function of energy density ε and when the universe is filled
with stiff matter were studied by Huang [13]. The effect of bulk viscosity, with a time
varying bulk viscous coefficient, on the evolution of isotropic FRW models was investigated
in the context of open thermodynamics system was studied by Desikan [14]. This study was
further developed by Krori and Mukherjee [15] for anisotropic Bianchi models. Cosmological
solutions with nonlinear bulk viscosity were obtained in [16]. Models with both shear and
bulk viscosity were investigated in [17, 18].

Though Murphy [9] claimed that the introduction of bulk viscosity can avoid the initial
singularity at finite past, results obtained in [19] show that, it is, in general, not valid, since
for some cases big bang singularity occurs in finite past.

We studied a self-consistent system of the nonlinear spinor and/or scalar fields in a BI
spacetime in presence of a perfect fluid and a Λ term [20, 21] in order to clarify whether the
presence of a singular point is an inherent property of the relativistic cosmological models
or it is only a consequence of specific simplifying assumptions underlying these models.
Recently we have considered a nonlinear spinor field in a BI Universe filled with viscous
fluid [22]. Since the viscous fluid itself presents a growing interest, we study the influence of
viscous fluid and Λ term in the evolution of the BI Universe in this report.

II. DERIVATION OF BASIC EQUATIONS

Using the variational principle in this section we derive the fundamental equations for
the gravitational field from the action (2.1) :

S(g; ε) =

∫

L
√
−gdΩ (2.1)

with
L = Lgrav. + Lvf . (2.2)

The gravitational part of the Lagrangian (2.2) Lgrav. is given by a Bianchi type-I metric,
whereas the term Lvf describes a viscous fluid.

We also write the expressions for the metric functions explicitly in terms of the vol-
ume scale τ defined bellow (2.23). Defining Hubble constant (2.37) in analogy with a flat
Friedmann-Robertson-Walker (FRW) Universe, we also derive the system of equations for
τ , H and ε, with ε being the energy density of the viscous fluid, which plays the central role
here.

A. The gravitational field

As a gravitational field we consider the Bianchi type I (BI) cosmological model. It is
the simplest model of anisotropic universe that describes a homogeneous and spatially flat
space-time and if filled with perfect fluid with the equation of state p = ζε, ζ < 1, it
eventually evolves into a FRW universe [23]. The isotropy of present-day universe makes
BI model a prime candidate for studying the possible effects of an anisotropy in the early
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universe on modern-day data observations. In view of what has been mentioned above we
choose the gravitational part of the Lagrangian (2.2) in the form

Lg =
R

2κ
, (2.3)

where R is the scalar curvature, κ = 8πG being the Einstein’s gravitational constant. The
gravitational field in our case is given by a Bianchi type I (BI) metric

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.4)

with a, b, c being the functions of time t only. Here the speed of light is taken to be unity.
The metric (2.4) has the following non-trivial Christoffel symbols

Γ1
10 =

ȧ

a
, Γ2

20 =
ḃ

b
, Γ3

30 =
ċ

c
(2.5)

Γ0
11 = aȧ, Γ0

22 = bḃ, Γ0
33 = cċ.

The nontrivial components of the Ricci tensors are

R0
0 = −

( ä

a
+

b̈

b
+

c̈

c

)

, (2.6a)

R1
1 = −

[ ä

a
+

ȧ

a

( ḃ

b
+

ċ

c

)]

, (2.6b)

R2
2 = −

[ b̈

b
+

ḃ

b

( ċ

c
+

ȧ

a

)]

, (2.6c)

R3
3 = −

[ c̈

c
+

ċ

c

( ȧ

a
+

ḃ

b

)]

. (2.6d)

From (2.6) one finds the following Ricci scalar for the BI universe

R = −2
( ä

a
+

b̈

b
+

c̈

c
+

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a

)

. (2.7)

The non-trivial components of Riemann tensors in this case read

R01
01 = − ä

a
, R02

02 = − b̈

b
, R03

03 = − c̈

c
,

(2.8)

R12
12 = − ȧ

a

ḃ

b
, R23

23 = − ḃ

b

ċ

c
, R31

31 = − ċ

c

ȧ

a
.

