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Bianchi type I universe with viscous fluid: A qualitative analysis
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The nature of cosmological solutions for a homogeneous, anisotropic Universe given by
a Bianchi type-I (BI) model in the presence of a CosmologicalconstantΛ is investigated by
taking into account dissipative process due to viscosity. The system in question is thoroughly
studied both analytically and numerically. It is shown the viscosity, as well as theΛ term
exhibit essential influence on the character of the solutions. In particular a negativeΛ gives
rise to an ever-expanding Universe, whereas, a suitable choice of initial conditions plus a
positiveΛ can result in a singularity-free oscillatory mode of expansion. For some special
cases it is possible to obtain oscillations in the exponential mode of expansion of the BI
model even with a negativeΛ, where oscillations arise by virtue of viscosity.
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I. INTRODUCTION

The investigation of relativistic cosmological models usually has the energy momentum tensor
of matter generated by a perfect fluid. To consider more realistic models one must take into
account the viscosity mechanisms, which have already attracted the attention of many researchers.
Misner [1, 2] suggested that strong dissipative due to the neutrino viscosity may considerably
reduce the anisotropy of the blackbody radiation. Viscosity mechanism in cosmology can explain
the anomalously high entropy per baryon in the present universe [3, 4]. Bulk viscosity associated
with the grand-unified-theory phase transition [5] may leadto an inflationary scenario [6, 7, 8].

A uniform cosmological model filled with fluid which possesses pressure and second (bulk)
viscosity was developed by Murphy [9]. The solutions that hefound exhibit an interesting feature
that the big bang type singularity appears in the infinite past. Exact solutions of the isotropic
homogeneous cosmology for open, closed and flat universe have been found by Santos et al [10],
with the bulk viscosity being a power function of energy density.

The nature of cosmological solutions for homogeneous Bianchi type I (BI) model was inves-
tigated by Belinsky and Khalatnikov [11] by taking into account dissipative process due to vis-
cosity. They showed that viscosity cannot remove the cosmological singularity but results in a
qualitatively new behavior of the solutions near singularity. They found the remarkable property
that during the time of thebig bang matter is created by the gravitational field. BI solutions incase
of stiff matter with a shear viscosity being the power function of of energy density were obtained
by Banerjee [12], whereas BI models with bulk viscosity (η) that is a power function of energy
densityε and when the universe is filled with stiff matter were studiedby Huang [13]. The effect
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of bulk viscosity, with a time varying bulk viscous coefficient, on the evolution of isotropic FRW
models was investigated in the context of open thermodynamics system was studied by Desikan
[14]. This study was further developed by Krori and Mukherjee [15] for anisotropic Bianchi mod-
els. Cosmological solutions with nonlinear bulk viscositywere obtained in [16]. Models with both
shear and bulk viscosity were investigated in [17, 18].

Though Murphy [9] claimed that the introduction of bulk viscosity can avoid the initial singu-
larity at finite past, results obtained in [19] show that, it is, in general, not valid, since for some
cases big bang singularity occurs in finite past.

We studied a self-consistent system of the nonlinear spinorand/or scalar fields in a BI spacetime
in presence of a perfect fluid and aΛ term [20, 21] in order to clarify whether the presence of a sin-
gular point an inherent property of the relativistic cosmological models or is it only a consequence
of specific simplifying assumptions underlying these models? Recently we have considered a sys-
tem of nonlinear spinor field in a BI Universe filled with viscous fluid [22]. Since the viscous fluid
itself presents a growing interest, we have studied the influence of viscous fluid andΛ term in the
evolution of the BI Universe [23]. In that paper we consider only some special cases those allow
exact solutions. In this paper along with those special cases we study some general cases, giving a
qualitative analysis of the system of equations. We also perform some numerical calculations and
compare the results obtained with those given in some pioneering papers in this field, e.g. [11]

II. DERIVATION OF BASIC EQUATIONS

Using the variational principle in this section we derive the fundamental equations for the grav-
itational field from the action (2.1) :

S (g;ε) =
∫

L
√−gdΩ (2.1)

with
L = Lgrav. +Lvf . (2.2)

The gravitational part of the Lagrangian (2.2)Lgrav. is given by a Bianchi type-I metric,
whereas the termLvf describes a viscous fluid.

