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We review the status of “Einstein-Æther theory”, a generally covariant theory of
gravity coupled to a dynamical, unit timelike vector field that breaks local Lorentz
symmetry. Aspects of waves, stars, black holes, and cosmology are discussed, to-
gether with theoretical and observational constraints. Open questions are stressed.

1. Introduction

Could there be an æther after all and we have just not yet noticed it? By

an “æther” of course we do not mean to suggest a mechanical medium

whose deformations correspond to electromagnetic fields, but rather a lo-

cally preferred state of rest at each point of spacetime, determined by some

hitherto unknown physics. Such a frame would not be determined by a

circumstance such as the moon’s gravitational tidal field, or the thermal

cosmic microwave background radiation, but rather would be inherent and

unavoidable. Considerations of quantum gravity have in multiple ways led

to this question, and it has also been asked in the context of cosmology,

where various puzzles hint that perhaps something basic is missing in the

standard relativistic framework.

Lorentz symmetry violation by preferred frame effects has been much

studied in non-gravitational physics, and is currently receiving attention

as a possible window on quantum gravity.1 But what about gravity itself?

General relativity is based on local Lorentz invariance, so if the latter is

violated what becomes of the former? It is hard to imagine, both philosoph-

ically and technically, how we could possibly give up general covariance, the

deep symmetry finally grasped through Einstein’s long struggle. Thus the

∗Based on a talk given by T. Jacobson at the Deserfest.
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question that interests us here is whether a generally covariant effective

field theory with a preferred frame could describe nature.a

The simplest description of such a frame would appear to be via a

scalar field T , a cosmic time function, which has been proposed in various

contexts.3,4,5,6 The gradient T,a, if timelike, defines a preferred rest frame,

and one can envision dynamics that would force it to be everywhere time-

like. But while a scalar field is simplest, the norm of the gradient |T,a| is

“extra information”, which has nothing to do with specifying a frame per

se but rather specifies the rate of a particular cosmic clock. It may be that

Nature provides such a clock; we just wish to point out that the clock rate

is extra information. Constraining the gradient to have fixed norm is not a

viable option since, as explained in section 3, this would lead inevitably to

caustics where T;ab diverges. Another noteworthy feature of using a scalar

is that, by construction, the 4-velocity of the preferred frame is necessar-

ily hypersurface-orthogonal, i.e. orthogonal to the surfaces of constant T .

Again, perhaps this is the way Nature works, but it is a presumption not in-

herent in the notion of a local preferred frame determined by microphysics.

The alternative discussed in this paper is to describe the preferred frame

by a vector field constrained kinematically to be timelike and of unit norm,

which we call the æther field ua. Such a field is specified by three in-

dependent parameters at each point, and generally couples via covariant

derivatives, so the theory is far more complicated than that of a scalar time

function. It is instinctive to worry about ghost modes given a vector field

without gauge invariance. However the unit constraint on the vector ren-

ders it an unfamiliar beast. All variations of the vector are spacelike, since

they connect two points on the unit hyperboloid, so ghosts need not arise.

There is a sparse history of studies of unit vector fields coupled to

gravity.7,8,9,10,12,13,14 Here we focus on the particular approach and results

in which we have been involved.15,16,17,18,19,20 We begin with the action

principle that defines the theory, and then discuss a Maxwell-like special

case, linearized waves, PPN parameters, energy, stars and black holes, and

cosmology.

2. Einstein-æther action principle

In the spirit of effective field theory, we consider a derivative expansion of

the action for the metric gab and æther ua. The most general action that

aMore general sorts of Lorentz violation in the gravitational sector are examined in Ref.2.
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is diffeomorphism-invariant and quadratic in derivatives is

S =
−1

16πG

∫

d4x
√−g

(

R + Kab
mn∇aum∇bu

n + λ(uaua − 1)
)

(1)

where

Kab
mn = c1g

abgmn + c2δ
a
mδb

n + c3δ
a
nδb

m + c4u
aubgmn. (2)

