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The nature of cosmological solutions for a homogeneousp&ipic Universe given by
a Bianchi type-1 (BI) model in the presence of a Cosmologicaistant\ is investigated by
taking into account dissipative process due to viscosite gystem in question is thoroughly
studied both analytically and numerically. It is shown thecesity, as well as thA term
exhibit essential influence on the character of the solatiém particular a negativa gives
rise to an ever-expanding Universe, whereas, a suitablieelod initial conditions plus a
positive A can result in a singularity-free oscillatory mode of expans For some special
cases it is possible to obtain oscillations in the expoaémtiode of expansion of the Bl
model even with a negativk, where oscillations arise by virtue of viscosity.
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I. INTRODUCTION

The investigation of relativistic cosmological models albpihas the energy momentum tensor
of matter generated by a perfect fluid. To consider more sg@almodels one must take into
account the viscosity mechanisms, which have alreadyctgttahe attention of many researchers.
Misner [1,12] suggested that strong dissipative due to thérim® viscosity may considerably
reduce the anisotropy of the blackbody radiation. Visgasiechanism in cosmology can explain
the anomalously high entropy per baryon in the present vsevg3 | 4]. Bulk viscosity associated
with the grand-unified-theory phase transition [5] may leadn inflationary scenariol[6, [7, 8].

A uniform cosmological model filled with fluid which possesggessure and second (bulk)
viscosity was developed by Murphy [9]. The solutions thafdwend exhibit an interesting feature
that the big bang type singularity appears in the infinitet.p&xact solutions of the isotropic
homogeneous cosmology for open, closed and flat universebieen found by Santos et al [10],
with the bulk viscosity being a power function of energy dgns

The nature of cosmological solutions for homogeneous Biatype | (Bl) model was inves-
tigated by Belinsky and Khalatnikov [11] by taking into acct dissipative process due to vis-
cosity. They showed that viscosity cannot remove the cosgicdl singularity but results in a
qualitatively new behavior of the solutions near singtjyari hey found the remarkable property
that during the time of thbig bang matter is created by the gravitational field. Bl solutionsase
of stiff matter with a shear viscosity being the power fuantof of energy density were obtained
by Banerjeel[12], whereas Bl models with bulk viscosity (hat is a power function of energy
densitye and when the universe is filled with stiff matter were studigdHuang [13]. The effect
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of bulk viscosity, with a time varying bulk viscous coeffinte on the evolution of isotropic FRW
models was investigated in the context of open thermodycgmsystem was studied by Desikan
[14]. This study was further developed by Krori and Mukhejg5] for anisotropic Bianchi mod-
els. Cosmological solutions with nonlinear bulk viscosugre obtained in [16]. Models with both
shear and bulk viscosity were investigated.in |17, 18].

Though Murphyl[9] claimed that the introduction of bulk wisity can avoid the initial singu-
larity at finite past, results obtained in_[19] show thatsitin general, not valid, since for some
cases big bang singularity occurs in finite past.

We studied a self-consistent system of the nonlinear spindfor scalar fields in a Bl spacetime
in presence of a perfect fluid and\aerm [20, 211] in order to clarify whether the presence of a sin
gular point an inherent property of the relativistic cosogatal models or is it only a consequence
of specific simplifying assumptions underlying these me@ddRecently we have considered a sys-
tem of nonlinear spinor field in a Bl Universe filled with viseofluid [22]. Since the viscous fluid
itself presents a growing interest, we have studied theanfia of viscous fluid and term in the
evolution of the Bl Universe [23]. In that paper we considelycssome special cases those allow
exact solutions. In this paper along with those specialTasestudy some general cases, giving a
gualitative analysis of the system of equations. We alstbpersome numerical calculations and
compare the results obtained with those given in some piorgepapers in this field, e.g. [11]

II. DERIVATION OF BASIC EQUATIONS

Using the variational principle in this section we derive thndamental equations for the grav-
itational field from the actiof(211) :

7(ge) = [ Zv=gda (2.1)

with
L = ggrav. + L. (2.2)

The gravitational part of the Lagrangiall (2. 2rav is given by a Bianchi type-lI metric,
whereas the tern¥;s describes a viscous fluid.

We also write the expressions for the metric functions expfiin terms of the volume scale
T defined bellow [[Z18). Defining Hubble constani (2.28) inlagy with a flat Friedmann-
Robertson-Walker (FRW) Universe, we also derive the systbeguations for, H ande, with €
being the energy density of the viscous fluid, which playscérgral role here.