We also write the expressions for the metric functions explicitly in terms of the volume scale
τ defined bellow (2.18). Defining Hubble constant (2.28) in analogy with a flat Friedmann-
Robertson-Walker (FRW) Universe, we also derive the systemof equations forτ, H andε, with ε
being the energy density of the viscous fluid, which plays thecentral role here.

A. The gravitational field

As a gravitational field we consider the Bianchi type I (BI) cosmological model. It is the sim-
plest model of anisotropic universe that describes a homogeneous and spatially flat space-time
and if filled with perfect fluid with the equation of statep = ζ ε, ζ < 1, it eventually evolves
into a FRW universe [24]. The isotropy of present-day universe makes BI model a prime candi-
date for studying the possible effects of an anisotropy in the early universe on modern-day data
observations. In view of what has been mentioned above we choose the gravitational part of the
Lagrangian (2.2) in the form

Lg =
R
2κ

, (2.3)
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whereR is the scalar curvature,κ = 8πG being the Einstein’s gravitational constant. The gravita-
tional field in our case is given by a Bianchi type I (BI) metric

ds2 = dt2−a2dx2−b2dy2− c2dz2, (2.4)

with a, b, c being the functions of timet only. Here the speed of light is taken to be unity.

B. Viscous fluid

The influence of the viscous fluid in the evolution of the Universe is performed by means of its
energy momentum tensor, which acts as the source of the corresponding gravitational field. The
reason for writingLvf in (2.2) is to underline that we are dealing with a self-consistent system.
The energy momentum tensor of a viscous field has the form

T ν
µ (m) = (ε + p′)uµuν − p′δ ν

µ +ηgνβ [uµ;β +uβ :µ −uµuαuβ ;α −uβ uαuµ;α ], (2.5)

where

p′ = p− (ξ − 2
3

η)uµ
;µ . (2.6)

Hereε is the energy density,p - pressure,η andξ are the coefficients of shear and bulk viscosity,
respectively. Note that the bulk and shear viscosities,η andξ , are both positively definite, i.e.,

η > 0, ξ > 0. (2.7)

They may be either constant or function of time or energy, such as :

η = |A|εα , ξ = |B|εβ . (2.8)

The pressurep is connected to the energy density by means of a equation of state. In this report
we consider the one describing a perfect fluid :

p = ζ ε, ζ ∈ (0,1]. (2.9)

Note that hereζ 6= 0, since for dust pressure, hence temperature is zero, that results in vanishing
viscosity.

In a comoving system of reference such thatuµ = (1, 0, 0, 0) we have

T 0
0(m) = ε, (2.10a)

T 1
1(m) = −p′ +2η

ȧ
a
, (2.10b)

T 2
2(m) = −p′ +2η

ḃ
b
, (2.10c)

T 3
3(m) = −p′ +2η

ċ
c
. (2.10d)

Let us introduce the dynamical scalars such as the expansionand the shear scalar as usual

θ = uµ
;µ , σ2 =

1
2

σµν σ µν , (2.11)
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where

σµν =
1
2

(

uµ;αPα
ν +uν;αPα

µ

)

− 1
3

θPµν . (2.12)

HereP is the projection operator obeying

P2 = P. (2.13)

For the space-time with signature(+, −, −, −) it has the form

Pµν = gµν −uµ uν , Pµ
ν = δ µ

ν −uµuν . (2.14)

For the BI metric the dynamical scalar has the form

θ =
ȧ
a

+
ḃ
b

+
ċ
c

=
τ̇
τ
, (2.15)

and

2σ2 =
ȧ2

a2 +
ḃ2

b2 +
ċ2

c2 −
1
3

θ2. (2.16)

C. Field equations and their solutions

Variation of (2.1) with respect to metric tensorgµν gives the Einstein’s field equation. In
account of theΛ-term for the BI space-time (2.4) this system of equations can be rewritten as

b̈
b

+
c̈
c

+
ḃ
b

ċ
c

= κT 1
1 −Λ, (2.17a)

c̈
c

+
ä
a

+
ċ
c

ȧ
a

= κT 2
2 −Λ, (2.17b)

ä
a

+
b̈
b

+
ȧ
a

ḃ
b

= κT 3
3 −Λ, (2.17c)

ȧ
a

ḃ
b

+
ḃ
b

ċ
c

+
ċ
c

ȧ
a

= κT 0
0 −Λ, (2.17d)

where over dot means differentiation with respect tot andT µ
ν is the energy-momentum tensor of

a viscous fluid given above (2.10).