The coefficients c1,2,3,4 are dimensionless constants, R is the Ricci scalar,

and λ is a Lagrange multiplier that enforces the unit constraint. The metric

signature is (+−−−), and units are chosen such that the speed of light

defined by the metric gab is unity. The constant G is related to the Newton

constant GN by a ci-dependent rescaling to be discussed below. Other

than the signature choice we use the conventions of Ref. 21. The possible

term Rabu
aub is proportional to the difference of the c2 and c3 terms via

integration by parts, hence has been omitted. We have also omitted any

matter coupling since we are interested here in the dynamics of the metric-

æther sector in vacuum. Note that since the covariant derivative of ua

involves the Levi-Civita connection, which involves first derivatives of the

metric, the æther part of the action in effect contributes also to the metric

kinetic terms. We call the theory with this action Einstein-æther theory,

and abbreviate using “Æ-theory”.

Another way to express the theory is using a tetrad ea
A rather than

the metric, where A is a Lorentz index. Then the æther can be specified

as ua = uAea
A, with a unit Lorentz 4-vector uA satisfying the constraint

ηABuAuB = 1, where ηAB is the fixed Minkowski metric. This decouples the

normalization condition on uA from the dynamical metric. The Lagrange

density is then of the form Kab
ABDauADbu

B, where Da is the Lorentz-

covariant derivative involving the spin-connection ωCD
a , and Kab

AB is a linear

combination of the four terms gabηAB, ea
Aeb

B, ea
Beb

A, and uCuDea
Ceb

DηAB.

This theory has a local Lorentz invariance, which can be used to set the

components of uA to (1, 0, 0, 0). That produces the form of the theory as

presented by Gasperini.7 One can also use a Palatini formalism, in which

the spin connection is treated as an independent variable to be determined

via its field equation. In this case the spin connection has torsion, because

of the coupling to uA. If the solution ωCD
a (e, u) is substituted back into

the action, one returns to the tetrad form, but with different coefficients

for each of the four terms in Kab
AB. The relation between these coefficients

and the original ones has not yet been worked out.

Given a metric and a unit vector field, there is a one parameter family

of metrics that can be constructed (aside from simple rescalings). When
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expressed in terms of a different metric in this family, the action changes,

but only insofar as the values of the ci in (2) are concerned. More precisely,

consider a field redefinition of the form

g′ab = gab + (B − 1)uaub, u′a = Cua, (3)

with C = [1 + (B − 1)u2]−1/2 (where ua := gamum and u2 = gmnumun).

Lorentz signature of both gab and g′ab requires B > 0. The coefficient C is

chosen such that g′abu
′au′b = gabu

aub, so the unit constraint is unchanged,

hence in the action we can put simply C = B−1/2. The action (1) for

(g′ab, u
′a) takes the same form as a functional of (gab, u

a), but with different

values of the constants ci. The general relation between the ci and the c′i
has recently been worked out by Foster11. His results reveal, for example,

that one can arrange for c1 + c3 = 0 by choosing B = 1− c′1 − c′3 (provided

(c′1 + c′3) < 1 for Lorentz signature). A special case previously worked out

by Barbero and Villaseñor10 shows that the æ-theory is equivalent via field

redefinition to GR when the parameters satisfyb c1+c4 = 0, c1+c2+c3 = 0,

and c3 = ±
√

c1(c1 − 2). Lorentz signature implies c1 < 0. Note that if one

first makes a field redefinition such that c1 + c3 = 0, then the Barbero-

Villaseñor result reduces to the statement that the theory is equivalent to

GR only if all coefficients vanish. Hence with the c1 + c3 = 0 description

we ensure that non-zero coefficients always represent true deviations from

GR.