A. The gravitational field

As a gravitational field we consider the Bianchi type | (Blsowlogical model. It is the sim-
plest model of anisotropic universe that describes a homeges and spatially flat space-time
and if filled with perfect fluid with the equation of stape= (e, { < 1, it eventually evolves
into a FRW universe_ [24]. The isotropy of present-day urseanakes Bl model a prime candi-
date for studying the possible effects of an anisotropy endharly universe on modern-day data
observations. In view of what has been mentioned above wesehthve gravitational part of the
Lagrangian[(Z]2) in the form s

gQ:ﬂ’

(2.3)
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whereR is the scalar curvature, = 871G being the Einstein’s gravitational constant. The gravita-
tional field in our case is given by a Bianchi type | (BI) metric
ds? = dt? — a?dx? — b2dy? — c?dZ, (2.4)

with a, b, ¢ being the functions of timeonly. Here the speed of light is taken to be unity.

B. Viscous fluid

The influence of the viscous fluid in the evolution of the Umseeis performed by means of its
energy momentum tensor, which acts as the source of thespomding gravitational field. The
reason for writing % in (Z.2) is to underline that we are dealing with a self-cetesit system.
The energy momentum tensor of a viscous field has the form

T = (E+P)upl’ —p'3) + n9“Pluy.g +Ug., — Uy Ug.q — UgU”Uy:al, (2.5)

where )
p'=p—(&—3mul (2.6)

Heree is the energy density - pressurer) andé are the coefficients of shear and bulk viscosity,
respectively. Note that the bulk and shear viscositieandé, are both positively definite, i.e.,

n>0 ¢&>0. (2.7)
They may be either constant or function of time or energyhssc:
n=|Ae", &=BleP. (2.8)

The pressure is connected to the energy density by means of a equatiomtef. 9h this report
we consider the one describing a perfect fluid :

p="{_eg, (e(01]. (2.9)

Note that her& # 0, since for dust pressure, hence temperature is zero,agbaits in vanishing
viscosity.
In a comoving system of reference such ti¥at= (1, 0, 0, 0) we have

Toim = & (2.10a)
1 _ / a

Tim = —P +2175, (2.10b)
b

Tzz(m) = —p’+2n5, (2.10c)
¢

T33(m) = —p’+2n6. (2.10d)

Let us introduce the dynamical scalars such as the expaastbthe shear scalar as usual

1
6=ul, o0°= éauva“", (2.11)
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where 1 1
O = (upaPS -+ uviaPE ) - S0P (2.12)
HereP is the projection operator obeying
P2=P (2.13)
For the space-time with signatufe, —, —, —) it has the form
Puv = Quv — Uyly, P§ =8 —uHu,. (2.14)
For the Bl metric the dynamical scalar has the form
9:g+g+g:3, (2.15)

and 2 2 2
a b ¢ 1
20.2 _

= S+ >+ — =62 2.16
2Tt 3 (2.16)
C. Field equations and their solutions

Variation of [Z1) with respect to metric tensgy,y gives the Einstein’s field equation. In
account of the\-term for the Bl space-timé&{2.4) this system of equatiomstmrewritten as

b ¢ be 1

€ 2088 m2on, (2.17b)

cC a ca

a4 b ab 3

5+6+56 = KT3 —/\, (2.170)
ab bc ca _ L qo_n (2.17d)

ab ' bc  ca
where over dot means differentiation with respedt émd T/ is the energy-momentum tensor of
a viscous fluid given abovE(Z]10).

1. Expressions for the metric functions

To write the metric functions explicitly, we define a new tiaependent functiom(t)
T=abc=+/—q, (2.18)

which is indeed the volume scale of the Bl space-time.
Let us now solve the Einstein equations. In accountof {2y (Z174),[2.17b), an@{Z17c)

one finds the following expressions for the metric functierplicitly [23]

2k [ndt

at) = AiT3exp (BﬂB)/%dt , (2.19a)
- g2k [ndt .

b(t) = AotY3exp|(Bz/3) / =i, (2.19b)
- efZKfndt -

c(t) = Azt 3exp (83/3)/fdt ) (2.19c¢)
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where the constanty’s andB;’s obey the following relations

A1A0A3 = 1,
B1+B>+Bs = 0.