1. Expressions for the metric functions

To write the metric functions explicitly, we define a new timedependent functionτ(t)

τ = abc =
√−g, (2.18)

which is indeed the volume scale of the BI space-time.
Let us now solve the Einstein equations. In account of (2.10)from (2.17a), (2.17b), and (2.17c)

one finds the following expressions for the metric functionsexplicitly [23]

a(t) = A1τ1/3exp

[

(B1/3)

∫

e−2κ
∫

ηdt

τ
dt

]

, (2.19a)

b(t) = A2τ1/3exp

[

(B2/3)
∫

e−2κ
∫

ηdt

τ
dt

]

, (2.19b)

c(t) = A3τ1/3exp

[

(B3/3)

∫

e−2κ
∫

ηdt

τ
dt

]

, (2.19c)
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where the constantsAi’s andBi’s obey the following relations

A1A2A3 = 1,

B1 +B2+B3 = 0.

Thus, the metric functions are found explicitly in terms ofτ and viscosity.
As one sees from (2.19a), (2.19b) and (2.19c), forτ = tn with n > 1 the exponent tends to unity

at larget, and the anisotropic model becomes isotropic one.

2. Singularity analysis

Let us now investigate the existence of singularity (singular point) of the gravitational case,
which can be done by investigating the invariant characteristics of the space-time. In general
relativity these invariants are composed from the curvature tensor and the metric one. In a 4D
Riemann space-time there are 14 independent invariants. Instead of analyzing all 14 invariants,
one can confine this study only in 3, namely the scalar curvature I1 = R, I2 = RµνRµν , and the
Kretschmann scalarI3 = Rαβ µν Rαβ µν [25, 26].. At any regular space-time point, these three
invariantsI1, I2, I3 should be finite. Let us rewrite these invariants in detail.

For the Bianchi I metric one finds the scalar curvature

I1 = R = −2
( ä

a
+

b̈
b

+
c̈
c

+
ȧ
a

ḃ
b

+
ḃ
b

ċ
c

+
ċ
c

ȧ
a

)

. (2.20)

Since the Ricci tensor for the BI metric is diagonal, the invariant I2 = Rµν Rµν ≡ Rν
µ Rµ

ν is a sum
of squares of diagonal components of Ricci tensor, i.e.,

I2 =
[

(

R0
0

)2
+
(

R1
1

)2
+
(

R2
2

)2
+
(

R3
3

)2
]

. (2.21)

Analogically, for the Kretschmann scalar in this case we haveI3 = Rµν
αβ Rαβ

µν , a sum of squared

components of all nontrivialRµν
µν , which can be written as

I3 = 4

[

(

R01
01

)2
+
(

R02
02

)2
+
(

R03
03

)2
+
(

R12
12

)2
+
(

R23
23

)2
+
(

R31
31

)2
]

= 4
[( ä

a

)2
+
( b̈

b

)2
+
( c̈

c

)2
+
( ȧ

a
ḃ
b

)2
+
( ḃ

b
ċ
c

)2
+
( ċ

c
ȧ
a

)2]

. (2.22)

Let us now express the foregoing invariants in terms ofτ. From Eqs. (2.19) we have

ai = Aiτ1/3exp

(

(Bi/3)

∫

e−2κ
∫

ηdt

τ(t)
dt

)

, (2.23a)

ȧi

ai
=

τ̇ +Bie−2κ
∫

ηdt

3τ
(i = 1,2,3,), (2.23b)

äi

ai
=

3ττ̈ −2τ̇2− τ̇Bie−2κ
∫

ηdt −6κητBie−2κ
∫

ηdt +B2
i e−4κ

∫

ηdt

9τ2 , (2.23c)
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i.e., the metric functionsa,b,c and their derivatives are in functional dependence withτ. From
Eqs. (2.23) one can easily verify that [23]

I1 ∝
1
τ2 , I2 ∝

1
τ4 , I3 ∝

1
τ4 .

Thus we see that at any space-time point, whereτ = 0 the invariantsI1, I2, andI3 become infinity,
hence the space-time becomes singular at this point.