The field equation from varying the æther in the action (1) takes the

form

∇aJa
m − c4u̇a∇mua = λum (4)

where

Ja
m := Kab

mn∇bu
n, (5)

and u̇n = ub∇bu
n. The field equation from varying the metric in the action

(1) together with a matter action takes the form

Gab = T
(u)
ab + 8πGT matter

ab , (6)

bThis corrects our earlier statement of the equivalence in Ref. 18. We thank B.Z. Foster
for pointing out this error.
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where the æther stress tensor is given by18

T
(u)
ab = ∇m(J(a

mub) − Jm
(aub) − J(ab)u

m)

+c1 [(∇mua)(∇mub) − (∇aum)(∇bu
m)]

+c4 u̇au̇b

+
[

un(∇mJmn) − c4u̇
2
]

uaub

−1

2
gabLu. (7)

The constraint has been used in (7) to eliminate the term that arises from

varying
√−g in the constraint term in (1), and λ has been eliminated by

solving for it via the contraction of the æther field equation (4) with ua.

The notation Lu = −Kab
mn∇aum∇bu

n is the æther lagrangian.

Our goal is to determine the theoretical and observational constraints

on the parameters ci, and to identify phenomena whose observation could

reveal the existence of the æther field. For such phenomena one can look

at post-Newtonian effects, gravitational and æther waves, and cosmology.

3. Maxwell-like simplified theory

Before considering the general, rather complicated, theory it makes good

sense to ask if there is a simplification that might serve at least as a decent

starting point. A great simplification occurs with the choice c1 + c3 = 0

and c2 = c4 = 0, so that the connections drop out of the æther terms in

(1). The æther part of the Lagrange density then reduces to

2c1u[a,b]u
[a,b] + λ(u2 − 1). (8)

This theory was studied long ago by Nambu 22 in a flat space context. It

is almost equivalent to Einstein-Maxwell theory in a gauge with u2 = 1.

The difference is that one equation is missing, since the action need only be

stationary under those variations of u that preserve u2 = 1. The missing

equation is an initial value constraint equation, Gauss’ law. If the current

to which ua is coupled is conserved, then Gauss’ law holds at all times if it

holds at one time.

This theory coupled to dynamical gravity was first examined in Ref. 8,

and further studied extensively in Ref. 15 and Ref. 9. In Ref. 15 it was

shown to be equivalent to Einstein-Maxwell theory coupled to a charged

dust, restricted to the sector in which there exists a gauge such that the

vector potential is proportional to the 4-velocity of the dust, i.e. the æther
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field ua. The charge-to-mass ratio of the dust is given byc (8πG/c1)
1/2.

The extremal value corresponds to c1 = 2. A number of results were estab-

lished concerning static, spherically symmetric solutions, black holes, and

linearized solutions.

This case is appealing due to its simplicity, however a serious flaw was

noticed: solutions can have “shocks” or caustics beyond which the evolution

of the æther cannot be extended. In particular15, consider the æther config-

urations that can be written as the gradient of a scalar ua = T,a, so that the

Maxwell-like “field strength” tensor u[a,b] vanishes and ua is orthogonal to

the surfaces of constant T . Then the field equations reduce to the vacuum

Einstein equation, together with the vanishing of the Lagrange multiplier

λ and the statement that the gradient of T is a unit vector, T,aT ,a = 1.

Then ua is necessarily a geodesic:

ua∇aub = ua∇bua = 0. (9)

The first equality holds since ub is a gradient, and the second holds since it

is a unit vector. If we launch geodesics orthogonal to an initial surface of

constant T , they will generically cross after some finite proper time. Where

they cross there is no well-defined value of ua, and the derivative ∇aub is

singular. These are the shock discontinuities. A different demonstration of

the existence of shocks appears in Ref. 9.

We note in passing that the preceding demonstration of shocks applies

in a very different context, namely the version of k-essence 4 recently called

“ghost condensation” 5,6.d This is the theory of a scalar field φ with La-

grangian density of the form P (X), where X = φ,aφ,a, where P (X) has

a minimum at some value c. Among the solutions to the field equations

is the special class which have X = c everywhere. The above argument

shows that generically such configurations have caustics where φ;ab is sin-

gular. In the cosmological setting, Hubble friction drives all solutions to

the minimum X = c. As far as we know it is an open question whether

the diverging gradients of the X = c solutions is reflected in the generic

cosmological solution.