Now having all the non-trivial components of Ricci and Riemann tensors, one can easily
write the invariants of gravitational field which we need to study the space-time singularity.
We return to this study at the end of this section.



4 Bijan Saha visp.tex June 5, 2015

B. Viscous fluid

The influence of the viscous fluid in the evolution of the Universe is performed by means
of its energy momentum tensor, which acts as the source of the corresponding gravitational
field. The reason for writing Lvf in (2.2) is to underline that we are dealing with a self-
consistent system. The energy momentum tensor of a viscous field has the form

T ν
µ (m) = (ε + p′)uµu

ν − p′δν
µ + ηgνβ[uµ;β + uβ:µ − uµu

αuβ;α − uβu
αuµ;α], (2.9)

where

p′ = p − (ξ − 2

3
η)uµ

;µ. (2.10)

Here ε is the energy density, p - pressure, η and ξ are the coefficients of shear and bulk
viscosity, respectively. Note that the bulk and shear viscosities, η and ξ, are both positively
definite, i.e.,

η > 0, ξ > 0. (2.11)

They may be either constant or function of time or energy, such as :

η = |A|εα, ξ = |B|εβ. (2.12)

The pressure p is connected to the energy density by means of a equation of state. In this
report we consider the one describing a perfect fluid :

p = ζε, ζ ∈ (0, 1]. (2.13)

Note that here ζ 6= 0, since for dust pressure, hence temperature is zero, that results in
vanishing viscosity.

In a comoving system of reference such that uµ = (1, 0, 0, 0) we have

T 0
0 (m) = ε, (2.14a)

T 1
1 (m) = −p′ + 2η

ȧ

a
, (2.14b)

T 2
2 (m) = −p′ + 2η

ḃ

b
, (2.14c)

T 3
3 (m) = −p′ + 2η

ċ

c
. (2.14d)

Let us introduce the dynamical scalars such as the expansion and the shear scalar as
usual

θ = uµ
;µ, σ2 =

1

2
σµνσ

µν , (2.15)

where

σµν =
1

2

(

uµ;αP α
ν + uν;αP α

µ

)

− 1

3
θPµν . (2.16)

Here P is the projection operator obeying

P 2 = P. (2.17)

For the space-time with signature (+, −, −, −) it has the form

Pµν = gµν − uµuν , P µ
ν = δµ

ν − uµuν. (2.18)
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For the BI metric the dynamical scalar has the form

θ =
ȧ

a
+

ḃ

b
+

ċ

c
=

τ̇

τ
, (2.19)

and

2σ2 =
ȧ2

a2
+

ḃ2

b2
+

ċ2

c2
− 1

3
θ2. (2.20)

C. Field equations and their solutions

Variation of (2.1) with respect to metric tensor gµν gives the Einstein’s field equation. In
account of the Λ-term we then have

Gν
µ = Rν

µ − 1

2
δν
µR = κT ν

µ − δν
µΛ. (2.21)

In view of (2.6) and (2.7) for the BI space-time (2.4) we rewrite the Eq. (2.21) as

b̈

b
+

c̈

c
+

ḃ

b

ċ

c
= κT 1

1 − Λ, (2.22a)

c̈

c
+

ä

a
+

ċ

c

ȧ

a
= κT 2

2 − Λ, (2.22b)

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
= κT 3

3 − Λ, (2.22c)

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a
= κT 0

0 − Λ, (2.22d)

where over dot means differentiation with respect to t and T µ
ν is the energy-momentum

tensor of a viscous fluid given above (2.14).