D. Equations for determining τ

In the foregoing subsection we wrote the corresponding metric functions in terms of volume
scaleτ. In what follows, we write the equation forτ and study it in details.

Summation of Einstein equations (2.17a), (2.17b), (2.17c)and 3 times (2.17d) gives

τ̈ − 3
2

κξ τ̇ =
3
2

κ
(

ε − p
)

τ −3Λτ. (2.24)

For the right-hand-side of (2.24) to be a function ofτ only, the solution to this equation is well-
known [27].

The energy-momentum conservation law, i.e.,

T ν
µ;ν = T ν

µ,ν +Γν
ρν T ρ

µ −Γρ
µν T ν

ρ = 0, (2.25)

in our case gives the following equation forε :

ε̇ +
τ̇
τ

ω − (ξ +
4
3

η)
τ̇2

τ2 +4η(κT 0
0 −Λ) = 0, (2.26)

where
ω = ε + p, (2.27)

is the thermal function.
Defining a generalized Hubble constantH :

τ̇
τ

=
ȧ
a

+
ḃ
b

+
ċ
c

= 3H. (2.28)

the Eqs. (2.24) and (2.26) in account of (2.10) can be rewritten as

Ḣ =
κ
2

(

3ξ H −ω
)

−
(

3H2−κε +Λ
)

, (2.29a)

ε̇ = 3H
(

3ξ H −ω
)

+4η
(

3H2−κε +Λ
)

. (2.29b)

In terms of dynamical scalarsθ andσ the system (2.29) takes a very simple form

θ̇ =
3κ
2

(

ξ θ −ω
)

−3σ2, (2.30a)

ε̇ = θ
(

ξ θ −ω
)

+4ησ2. (2.30b)

Note that the Eqs. (2.30) coincide with the ones given in [12].
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III. QUALITATIVE ANALYSIS AND SOME SPECIAL SOLUTIONS

In this subsection we simultaneously solve the system of equations forτ, H, and ε. It is
convenient to rewrite the Eqs. (2.28) and (2.29) as a single system :

τ̇ = 3Hτ, (3.1a)

Ḣ =
κ
2

(

3ξ H −ω
)

−
(

3H2−κε +Λ
)

, (3.1b)

ε̇ = 3H
(

3ξ H −ω
)

+4η
(

3H2−κε +Λ
)

. (3.1c)

In account of (2.27),(2.8) and (2.9) the Eqs. (3.1) now can berewritten as

τ̇ = 3Hτ, (3.2a)

Ḣ =
κ
2

(

3Bεβ H − (1+ζ )ε
)

−
(

3H2−κε +Λ
)

, (3.2b)

ε̇ = 3H
(

3Bεβ H − (1+ζ )ε
)

+4Aεα(3H2−κε +Λ
)

. (3.2c)

The system (3.1) have been extensively studied in literature either partially [9, 12, 13] or in
general [11]. In what follows, we consider the system (3.1) for some special choices of the param-
eters.

A. Qualitative analysis

Following Belinski and Khalatnikov [11] let us now study thecharacters of the solutions of the
dynamical system (3.1) or (3.2). We first rewrite the system (3.1), namely (3.1b) and (3.1c) in the
matrix form :

(

Ḣ
ε̇

)

=

(

κ/2 −1
3H 4η

)(

3ξ H −ω
3H2−κε +Λ

)

. (3.3)

Note that unlike the system studied by Belinski and Khalatnikov the system in consideration con-
tains a Cosmological constantΛ.

1. General properties of the system

Easy to note that the solutions cannot intersect the axisε = 0, sinceε̇|ε=0 = 0, as well as the
parabola

3H2−κε +Λ = 0, (3.4)

as far as (3.4) is itself the integral curve. Thus, starting from the point(H,ε) = (+∞,0), the
solutions cannot enter into the ”prohibited region” insidethe parabola (3.4). Whether they may
achieveH < 0 depends on the value ofΛ. Note that, unlike the system considered by Belinskiet.
al [11] the system in this report contains a nonzeroΛ term.