Another flaw with the Maxwell-like case is that it admits negative energy

configurations, as shown by Clayton 9 using the Hamiltonian formalism in

the decoupling limit where gravity is neglected.e The existence of negative

energy configurations in this case is related to the fact that the Lagrange

cThe convention with Maxwell Lagrangian given by −F 2/16π is adopted here.
dFor a discussion of caustics in a more general k-essence scenario see Ref. 23.
eThe argument in Ref. 9 has a minor flaw, but the conclusion is correct. The negative
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multiplier λ can be negative, so in the charged dust interpretation the mass

density is negative.

Before returning to the general class of Lagrangians we note that one

might also consider the theory where the restriction on the norm of ua

is enforced not rigidly by a constraint but rather by a potential energy

term V (uaua) in the action. This approach was discussed by Kostelecký

and Samuel 8, and more recently explored by Bjorken24, Moffat 25, and

Gripaios26. It has an additional, massive, mode, which should be checked

for a possible wrong sign of the kinetic energy.

4. Waves

The spectrum of linearized waves is important for several reasons. First,

it can be used to constrain the theory a priori, by rejecting values of the

parameters ci for which waves carry negative energy or for which there

are exponentially growing modes. Second, wave phenomena can be used

to place observational constraints on the parameters, using radiation from

compact objects such as the binary pulsar, as well as cosmological pertur-

bations.

The spectrum of linearized waves around a flat spacetime background

was worked out for the general theory defined by the action (1) in Ref. 19.f

The wave modes in a de Sitter background were found in Ref. 14 (for

c4 = 0), which also studied the metric perturbations in inflation interacting

with the vector as well as a scalar inflaton.

Here we summarize the results for the modes around flat space. Since

the æther has three degrees of freedom, the total number of coupled metric-

æther modes is five. There are two purely gravitational (spin-2) modes,

two transverse æther (spin-1) modes in which the æther vector wiggles

perpendicular to the propagation direction, and one longitudinal or “trace”

(spin-0) mode. The waves all have a frequency that is proportional to the

wave vector. Hence they are “massless” and have fixed speeds. The speeds

for the different types of modes are all different, and each mode has a

particular polarization type.

energy configuration described there is a time-independent pure gradient ui = ∂iφ(~x).
This initial data with vanishing time derivative ui,t = 0 indeed has negative energy,
however the equation of motion implies that the time derivative does not remain zero
(unless ui = 0).
fThe Maxwell-like special case was previously treated in Ref. 15, and the case with only
c1 non-zero was treated in Ref. 16. In Ref. 14 the modes were found in the small ci limit
where the æther decouples from the metric (cf. section 6.2.2).
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Table 1 gives the speeds and polarizations for the spin-2, spin-1, and

spin-0 modes, in that order. The metric and æther have been expanded

as gab = ηab + hab and ua = ua + va, where ηab is the Minkowski metric

and ua is the constant background value that has components (1, 0, 0, 0) in

the coordinate system adopted. The gauge conditions h0i = 0 and vi,i = 0

are imposed, where i stands for the spatial components. The propagation

direction corresponds to i = 3, and I = 1, 2 labels the transverse directions.

The notation c123 stands for c1 + c2 + c3, etc, and s is the wave speed.

Table 1. Wave mode speeds and polarizations.

squared speed polarization

1/(1 − c13) h12, h11 = −h22

(c1 −

1
2
c21 + 1

2
c23)/c14(1 − c13) hI3 = [c13/s(1 − c13)]vI

c123(2 − c14)/c14(1 − c13)(2 + c13 + 3c2) h00 = −2v0

h11 = h22 = −c14v0

h33 = (2c14/c123)(1 + c2)v0

4.1. Stability

The squared speed refers to the squared ratio of frequency to wave-vector,

so if it is negative for real wave-vectors the frequency is imaginary, implying

the existence of exponentially growing modes.g The requirement that no

such modes exist restricts the parameters of the theory.h For ci small

compared to unity this requirement reduces to the conditions c1/c14 ≥ 0

for the transverse vector-metric modes and c123/c14 ≥ 0 for the trace mode.