1. Expressions for the metric functions

To write the metric functions explicitly, we define a new time dependent function τ(t)

τ = abc =
√−g, (2.23)

which is indeed the volume scale of the BI space-time.
Let us now solve the Einstein equations. In account of (2.14) subtracting (2.22a) from

(2.22b), one finds the following relation between a and b

a

b
= D1 exp

(

X1

∫

e−2κ
∫

ηdt

τ
dt

)

. (2.24)

Analogically, we find

b

c
= D2 exp

(

X2

∫

e−2κ
∫

ηdt

τ
dt

)

,
c

a
= D3 exp

(

X3

∫

e−2κ
∫

ηdt

τ
dt

)

. (2.25)
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Here D1, D2, D3, X1, X2, X3 are integration constants, obeying

D1D2D3 = 1, X1 + X2 + X3 = 0. (2.26)

In view of (2.26) from (2.24) and (2.25) we write the metric functions explicitly [20]

a(t) = A1τ
1/3 exp

[

(B1/3)

∫

e−2κ
∫

ηdt

τ
dt

]

, (2.27a)

b(t) = A2τ
1/3 exp

[

(B2/3)

∫

e−2κ
∫

ηdt

τ
dt

]

, (2.27b)

c(t) = A3τ
1/3 exp

[

(B3/3)

∫

e−2κ
∫

ηdt

τ
dt

]

, (2.27c)

where

A1 = 3

√

(D1/D3), A2 = 3

√

1/(D2
1D3),

3

√

(D1D
2
3),

B1 = X1 − X3, B2 = −(2X1 + X3), B3 = X1 + 2X3.

Thus, the metric functions are found explicitly in terms of τ and viscosity.
As one sees from (2.27a), (2.27b) and (2.27c), for τ = tn with n > 1 the exponent tends

to unity at large t, and the anisotropic model becomes isotropic one.

2. Singularity analysis

Let us now investigate the existence of singularity (singular point) of the gravitational
case, which can be done by investigating the invariant characteristics of the space-time. In
general relativity these invariants are composed from the curvature tensor and the metric
one. In a 4D Riemann space-time there are 14 independent invariants. Instead of analyzing
all 14 invariants, one can confine this study only in 3, namely the scalar curvature I1 = R,
I2 = RµνR

µν , and the Kretschmann scalar I3 = RαβµνR
αβµν [24, 25]. At any regular space-

time point, these three invariants I1, I2, I3 should be finite. Let us rewrite these invariants
in detail.

For the Bianchi I metric one finds the scalar curvature

I1 = R = −2
( ä

a
+

b̈

b
+

c̈

c
+

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a

)

. (2.28)

Since the Ricci tensor for the BI metric is diagonal, the invariant I2 = RµνR
µν ≡ Rν

µR
µ
ν is a

sum of squares of diagonal components of Ricci tensor, i.e.,

I2 =
[

(

R0
0

)2
+
(

R1
1

)2
+
(

R2
2

)2
+
(

R3
3

)2
]

, (2.29)

with the components of the Ricci tensor being given by (2.6).
Analogically, for the Kretschmann scalar in this case we have I3 = Rµν

αβRαβ
µν , a sum of

squared components of all nontrivial Rµν
µν , which in view of (2.8) can be written as

I3 = 4

[

(

R01
01

)2

+
(

R02
02

)2

+
(

R03
03

)2

+
(

R12
12

)2

+
(

R23
23

)2

+
(

R31
31

)2
]

= 4
[( ä

a

)2

+
( b̈

b

)2

+
( c̈

c

)2

+
( ȧ

a

ḃ

b

)2

+
( ḃ

b

ċ

c

)2

+
( ċ

c

ȧ

a

)2]

. (2.30)



Bianchi type I universe with viscous fluid 7

Let us now express the foregoing invariants in terms of τ . From Eqs. (2.27) we have

ai = Aiτ
1/3 exp

(

(Bi/3)

∫

e−2κ
∫

ηdt

τ(t)
dt

)

, (2.31a)

ȧi

ai
=

τ̇ + Bie
−2κ

∫

ηdt

3τ
(i = 1, 2, 3, ), (2.31b)

äi

ai

=
3τ τ̈ − 2τ̇ 2 − τ̇Bie

−2κ
∫

ηdt − 6κητBie
−2κ

∫

ηdt + B2
i e

−4κ
∫

ηdt

9τ 2
, (2.31c)

i.e., the metric functions a, b, c and their derivatives are in functional dependence with τ .
From Eqs. (2.31) one can easily verify that

I1 ∝
1

τ 2
, I2 ∝

1

τ 4
, I3 ∝

1

τ 4
.