Thus, the metric functions are found explicitly in termsraind viscosity.
As one sees fronf (2.1Pal], (Z.19b) ahd (21 19¢) rfert" with n > 1 the exponent tends to unity
at larget, and the anisotropic model becomes isotropic one.

2. Sngularity analysis

Let us now investigate the existence of singularity (siagyloint) of the gravitational case,
which can be done by investigating the invariant charasties of the space-time. In general
relativity these invariants are composed from the cuneatansor and the metric one. In a 4D
Riemann space-time there are 14 independent invarianstedd of analyzing all 14 invariants,
one can confine this study only in 3, namely the scalar curediu= R, 1, = R,,R"Y, and the
Kretschmann scaldg = RO,BWR“B“V [25, 126].. At any regular space-time point, these three
invariantsly, I, I3 should be finite. Let us rewrite these invariants in detail.

For the Bianchi | metric one finds the scalar curvature

|1:R:_2<§+9+E+§9+99+9§>_

a b c¢c ab bc ca (2.20)

Since the Ricci tensor for the Bl metric is diagonal, the et |, = R,y RHY = RI‘ij,‘ is asum
of squares of diagonal components of Ricci tensor, i.e.,

2= [(R)?+ (R)?+ (R8)"+ (R)”] (2.21)

Analogically, for the Kretschmann scalar in this case weehay- R“‘;B R“’E,V, a sum of squared
components of all nontrividR"},,,, which can be written as

s ol (" (" 5 () (3]
(7 O O G e (2] ez

Let us now express the foregoing invariants in terms.dfrom Eqgs. [[Z.19) we have

efZKfndt
a — ATY3exp (Bi/S)/Tdt , (2.23a)
& t+Be/nd
= = =123 2.23b
ai 3.[ (I bl ) 7)7 ( )
2912 R a2k [ ndt _ - ~—2K [ndt 24K [ ndt
2 _ 31T — 21°— TBje g;;zan.e +Bre , (2.230)
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i.e., the metric functions, b,c and their derivatives are in functional dependence witlFrom
Egs. [ZZB) one can easily verify that[23]

1 1 1

IO —= o 0 — I3 0 —.
12’ ™’ T4

Thus we see that at any space-time point, whrete0 the invariantdy, I, andl3 become infinity,
hence the space-time becomes singular at this point.

D. Equations for determining 1

In the foregoing subsection we wrote the correspondingimitnctions in terms of volume
scaletr. In what follows, we write the equation farand study it in details.

Summation of Einstein equatiods (2.1 7&), (21110}, (2. &nd) 3 times[(Z.17d) gives

f—gKffz gK(F:— p)T — 3AT. (2.24)

For the right-hand-side of(Z.24) to be a functiontadnly, the solution to this equation is well-
known [27].
The energy-momentum conservation law, i.e.,

Ty =T y+Tp T8 — Ty =0, (2.25)
in our case gives the following equation for

Jeriou—(éqLfr )T—2+4 (KT® =A)=0 (2.26)
T 3'7 T2 r’ 0 ) .

where
wWw=E&+p, (2.27)

is the thermal function.
Defining a generalized Hubble const&ht

T a b ¢
?—5+B+E—3H. (2.28)
the Eqgs.[[Z224) and{Z26) in account[of(2.10) can be reswriits
H = 2(3EH - ) - (3H? - ke +A), (2.29a)
£ = 3H(3EH —w) +4n(3H>— ke +A). (2.29b)

In terms of dynamical scala&ando the system[{Z.29) takes a very simple form
: 3K
0 == (£0-w) —30?, (2.30a)
£ = 0(60—w)+4no? (2.30b)

Note that the Eqs[{Z.B0) coincide with the ones given.in.[12]
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Ill. QUALITATIVE ANALYSIS AND SOME SPECIAL SOLUTIONS

In this subsection we simultaneously solve the system o&tops fort, H, ande. It is
convenient to rewrite the Eq$.(2128) afd (2.29) as a singites :

T = 3HT, (3.1a)
H = g(sfH_w)_(sz_Ke+/\), (3.1b)
£ = 3H(36H—w) +4n(3H*—ke+A). (3.1¢)
In account of [Z.27){218) an@(2.9) the EdS.{3.1) now careheitten as
T = 3HT, (3.2a)
H = 2(3BePH - (1+Q)e) - (3H2— ke +A), (3.2b)
£ = 3H(3BePH — (14 Q)g) +4Ae” (3HZ — ke +A). (3.2¢)

The system[{3]1) have been extensively studied in liteeagither partially![9| 12, 13] or in
generall[11]. In what follows, we consider the systéml(3ot)sbme special choices of the param-
eters.