Lim argued14 that one should additionally demand that the modes prop-

agate subluminally (relative to the metric gab). Although there is nothing

wrong with local superluminal propagation in a Lorentz-violating theory,

he pointed out that the vector field (in an inhomogeneous background)

might tilt in such a way as to allow energy on such locally superluminal

paths to flow around a closed spacetime curve. It is not clear to us that

it is really necessary to impose this extra demand, since even in general

relativity the classical field equations do not forbid the formation of closed

timelike curves, around which relativistic fields could propagate. In any

gThe factor s in the polarization hI3 of the transverse æther mode implies that when
s2 < 0 there is a π/2 phase shift of the metric perturbation relative to that of the æther.
hThis is not yet an observational constraint since it has not been shown that the growing
modes are not stabilized before their effects become apparent.
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case, if we do make this demand, then in the case of small ci it implies

c13 ≤ 0, c1/c14 ≤ 1, and c123/c14 ≤ 1.

On the other hand, if gravitational waves propagate subluminally rela-

tive to the “speed of light” for matter, then matter can emit gravitational

Čerenkov radiation. Using this phenomenon, a very tight constraint on the

difference between the maximum speed of high energy cosmic rays and that

of gravitational waves was derived by Moore and Nelson 27. For cosmic rays

of galactic origin, the constraint is ∆c/c < 2×10−15, while for extragalactic

cosmic rays it is ∆c/c < 2 × 10−19. Čerenkov radiation in the additional,

æther-metric modes has not been examined. Constraints could conceivably

eventually be obtained using these processes.

The requirement that all the modes propagate on the light cone of gab

is satisfied if and only if c4 = 0, c3 = −c1, and c2 = c1/(1 − 2c1) .

4.2. Astrophysical radiation

Since there are three additional modes, as well as a modified speed for the

usual gravitational waves, one expects that the energy loss rate for orbiting

compact binaries will be affected. Not only are there additional modes to

carry energy, but also lower multipole moments may act as sources, for ex-

ample there may well be a monopole moment generating the spin-0, “trace”

mode. These phenomena have not yet been studied. Agreement with ob-

servations of binary pulsars should yield constraints on the ci parameters.

Another potential source of constraints is the primordial perturbation

spectrum in cosmology. Lim14 has begun a study of this.

5. Newtonian limit and PPN parameters

Carroll and Lim13 have examined the Newtonian limit. They adopt the

ansatz of a static metric, with the æther vector parallel to the timelike

Killing vector. Restricting to the linearized field equations they recover

the Poisson equation ∇2UN = 4πGNρm for the gravitational potential UN ,

where ρm is the usual matter energy density and

GN =
G

1 − c14/2
, (10)

where G is the parameter appearing in the action (1). Actually c4 was set

to zero in Ref. 13, but it can be restored without calculation by using the

fact18 that in spherical symmetry the effect of the c4 term can be generated

by the replacements c1 → c14 and c3 → c3 − c4.
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The PPN formalism31,32 can be applied to Æ-theory since it is a metric

theory, at least in the approximation (which is observationally known to

be very accurate) that the matter is minimally coupled in the usual way to

the metric.i In the general setting there are ten PPN parameters, but five

of them vanish automatically in any theory that is based on an invariant

action principle, so we need consider only the five remaining parameters,

β, γ, ξ, α1, α2.

The two PPN parameters β and γ, known as the Eddington-Robertson-

Schiff (ERS) parameters, are defined by the PPN expansion for the metric

coefficients,

g00 = 1 − 2UN + 2βU2
N + · · · (11)

gij = (1 + 2γUN + · · · )δij (12)

where UN is the Newtonian gravitational potential. Thus β controls the

non-linearity and γ the space curvature due to gravity. In general relativity

β = γ = 1. The field equations are apparently too complicated to solve an-

alytically, even assuming static, spherical symmetry. By numerical solution

of the weak field equations in a 1/r expansion it was found18 that the metric

takes the form (11,12), with UN is proportional to 1/r, consistent with the

Newtonian limit. Moreover, the ERS parameters take precisely the same

values as in general relativity in the generic case c123 6= 0. (For the special

cases with c123 = 0 see Ref. 18.) Hence the theory is indistinguishable from

GR at the static, post-Newtonian level.