Thus we see that at any space-time point, where τ = 0 the invariants I1, I2, and I3 become
infinity, hence the space-time becomes singular at this point.

D. Equations for determining τ

In the foregoing subsection we wrote the corresponding metric functions in terms of
volume scale τ . In what follows, we write the equation for τ and study it in details.

Summation of Einstein equations (2.22a), (2.22b), (2.22c) and 3 times (2.22d) gives

τ̈ − 3

2
κξτ̇ =

3

2
κ
(

ε − p
)

τ − 3Λτ. (2.32)

For the right-hand-side of (2.32) to be a function of τ only, the solution to this equation is
well-known [26].

Let us demand the energy-momentum to be conserved, i.e.,

T ν
µ;ν = T ν

µ,ν + Γν
ρνT

ρ
µ − Γρ

µνT
ν
ρ = 0, (2.33)

which in our case has the form

1

τ

(

τT 0
0

)

· − ȧ

a
T 1

1 − ḃ

b
T 2

2 − ċ

c
T 3

3 = 0. (2.34)

After a little manipulation from (2.34) we obtain

ε̇ +
τ̇

τ
ω − (ξ +

4

3
η)

τ̇ 2

τ 2
+ 4η(κT 0

0 − Λ) = 0, (2.35)

where
ω = ε + p, (2.36)

is the thermal function.
Let us now, in analogy with Hubble constant in a FRW Universe, introduce a generalized

Hubble constant H :
τ̇

τ
=

ȧ

a
+

ḃ

b
+

ċ

c
= 3H. (2.37)
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Then (2.32) and (2.35) in account of (2.14) can be rewritten as

Ḣ =
κ

2

(

3ξH − ω
)

−
(

3H2 − κε + Λ
)

, (2.38a)

ε̇ = 3H
(

3ξH − ω
)

+ 4η
(

3H2 − κε + Λ
)

. (2.38b)

The Eqs. (2.38) can be written in terms of dynamical scalar as well.
In account of (2.27) one can also rewrite share scalar (2.20) as

2σ2 =
6(X2

1 + X1X3 + X2
3 )

9τ 2
e−4κ

∫

ηdt. (2.39)

From (2.22d) now yields
1

3
θ2 − σ2 = κε − Λ (2.40)

The Eqs. (2.38) now can be written in terms of θ and σ as follows

θ̇ =
3κ

2

(

ξθ − ω
)

− 3σ2, (2.41a)

ε̇ = θ
(

ξθ − ω
)

+ 4ησ2. (2.41b)

Note that the Eqs. (2.41) coincide with the ones given in [12].

E. Some special solutions

In this subsection we simultaneously solve the system of equations for τ , H , and ε. It is
convenient to rewrite the Eqs. (2.37) and (2.38) as a single system :

τ̇ = 3Hτ, (2.42a)

Ḣ =
κ

2

(

3ξH − ω
)

−
(

3H2 − κε + Λ
)

, (2.42b)

ε̇ = 3H
(

3ξH − ω
)

+ 4η
(

3H2 − κε + Λ
)

. (2.42c)

In account of (2.36),(2.12) and (2.13) the Eqs. (2.42) now can be rewritten as

τ̇ = 3Hτ, (2.43a)

Ḣ =
κ

2

(

3BεβH − (1 + ζ)ε
)

−
(

3H2 − κε + Λ
)

, (2.43b)

ε̇ = 3H
(

3BεβH − (1 + ζ)ε
)

+ 4Aεα
(

3H2 − κε + Λ
)

. (2.43c)

The system (2.42) have been extensively studied in literature either partially [9, 12, 13]
or in general [11]. In what follows, we consider the system (2.42) for some special choices of
the parameters.