A. Qualitative analysis

Following Belinski and Khalatnikov [11] let us now study tblearacters of the solutions of the
dynamical systeni{3.1) dr(3.2). We first rewrite the sys@dl)( namely[[3lb) and{311c) in the

matrix form : )
HY (k/2 -1 3¢H —w (3.3)
£€) \3H 4n 3HZ2—ke+A - '

Note that unlike the system studied by Belinski and Khalkatwithe system in consideration con-
tains a Cosmological constafit

1. General properties of the system

Easy to note that the solutions cannot intersect the &xi<), sinceg|.—o = 0, as well as the
parabola
3H?—ke+A =0, (3.4)

as far as[(3]4) is itself the integral curve. Thus, startirgnf the point(H, &) = (4,0), the
solutions cannot enter into the "prohibited region” inste parabola{(314). Whether they may
achieveH < 0 depends on the value 6f Note that, unlike the system considered by Belireski
al [11] the system in this report contains a nonzArterm.

2. Critical points of the dynamical system
a) By virtu of linear independence of the columns of the matfithe Eq. [3.B) the critical
points are the solutions of the equations

3H—w = 0, (3.5a)
3H?—ke+A = 0. (3.5b)
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i.e., they necessarily lie on the parab@lal3.4). Soluttorike systeni(3]5) will be the roots of the
equation

3kB2eM2P — (1+7)%% — 3N\B%e?P =0, (3.6a)
144 4
H = Zge P (3.6b)

The quantity of the positive roots of the Eq._{3.6) according artesian law is equal to the
number of changes of sign of coefficients of equations ortleas that by an even number. So, for

A<0 and Y2<pB<1 (FigR2Figh
oo A>0 and B<1/2 (FigB Figh)

the number of roots is either 2 or zero. For the remainingcase

A<0 and B>1 (Fig),
AN<0 and B<1/2 (FigH),
A>0 and B>1/2 (Fig.d)

there exists only one root. The corresponding pictures efpiiase curves are given in figures
cited above. The critical points are denoted by small csicMote that here we consider the case
with n =0, i.e.,A= 0. In case ifn # 0, with the increase oA the separatrix of the saddle tilts
(inclines) to the left. Since the overall picture farZ 0 remains qualitatively unaltered, we only
show the corresponding phase portrait for two cases, naRighi8 corresponds to Fidl 1, Fig.
corresponds to Figld 4. Note that for numerical calculaiome setk = 1, { = 0.333 (if not
mentioned otherwise). In the Fidd. [ #7s taken to be zero. Note that in the FigsandT stand
for € andt, respectively.

Since, the equation far only containg), the energy density for nontrivigl undergoes essen-
tial changes, wherea$ andt remain virtually unchanged.

The types of critical points lying on the integral curve aitge: ... saddle, attracting knot,
saddle.... So it is sufficient to consider the case with maximum numbeoots. Taking into
account the Eqs[{3llc) arld(83.4) let us now calculate

g - 3BePvVke—N—¢g(1+Q)

lim
e—+oo 3HE £—+00 €

-(1+4) < 0, B<1/2
= 3BVKe@B-1D) _Ag2—(1+) = { (3.7)
40 >0, >1/2

So, the latest critical point fg8 < 1/2 is attracting knot and fg8 > 1/2 is saddle.
b) It is obvious that if Lambda < 0 the points of intersection of the boundary are the critical
points

H = +1/-A/3, (3.8)

£ =0 (3.8b)

c) ForH < 0 there may exist critical points , if the columns of the matf (8.3) are linearly
dependent. In that case the critical points are the rootseoétjuation

3k({ —1)& + 6Kk2AB P 1 8k2A2% 1 BA =0, (3.9)
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and 5
H= —:—)’KAEG. (3.10)
In case of) = 0 the roots of the characteristic equation
DH. &) | _
‘D(H,e) B ‘_0’ (311)
are s
3ké +1/9k4é-—48N\(1+

4
The critical point (H, €) = (0, 2A/[k(1—{)]) is of type divergent focus i\ > 9k2&2/[48(1+
2)] or divergent knot ifA < 9k2£2/[48(1+ ()] .
In the cases illustrated in FigEl 5 ddH — « ande — o ast — oo, whereas, for the cases
given in Fig.[® one observes increasing oscillation bourimetthe attracting parabolB(B.4).