To expose the post-Newtonian differences from GR it is necessary to

examine the remaining PPN parameters, but these have not yet been com-

puted for the Æ-theory. The parameter ξ is related to preferred location

effects, and likely vanishes in Æ-theory. The parameters α1,2 are related to

preferred frame effects and almost surely do not vanish. They will presum-

ably arise when motion of the gravitating system relative to the asymptotic

æther frame is allowed for.j

One can hazard a guess based on the PPN parameters that were cal-

culated for the vector-tensor theory without the unit constraint.31 In that

case, β and γ are also unity in the case that corresponds most closely to

Æ-theory, namely ω = 0 in the vector-tensor parameters of Ref. 31 together

iStrictly speaking, if the matter couples also to the æther, producing local Lorentz vio-
lating effects in the matter sector, then the PPN formalism must be modified to allow
for dependence of the PPN parameters on the composition of the matter sources.
jA recent preprint of Sudarsky and Zloshchastiev33 addresses this point.
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with c4 = 0 in our parameters18. If this agreement persists, one would have

in this case ξ = α1 = 0, but α2 6= 0 generically. However, in the special

case when c13 = 0, for which the spin-2 waves propagate on the light cone

of gab, the vector-tensor parameters satisfy τ = η, and the result of Ref. 31

yields α2 = 0. Thus perhaps in this special case all the PPN parameters of

Einstein-Æther theory agree with those of GR.

Current limits on α1 and α2 are of order 10−4 and 10−7 respectively, so

constraints of this order on the parameters of Æ-theory might be expected,

at least for generic parameters.

6. Energy

6.1. Total energy

As discussed in section PPN, the Newtonian potential satisfies the Poisson

equation with source term 8πGNρm. This implies that in terms of the met-

ric coefficient g00 ∼ 1 − r0/r, the source mass is given by m = r0/2GN.

Assuming the source couples minimally to the metric gab, this mass corre-

sponds to an energy m (since the speed of light defined by gab is one in our

units). Accordingly, one can infer that the energy of any isolated gravitat-

ing system is given by the same formula. This differs from the ADM mass

r0/2G that one would have inferred from the action (1). The reason is that

the æther stress tensor (7) adds 1/r terms to the Newtonian field equation.

Another path to the same conclusion is to examine the energy via its

definition as the value of the Hamiltonian that generates asymptotic time

translations. Using Wald’s Noether charge formalism, Foster28 showed that

when one takes into account the falloff behavior of the fields at spatial

infinity, the æther contribution to the energy flux integral takes the form

E(æther) = − 1

8πG

∮

d2S Kta
rb ∇aub, (13)

where Kmn
ab is the tensor defined in (2). An equivalent result was found by

Eling29 using the Einstein pseudotensor. It was shown in Ref. 18 that for a

spherically symmetric, static solution the line element has the asymptotic

form

ds2 = (1 − r0

r
+ · · · ) dt2 − (1 +

r0

r
+ · · · ) dr2 − r2dΩ2 (14)

and the æther has a t-component of the form

ut = (1 − r0

2r
) + · · · . (15)
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The r-component of the æther starts at O(1/r2), hence does not contribute

to (13). Using this form in (13) one finds for the total energy

E =
r0

2G
(1 − c14

2
). (16)

Using the relation (10) between G and GN, this can be re-expressed as

r0/2GN. Thus the total energy is related to the ADM mass MADM = r0/2G

by a constant rescaling.

6.2. Positivity

For coefficients ci such that 2 − c14 is positive, positivity of the energy

is thus equivalent to positivity of the ADM energy. The usual positive

energy theorem30 for GR assumes the dominant energy condition holds for

the matter stress tensor, and proves that the total energy-momentum 4-

vector of the spacetime is future timelike. The æther stress tensor (7) does

not appear to satisfy the dominant energy condition (for any choice of the

ci), so the proof does not go through as usual. Nevertheless, as discussed

below, the energy of the linearized theory is positive for certain ranges of

ci. Perhaps a total divergence term that leaves the energy unchanged must

be removed before positivity can be seen. Also, since the asymptotic value

of the unit vector selects a preferred frame, it might be that the energy

is always positive only in that particular frame. We can make no definite

statement about the non-linear energy at this time, based on general formal

grounds.