2. Critical points of the dynamical system

a) By virtu of linear independence of the columns of the matrix of the Eq. (3.3) the critical
points are the solutions of the equations

3ξ H −ω = 0, (3.5a)

3H2−κε +Λ = 0. (3.5b)
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i.e., they necessarily lie on the parabola (3.4). Solutionsto the system (3.5) will be the roots of the
equation

3κB2ε1+2β − (1+ζ )2ε2 − 3ΛB2ε2β = 0, (3.6a)

H =
1+ζ
3B

ε1−β . (3.6b)

The quantity of the positive roots of the Eq. (3.6) accordingto Cartesian law is equal to the
number of changes of sign of coefficients of equations or lessthan that by an even number. So, for

Λ < 0 and 1/2 < β < 1 (Fig.2,Fig.3)
or Λ > 0 and β < 1/2 (Fig.5,Fig.6)

the number of roots is either 2 or zero. For the remaining cases

Λ < 0 and β > 1 (Fig.1),
Λ < 0 and β < 1/2 (Fig.4),
Λ > 0 and β > 1/2 (Fig.7)

there exists only one root. The corresponding pictures of the phase curves are given in figures
cited above. The critical points are denoted by small circles. Note that here we consider the case
with η = 0, i.e.,A = 0. In case ifη 6= 0, with the increase ofA the separatrix of the saddle tilts
(inclines) to the left. Since the overall picture forA 6= 0 remains qualitatively unaltered, we only
show the corresponding phase portrait for two cases, namelyFig. 8 corresponds to Fig. 1, Fig.
9 corresponds to Fig. 4. Note that for numerical calculations we setκ = 1, ζ = 0.333 (if not
mentioned otherwise). In the Figs. 1 - 7η is taken to be zero. Note that in the Figs.E andT stand
for ε andτ, respectively.

Since, the equation forε only containsη, the energy density for nontrivialη undergoes essen-
tial changes, whereasH andτ remain virtually unchanged.

The types of critical points lying on the integral curve alternate: . . . saddle, attracting knot,
saddle. . .. So it is sufficient to consider the case with maximum number of roots. Taking into
account the Eqs. (3.1c) and (3.4) let us now calculate

lim
ε→+∞

ε̇
3Hε

= lim
ε→+∞

3Bεβ√κε −Λ− ε(1+ζ )

ε

= 3B
√

κε(2β−1) −Λε−2− (1+ζ ) =







−(1+ζ ) < 0, β < 1/2,

+∞ > 0, β > 1/2.
(3.7)

So, the latest critical point forβ < 1/2 is attracting knot and forβ > 1/2 is saddle.
b) It is obvious that if Lambda ≤ 0 the points of intersection of the boundary are the critical

points

H = ±
√

−Λ/3, (3.8a)
ε = 0. (3.8b)

c) For H < 0 there may exist critical points , if the columns of the matrix of (3.3) are linearly
dependent. In that case the critical points are the roots of the equation

3κ(ζ −1)ε +6κ2ABεα+β +8κ2A2ε2α +6Λ = 0, (3.9)
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and

H = −2
3

κAεα . (3.10)

In case ofη = 0 the roots of the characteristic equation
∣

∣

∣

D(Ḣ, ε̇)

D(H, ε)
−µ

∣

∣

∣
= 0, (3.11)

are

µ1,2 =
3κξ ±

√

9κ2ξ 2−48Λ(1+ζ )

4
. (3.12)

The critical point (H, ε) = (0, 2Λ/[κ(1−ζ )]) is of type divergent focus ifΛ > 9κ2ξ 2/[48(1+
ζ )] or divergent knot ifΛ < 9κ2ξ 2/[48(1+ζ )] .

In the cases illustrated in Figs. 5 and 7,H → ∞ andε → ∞ ast → ∞, whereas, for the cases
given in Fig. 6 one observes increasing oscillation boundedby the attracting parabola (3.4).

3. Integral curves

For Λ ≤ 0 the solutions starting from the upper half-planeH > 0 cannot enter into the lower
one. ForΛ > 0 some of the solutions may enter into the lower half-plane through the segment
H = 0 and 0≤ ε ≤ Λ and never returns back, sinceḢ|H=0 < 0.

B. Numerical solutions

In this subsection solutions to the system of equations (3.1) has been obtained numerically.
Evolution of the Hubble constantH, energy densityε and volume scaleτ corresponding to the
cases studied above with differentB, β andΛ has been illustrated in the Figs. 12 - 32. As one
sees, for a negativeΛ the volume scaleτ expands exponentially, whereas, for a positiveΛ there
exist solutions whereτ initially expands and after reaching some maximum begins tocontract and
finally collapses into a point, thus giving rise to space-time singularity. Beside this, as one sees
from Fig. 11, a suitable choice of initial conditions gives rise to a singularity-free oscillatory mode
of expansion of the Universe.