1. Case with bulk viscosity

Let us first consider the case when the real fluid possesses the bulk viscosity only. The
corresponding system of Eqs. can then be obtained by setting η = 0 in (2.42) or A = 0 in
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(2.43). In this case the Eqs. (2.42a) and (2.42b) remain unaltered, while (2.42c) takes the
form

ε̇ = 3H
(

3ξH − ω
)

. (2.44)

In view of (2.44) the system (2.42) admits the following first integral

τ 2
(

κε − 3H2 − Λ
)

= C1, C1 = const. (2.45)

The relation (2.45) can be interpreted as follows. At the initial stage of evolution the volume
scale τ tends to zero, while, the energy density ε tends to infinity. Since the Hubble constant
and the Λ term are finite, the relation (2.45) is in correspondence with the current line of
thinking. Let us see what happens as the Universe expands. It is well known that with
the expansion of the Universe, i.e., with the increase of τ , the energy density ε decreases.
Suppose at some stage of expansion τ → ∞ and ε → 0. Then from (2.45) follows that at
the stage in question

3H2 + Λ → 0. (2.46)

In case of Λ = 0, we find H = 0, i.e., in absence of a Λ term, once τ → ∞, the process of
evolution is terminated. As one sees from (2.46), for the H to make any sense, the Λ term
should be negative. In presence of a negative λ term the evolution process of the Universe
never comes to a halt, it either expands further or begin to contract depending on the sign
of H = ±

√

−Λ/3, Λ < 0. Thus we see that the Universe may be infinitely large only if
Λ ≤ 0.

Let us now consider the case when the bulk viscosity is inverse proportional to expansion,
i.e.,

ξθ = C2, C2 = const. (2.47)

Now keeping into mind that θ = τ̇ /τ = 3H , also the relations (2.42a), (2.36) and (2.13) the
Eq. (2.44) can be written as

ε̇

C2 − (1 + ζ)ε
=

τ̇

τ
. (2.48)

From the Eq. (2.48) one finds

ε =
1

1 + ζ

[

C2 + C3τ
−(1+ζ)

]

, (2.49)

with C3 being some arbitrary constant. Further, inserting ε from (2.49) into (2.32) one finds
the expression for τ explicitly.

Taking into account the equation of state (2.13) in view of (2.47) and (2.49), the Eq.
(2.32) admits the following solution in quadrature :

∫

dτ
√

C2
2 + C0

0τ
2 + C1

1τ
1−ζ

= t + t0, (2.50)

where C2
2 and t0 are some constants. Further we set t0 = 0. Here, C0

0 = 3κC2/(1 + ζ) − 3Λ
and C1

1 = 3κC3/(1 + ζ). As one sees, C0
0 is negative for

Λ > κC2/(1 + ζ). (2.51)

It means that for a positive Λ obeying (2.51) (we assume that the constant C2 is a positive
quantity) τ should be bound from above as well. Let us now rewrite the Eq. (2.50) in the
form

τ̇ =
√

2[E − U(τ)], (2.52)
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where E = C2
2/2 can be viewed as energy and U(τ) = −0.5(C0

0τ
2+C1

1τ
1−ζ) can be seen as the

potential [cf. Fig. 1] corresponding to the Eqn. (2.32). Depending on the value of E there
exists two types of solutions: for E > 0 we have non-periodic solutions, i.e., after reaching
some maximum value (say τmax) the BI Universe begin to contract and finally collops into
a point, thus giving rise to a space-time singularity; for E < 0 BI space-time admits a
singularity-free oscillatory mode of expansion [cf. Fig. 2]. A comprehensive description
concerning potential can be found in [21].

FIG. 1: View of the potential U(τ). Here we

set κ = 1, C2 = 1, and C3 = 1. Perfect fluid

corresponds to a radiation, i.e., ζ = 0.33,

and the Cosmological constant is taken to

be Λ = 0.8

FIG. 2: Evolution of the BI space-time cor-

responding to the potential given in Fig. 1.