6.2.1. Linearized wave energy

It is useful to examine the linearized theory to begin with. The energy

density of the various wave modes has been found20 using the Einstein or

Weinberg pseudotensors, averaging over oscillations to arrive at a constant

average energy density for each mode. The energy density for the transverse

traceless metric mode is always positive. For the vector modes it is positive

provided (2c1 − c2
1 + c2

3)/(1− c13) > 0, and for the trace mode it is positive

provided c14(2 − c14) > 0. For small ci these energy positivity conditions

reduce to c1 > 0 and c14 > 0, respectively.

In the Maxwell-like case c13 = c2 = c4 = 0 the linearized energy positiv-

ity requirement reduces to 0 < c1 < 2. The negative energy configurations

discussed in section 3 do not show up in the linearized limit. Their energy

density is proportional to −(∇u0)2, which is quartic in the perturbation ui.
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6.2.2. Gravitational decoupling limit

The linearized waves are coupled metric-æther modes. A simpler limit to

consider is a decoupling limit in which gravity is turned off. To access this

limit formally we can let G and ci tend to zero, while the ratios c′i = ci/G

are held fixed. If the metric is expanded as g = η +
√

Gh in the action

(1), and the limit G, ci → 0 is taken, then one is left with just the action

for linear gravitons and a decoupled æther action where all metrics are

replaced by η and all covariant derivatives are replaced by ordinary partial

derivatives. This limit was studied by Lim14 in the case c4 = 0. Restoring

the c4 dependence one finds perfect agreement between his results and the

decoupling limit of the coupled linearized waves.

As mentioned in section 3, Clayton showed that the energy can be neg-

ative in the Maxwell-like special case. He also claimed that this remains

true for more general choices of the coefficients ci. However, the case where

only c1 is non-zero corresponds in the decoupling limit to a nonlinear sigma

model (NLSM) on the unit hyperboloid which, like all NLSM’s, has a stress

tensor satisfying the dominant energy condition.

6.3. Summary of constraints on the parameters

So far we have discussed constraints from requirements in the linearized

theory of positive energy, stability (no exponentially growing modes), and

subluminal propagation (not necessarily required). Taken together, the

constraints of positive energy and stability in the linearized regime imply

c1 > 0, c14 > 0, and c123 > 0 (for small parameters). These are likely

necessary for a viable theory. The requirement of no superluminal propa-

gation (which we do not feel is necessary) would additionally imply c13 ≤ 0,

c1 ≤ c14, and c123 ≤ c14.

There is plenty of parameter space in which all the linearized constraints

one might think of imposing are satisfied. It remains an important open

question to determine whether energy positivity can be ensured beyond

the linearized limit. But one thing is already notable, namely that this

provides examples of a theory of a vector field which has no standard gauge

symmetry and yet which has only stable, positive energy modes. The key

factor making this possible is the constraint on the norm of the vector.

7. Stars and black holes?

In static, spherical symmetry the æther vector must be a linear combination

of the time-translation Killing vector and the radial vector. Solutions were
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found in Ref. 18 for which the æther field has a radial component that

falls off as 1/r2. The question arises as to what happens to this vector in

the near field region of a star. Symmetry and regularity imply that the

radial component vanishes at the origin of spherical symmetry, so if indeed

a regular solution exists, ua must be parallel to the Killing vector at the

origin and at infinity but not in between. Such solutions have recently been

studied perturbatively by Sudarsky and Zloshchastiev33. We have recently

shown numerically that solutions with no radial component of the æther

also exist34.

In the case of a black hole there is no regular origin of spherical symme-

try, but the question arises as to what happens to ua on the horizon. The

vector ua cannot exist at a bifurcation surface (where the Killing vector

vanishes, like the 2-sphere at the origin U = V = 0 of Kruskal coordi-

nates). The reason is that the Killing flow acts there as a Lorentz boost in

the tangent space of any point on the bifurcation surface, hence would act

non-trivially on ua. Thus ua could not be invariant under the Killing flow.