C. exact solutions

In this subsection we consider some special cases allowing exact solutions.

1. Case with bulk viscosity

Let us first consider the case when the real fluid possesses thebulk viscosity only. The corre-
sponding system of Eqs. can then be obtained by settingη = 0 in (3.1) orA = 0 in (3.2). In this
case the Eqs. (3.1a) and (3.1b) remain unaltered, while (3.1c) takes the form

ε̇ = 3H
(

3ξ H −ω
)

. (3.13)

In view of (3.13) the system (3.1) admits the following first integral

τ2(κε −3H2−Λ
)

= C1, C1 = const. (3.14)
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The relation (3.14) can be interpreted as follows. At the initial stage of evolution the volume scale
τ tends to zero, while, the energy densityε tends to infinity. Since the Hubble constant and theΛ
term are finite, the relation (3.14) is in correspondence with the current line of thinking. Let us see
what happens as the Universe expands. It is well known that with the expansion of the Universe,
i.e., with the increase ofτ, the energy densityε decreases. Suppose at some stage of expansion
τ → ∞, henceε → 0. Then from (3.14) follows that at the stage in question

3H2+Λ → 0. (3.15)

In case ofΛ = 0, we findH = 0, i.e., in absence of aΛ term, onceτ → ∞, the process of evolution
is terminated. As one sees from (3.15), for theH to make any sense, theΛ term should be negative.
In presence of a negativeλ term the evolution process of the Universe never comes to a halt, it
either expands further or begin to contract depending on thesign ofH = ±

√

−Λ/3, Λ < 0.
Let us now consider the case when the bulk viscosity is inverse proportional to expansion, i.e.,

ξ θ = C2, C2 = const. (3.16)

Now keeping into mind thatθ = τ̇/τ = 3H, also the relations (3.1a), (2.27) and (2.9) the Eq.
(3.13) can be written as

ε̇
C2− (1+ζ )ε

=
τ̇
τ
. (3.17)

From the Eq. (3.17) one finds

ε =
1

1+ζ
[

C2+C3τ−(1+ζ )
]

, (3.18)

with C3 being some arbitrary constant. Further, insertingε from (3.18) into (2.24) one finds the
expression forτ explicitly.

Taking into account the equation of state (2.9) in view of (3.16) and (3.18), the Eq. (2.24)
admits the following solution in quadrature :

∫

dτ
√

C2
2 +C0

0τ2+C1
1τ1−ζ

= t + t0, (3.19)

whereC2
2 andt0 are some constants. Further we sett0 = 0. Here,C0

0 = 3κC2/(1+ ζ )−3Λ and
C1

1 = 3κC3/(1+ζ ). As one sees,C0
0 is negative for

Λ > κC2/(1+ζ ). (3.20)

It means that for a positiveΛ obeying (3.20) (we assume that the constantC2 is a positive quantity)
τ should be bound from above as well. It should be noted that fora suitable choice ofC2

2 andτ0
(the initial value ofτ), it is possible to obtain oscillatory mode of expansion with τ being always
positive, i.e., a singularity free evolution of the Universe. The phase portrait of the(H, ε) plane
and the evolution of the BI Universe corresponding to this portrait allowing oscillatory solutions
are given in Figs. 10 and 11.

As a second example we consider the case, whenζ = 1. From (3.19) one then finds

τ(t) =
(

exp(
√

C0
0 t)−C2

2 exp(
√

C0
0 t)
)

/(2
√

C0
0), C0

0 > 0, (3.21a)

τ(t) = (C2
2/
√

|C0
0|)sin(

√

|C0
0| t). C0

0 < 0. (3.21b)
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Taking into account thatC0
0 > 0 for any non-positiveΛ, from (3.21a) one sees that, in case of

Λ ≤ 0 the Universe may be infinitely large (there is no upper bound), which is in line with the
conclusion made above. On the other hand,C0

0 may be negative only for some positive value of
Λ. Thus we see that a positiveΛ can generate a oscillatory mode of expansion of a BI Universe.
The oscillation takes place around the critical point(H, ε) = (0, (2Λ−κC2)/[κ(1−ζ )]) having
the type of cycle under the conditionΛ > κC2/(1+ζ ). It was shown in [20, 21] that in case of a
perfect fluid a positiveΛ always invokes oscillations in the model, whereas, in the present model
with viscous fluid, it is the case only whenΛ obeys (3.20). Unlike the case with radiation where
BI admits a singularity-free oscillatory mode of evolution, here, in case of a stiff matter one finds
the BI Universe first expands, reaches its maximum and then contracts into a point, thus giving
rise to space-time singularity.