3. Integral curves

For A < 0 the solutions starting from the upper half-plafie- 0 cannot enter into the lower
one. For/A > 0 some of the solutions may enter into the lower half-plameubh the segment
H = 0 and 0< € < A and never returns back, sineéy_o < 0.

B. Numerical solutions

In this subsection solutions to the system of equatifng) (3a$ been obtained numerically.
Evolution of the Hubble constahi, energy density and volume scale corresponding to the
cases studied above with differéBt 3 andA has been illustrated in the Figsl]1Pd 32. As one
sees, for a negativ& the volume scale expands exponentially, whereas, for a positvéhere
exist solutions where initially expands and after reaching some maximum begim®tiract and
finally collapses into a point, thus giving rise to spaceetismgularity. Beside this, as one sees
from Fig.[11, a suitable choice of initial conditions giveserto a singularity-free oscillatory mode
of expansion of the Universe.

C. exact solutions

In this subsection we consider some special cases allowsng solutions.

1. Casewith bulk viscosity

Let us first consider the case when the real fluid possessésilh&iscosity only. The corre-
sponding system of Egs. can then be obtained by settiag0 in (31) orA= 0 in (3:2). In this
case the Egs[{311a) arid(3.1b) remain unaltered, whil€)8kes the form

£=3H(3¢H - w). (3.13)
In view of (3.I3) the systeni{3.1) admits the following finstdgral
1?(ke —3H*~N\) =C;, C;=const (3.14)
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The relation[[3.14) can be interpreted as follows. At théahstage of evolution the volume scale

T tends to zero, while, the energy dengitiends to infinity. Since the Hubble constant andAhe
term are finite, the relatiof{3.114) is in correspondencé tie current line of thinking. Let us see
what happens as the Universe expands. It is well known thattive expansion of the Universe,
i.e., with the increase df, the energy density decreases. Suppose at some stage of expansion
T — oo, hences — 0. Then from[3.14) follows that at the stage in question

3H2+A — 0. (3.15)

In case ofA =0, we findH = 0, i.e., in absence of & term, oncer — oo, the process of evolution
is terminated. As one sees from(3.15), for th&o make any sense, tieterm should be negative.
In presence of a negative term the evolution process of the Universe never comes tdtaitha
either expands further or begin to contract depending osigreofH = +,/—A/3, A <O.

Let us now consider the case when the bulk viscosity is imvprsportional to expansion, i.e.,

0 =Cy, Cy=const (3.16)

Now keeping into mind tha® = 7/1 = 3H, also the relationd(311a) (2127) aid{2.9) the Eq.
@I3) can be written as _ _
£ T

_— = — 3.17

G- (110 1 (3.17)

From the Eq.[(37) one finds

1
£=_——_[Cpt+Car 1+ 3.18
15 CotCar ), (3.18)

with C3 being some arbitrary constant. Further, insertinfgpom (3I8) into [Z2K) one finds the
expression for explicitly.

Taking into account the equation of stafe12.9) in view[ofi@3.and [3.IB), the Eq.[1Z2.P4)
admits the following solution in quadrature :

dr

/ —tttp, (3.19)
\/C§ +C12+ ¢

WhereC§ andtg are some constants. Further we tget 0. Here,C) = 3kC,/(1+ ) — 3A and
Cl=3kCs/(1+{). As one seex] is negative for

N> kCy/(1+ Q). (3.20)

It means that for a positiv& obeying [3:2D) (we assume that the cons@yit a positive quantity)
T should be bound from above as well. It should be noted thad fasitable choice of2 and g
(the initial value ofT), it is possible to obtain oscillatory mode of expansionhiitbeing always
positive, i.e., a singularity free evolution of the UniversThe phase portrait of thél, €) plane
and the evolution of the Bl Universe corresponding to thignad allowing oscillatory solutions
are given in Figd 10 arid1L1.