Since ua is constrained to be a unit vector it cannot vanish, hence we infer

that it must blow up as the bifurcation surface is approached.

One might think that the impossibility of an invariant æther at the

bifurcation surface implies there is no regular black hole solution in this

theory, since regularity on the future horizon is somehow connected to reg-

ularity at the bifurcation surface. It seems this is not necessarily the case.

A result of Rácz and Wald35 establishes, independent of any field equa-

tions, conditions under which a stationary spacetime with a regular Killing

horizon can be globally extended to a spacetime with a regular bifurca-

tion surface, and conditions under which matter fields invariant under the

Killing symmetry can also be so extended. In spherical symmetry the con-

ditions on the metric are met for a compact Killing horizon with constant,

non-vanishing surface gravity, so the result of Ref. 35 indicates that an ex-

tension to a regular bifurcation surface must exist. However, one of the

conditions on the matter (i.e. æther) field is not met, namely, it is not

invariant under the time reflection isometry. This is because the timelike

vector ua obviously breaks the local time reflection symmetry. Thus the

æther vector need not be regular at the bifurcation surface (although all

invariants must be regular and, given the Einstein equations, the æther

stress-tensor must remain regular in the limit that the bifurcation surface

is approached). Hence, as far as we know, there is no argument forbidding

regular black hole solutions.

In fact, we have expanded the field equations about a regular, static fu-
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ture event horizon and shown34 that locally regular solutions exist. Using a

shooting method, we have shown that the free parameters can be chosen so

that the solutions extend to asymptotically flat metrics at spatial infinity.

Alternatively, it seems an attractive idea to numerically study the spher-

ically symmetric time-dependent collapse scenario. The collapsing matter

could be a scalar field, but more simply it could just be a spherical æther

wave.

8. Cosmology

Finally we turn to the role of the æther in cosmological models. Assuming

Robertson-Walker (RW) symmetry, ua necessarily coincides with the 4-

velocity of the isotropic observers, so it is entirely fixed by the metric.

The æther field equation has but one non-trivial component, which simply

determines the Lagrange multiplier field λ. Therefore the entire æther

stress tensor is also determined by the metric. Like any matter field, when

the æther satisfies its equation of motion, its stress tensor is automatically

conserved. Hence, in RW symmetry, the æther stress tensor must be a

conserved tensor constructed entirely from the spacetime geometry. One

such tensor is the Einstein tensor itself. Another is the stress tensor of a

perfect fluid with equation of state p = − 1
3ρ, whose energy density varies

with the scale factor a as does the spatial curvature, i.e. as 1/a2. The

æther stress tensor is just a certain combination of these two conserved

tensors16,13, namely

T æther
ab = −c13 + 3c2

2

[

Gab −
1

6
(3)R(gab + 2uaub)

]

. (17)

This is written using the conventions of Refs. 18, 19 in which the field

equations take the form (6).

The effect of the cosmological æther is thus to renormalize the gravi-

tational constant and to add a perfect fluid that renormalizes the spatial

curvature contribution to the field equations. The renormalized, cosmolog-

ical gravitational constant is given by13

Gcosmo =
G

1 + (c13 + 3c2)/2
. (18)

Carroll and Lim13 note that, since this is not the same as GN, the expansion

rate of the universe differs from what would have been expected in GR

with the same matter content. The ratio is constrained by the observed

primordial 4He abundance to satisfy |Gcosmo/GN − 1| < 1/8. They assume
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the positive energy, stability, and subluminality constraints discussed above,

which imply Gcosmo < G < GN, so the universe would have been expanding

more slowly than in GR. In our notation, the resulting helium abundance

constraint can be written as 15c1 + 21c2 + 7c3 + 8c4 < 2, where we have

included the c4 dependence omitted in Ref. 13.

Dedication

This paper is dedicated by TJ to Stanley Deser, with admiration and grat-

itude for his friendship, support, and guidance in gravitational exploration.

Acknowledgments

We are grateful for helpful discussions during various stages of this research
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