2. Case with shear and bulk viscosity

Let us now consider the general case with the shear viscosityη being proportional to the ex-
pansion, i.e.,

η ∝ θ = 3H. (3.22)

We will consider the case when

η = − 3
2κ

H. (3.23)

In this case from (3.1b) and (3.1c) one easily find

3H2 = κε +C4, C4 = const. (3.24)

From (3.24) it follows that at the initial state of expansion, whenε is large, the Hubble constant
is also large and with the expansion of the UniverseH decreases as doesε. Inserting the relation
(3.24) into the Eqs. (3.1b) one finds

∫

dH√
AH2 +BH +C

= t, (3.25)

where,A = −1.5(1+ζ ), B = 1.5κξ , andC = 0.5C4(ζ −1)−Λ. For ξ being a constant, (3.25)
admits sinusoidal solution, i.e.,H evolves oscillatory. Further, from (3.1a) one finds the expression
for τ, which is exponential one accompanied by a sinusoidal mode [23].

IV. CONCLUSION

We investigated the cosmological solutions to the equations of General Relativity for the ho-
mogeneous anisotropic Bianchi type I model by taking into account dissipative processes due
to viscosity and Cosmological constant (Λ term). A detailed analysis showed that the viscosity,
as well as theΛ term exhibit essential influence on the character of the solutions. The classifi-
cation of the solutions was pursued for the viscosity being some power law of energy density,
namely,η = Aεα andξ = Bεβ . It was noticed that forΛ < 0 the Universe expands forever with
a logarithmic velocityH, which, depending on the viscosity either becomes constantor increases
infinitely. In the process behavior of the energy densityε is analogous to that ofH except the case
whenε → 0. ForΛ > 0, beside the variants mentioned above, there exists few other possibilities:
contraction of the Universe into a point, thus giving rise toa space-time singularity; a regime of
increasing oscillation corresponding to suitable initialconditions. It was also noticed that a special
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case withΛ > 0, η = 0 andξ H = const. the model admits a singularity-free oscillatory mode of
expansion.
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FIG. 1: Phase diagram onH − ε plane for
β = 1.5, Λ = −.933, B = .720.

FIG. 2: Phase diagram onH − ε plane for
β = .75, Λ = −.707, B = .589.
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FIG. 3: Phase diagram onH − ε plane for
β = .75, Λ = −.707, B = .667

FIG. 4: Phase diagram onH − ε plane for
β = .05, Λ = −.785, B = .451.
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FIG. 5: Phase diagram onH − ε plane for
β = .05, Λ = .317, B = 0.933

FIG. 6: Phase diagram onH − ε plane for
β = .05, Λ = .317, B = .667.
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FIG. 8: Phase diagram onH − ε plane for
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FIG. 13: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 1.

FIG. 14: Evolution of the
volume scaleτ with param-
eters as in Fig. 1.
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FIG. 16: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 2.

FIG. 17: Evolution of the
volume scaleτ with param-
eters as in Fig. 2.
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FIG. 19: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 3.

FIG. 20: Evolution of the
volume scaleτ with param-
eters as in Fig. 3.
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FIG. 22: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 4.

FIG. 23: Evolution of the
volume scaleτ with param-
eters as in Fig. 4.
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FIG. 25: Evolution of the en-
ergy densityε with parame-
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FIG. 26: Evolution of the
volume scaleτ with param-
eters as in Fig. 5.
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FIG. 28: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 6.

FIG. 29: Evolution of the
volume scaleτ with param-
eters as in Fig. 6.
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FIG. 31: Evolution of the en-
ergy densityε with parame-
ters as in Fig. 7.

FIG. 32: Evolution of the
volume scaleτ with param-
eters as in Fig. 7.
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