The initial value of the volume scale in this

case is taken to be τ0 = 0.2.

As a second example we consider the case, when ζ = 1. From (2.50) one then finds

τ(t) =
(

exp(
√

C0
0 t) − C2

2 exp(
√

C0
0 t)
)

/(2
√

C0
0), C0

0 > 0, (2.53a)

τ(t) = (C2
2/
√

|C0
0 |) sin (

√

|C0
0 | t). C0

0 < 0. (2.53b)

Taking into account that C0
0 > 0 for any non-positive Λ, from (2.53a) one sees that, in case

of Λ ≤ 0 the Universe may be infinitely large (there is no upper bound), which is in line
with the conclusion made above. On the other hand, C0

0 may be negative only for some
positive value of Λ. It was shown in [20, 21] that in case of a perfect fluid a positive Λ
always invokes oscillations in the model, whereas, in the present model with viscous fluid,
it is the case only when Λ obeys (2.51). Unlike the case with radiation where BI admits
two types of solutions, the case with stiff matter allows only one type of solutions, namely
the non-periodic one that corresponds to E > 0 in the previous case, since now potential
U(τ) = −0.5C0

0τ
2 has its minimum at τ = 0.

2. Case with shear and bulk viscosity

Let us now consider the general case with the shear viscosity η being proportional to the
expansion, i.e.,

η ∝ θ = 3H. (2.54)
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We will consider the case when

η = − 3

2κ
H. (2.55)

In this case from (2.42b) and (2.42c) one easily find

3H2 = κε + C4, C4 = const. (2.56)

From (2.56) it follows that at the initial state of expansion, when ε is large, the Hubble
constant is also large and with the expansion of the Universe H decreases as does ε. Inserting
the relation (2.56) into the Eqs. (2.42b) one finds

∫

dH√
AH2 + BH + C

= t, (2.57)

where, A = −1.5(1 + ζ), B = 1.5κξ, and C = 0.5C4(ζ − 1) − Λ. If the bulk viscosity is
taken to be a constant one, i.e., ξ = const., then in view of the fact that A < 0, the Hubble
constant H admits sinusoidal form, namely, [27]

H = −
√

B2 − 4AC sin (
√
−A t) + B

2A
, (2.58)

if and only if
√

B2 − 4AC = (9/4)κ2ξ2 − 3(1 − ζ2)C4 − 6(1 + ζ)Λ > 0. (2.59)

As one sees the inequality (2.59) can be attained with a negative Λ as well. Further, from
(2.42a) one finds the expression for τ :

τ(t) = C0 exp
[

−3

2

{−
√

B2 − 4AC cos(
√
−a t) + B

√
−A t

A
√
−A

}]

. (2.60)

A graphical view of the evolution of τ is given in Fig. 3.

FIG. 3: Evolution of the BI Universe with a bulk viscosity and a share

viscosity. The volume scale τ in this case expands exponentially with

a small oscillation.

As one sees from the Fig. 3 the exponential mode of evolution of the BI Universe is
accompanied by an oscillation. The space-time singularity in this case arises at t → −∞.
Note that the negative Λ gives rise to the exponential growth while the oscillation in the
model occurs due to the viscosity.
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III. CONCLUSION

The role of viscous fluid and Λ term in the evolution of a homogeneous, anisotropic
Universe given by a Bianchi type-I space-time is studied. It is shown that the Λ term plays
very important role in BI cosmology. In particular, in case of a bulk viscosity, it provides an
everlasting process of evolution with Λ being negative, whereas, for some positive values of Λ
the BI Universe admits an oscillatory mode of expansion. It is also shown that a oscillatory
mode of expansion of the BI space-time can take place with a negative Λ as well, though it
is accompanied by an exponential mode. Oscillation in this case arises due to viscosity. In
this report we only consider some special cases those provides exact solutions. For a better
knowledge about the evolution, it is important to perform some qualitative analysis of the
system (2.42). A detailed analysis of the system in question plus some numerical solutions
will be presented soon elsewhere.
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