As a second example we consider the case, wheril. From [3.ID) one then finds

T(t) = (exp(1/CYt) — Coexpl/CQ1))/(2,/C). CB>o, (3.21a)
T(t) = (C3/4/ICY)sin(1/|CIIt). CJ<O. (3.21b)
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Taking into account thaEd > 0 for any non-positive\, from (3:2Ih) one sees that, in case of
N\ < 0 the Universe may be infinitely large (there is no upper byuwtiich is in line with the
conclusion made above. On the other ha(D@imay be negative only for some positive value of
N. Thus we see that a positivecan generate a oscillatory mode of expansion of a Bl Universe
The oscillation takes place around the critical pdift €) = (0, (2A — kCp) /[k(1— {)]) having
the type of cycle under the conditigwi> kC,/(1+ ). It was shown inl[20, 21] that in case of a
perfect fluid a positivé\ always invokes oscillations in the model, whereas, in tles@nt model
with viscous fluid, it is the case only whehobeys[[3.20). Unlike the case with radiation where
Bl admits a singularity-free oscillatory mode of evolutidrere, in case of a stiff matter one finds
the Bl Universe first expands, reaches its maximum and thatramis into a point, thus giving
rise to space-time singularity.

2. Casewith shear and bulk viscosity

Let us now consider the general case with the shear viscgditging proportional to the ex-
pansion, i.e.,
noO6=3H. (3.22)
We will consider the case when 3
=——H. 3.23
n=-5g (3.23)

In this case from[(3.1b) an@{3]1c) one easily find
3H2 =ke+C4, Cy=const (3.24)

From (3.24) it follows that at the initial state of expansi@rence is large, the Hubble constant
is also large and with the expansion of the Univefisdecreases as doesInserting the relation

@3.22) into the Eqs[{3.1b) one finds

(3.25)

/ dH _t
AHZ+BH+C

where,A= —15(1+), B=15k¢&, andC = 0.5C4({ — 1) — A. For & being a constant (3.P5)
admits sinusoidal solution, i.dH, evolves oscillatory. Further, frori.{3]1a) one finds the egpion
for T, which is exponential one accompanied by a sinusoidal m2gie [

IV. CONCLUSION

We investigated the cosmological solutions to the equatarGeneral Relativity for the ho-
mogeneous anisotropic Bianchi type | model by taking intooant dissipative processes due
to viscosity and Cosmological constart (erm). A detailed analysis showed that the viscosity,
as well as the\ term exhibit essential influence on the character of thetisols. The classifi-
cation of the solutions was pursued for the viscosity beimges power law of energy density,
namely,n = Ae® and& = BeP. It was noticed that foA < 0 the Universe expands forever with
a logarithmic velocityH, which, depending on the viscosity either becomes constantreases
infinitely. In the process behavior of the energy density analogous to that ¢f except the case
whene — 0. ForA > 0, beside the variants mentioned above, there exists fesv ptissibilities:
contraction of the Universe into a point, thus giving riseatepace-time singularity; a regime of
increasing oscillation corresponding to suitable init@hditions. It was also noticed that a special
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case withA > 0, n = 0 andéH = const the model admits a singularity-free oscillatory mode of
expansion.
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FIG. 12: Evolution of the
Hubble constanH with pa-
rameters as in Fid] 1.

14

12

1

H 08
0.6

0.4

0.2

0 05 1 15 2 25 3
0.2 T

FIG. 15: Evolution of the
Hubble constanH with pa-
rameters as in Fid] 2.
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FIG. 18: Evolution of the
Hubble constanH with pa-
rameters as in Fid] 3.
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FIG. 21: Evolution of the
Hubble constanH with pa-
rameters as in Fidl 4.
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FIG. 13: Evolution of the en-
ergy densitye with parame-
ters as in Figl1.
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FIG. 16: Evolution of the en-
ergy densitye with parame-
ters as in Figl2.
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FIG. 19: Evolution of the en-
ergy densitye with parame-
ters as in Figl13.

FIG. 22: Evolution of the en-
ergy densitye with parame-
ters as in FiglK.
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FIG. 14: Evolution of the
volume scaler with param-
eters as in Fid]1.

FIG. 17: Evolution of the
volume scaler with param-
eters as in Fid]2.

FIG. 20: Evolution of the
volume scaler with param-
eters as in Fid]3.
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FIG. 23: Evolution of the
volume scaler with param-
eters as in Fidl4.
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FIG. 25: Evolution of the en-
ergy densitye with parame-
ters as in FiglDhb.

FIG. 28: Evolution of the en-
ergy densitye with parame-
ters as in Figll6.
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FIG. 26: Evolution of the
volume scaler with param-
eters as in Fid]5.
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FIG. 29: Evolution of the
volume scaler with param-
eters as in Fid]6.

FIG. 31: Evolution of the en-

ergy densitye with parame-
ters as in Fig[d7.

FIG. 32: Evolution of the
volume scaler with param-
eters as in Fid]7.
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