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Anisotropic cosmological models with a perfect fluid and a Λ term
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We consider a self-consistent system of Bianchi type-I (BI) gravitational field and

a binary mixture of perfect fluid and dark energy given by a cosmological constant.

The perfect fluid is chosen to be the one obeying either the usual equation of state,

i.e., p = ζε, with ζ ∈ [0, 1] or a van der Waals equation of state. Role of the Λ term

in the evolution of the BI Universe has been studied.

PACS numbers: 04.20.Ha, 03.65.Pm, 04.20.Jb

Keywords: Bianchi type I (BI) model, perfect fluid, van der Waals fluid

I. INTRODUCTION

In view of its importance in explaining the observational cosmology many authors have
considered cosmological models with dark energy. In a recent paper Kremer [1] has modelled
the Universe as a binary mixture whose constitutes are described by a van der Waals fluid and
by a dark energy density. Zlatev et al. [2] showed that ”tracker field”, a form of qiuntessence,
may explain the coincidence, adding new motivation for the quintessence scenario. The
fate of density perturbations in a Universe dominated by the Chaplygin gas, which exhibit
negative pressure was studied by Fabris et al. [3]. Model with Chaplygin gas was also studied
in the Refs. [4, 5]. In doing so the author considered a spatially flat, homogeneous and
isotropic Universe described by a Friedmann-Robertson-Walker (FRW) metric. Since the
theoretical arguments and recent experimental data support the existence of an anisotropic
phase that approaches an isotropic one, it makes sense to consider the models of Universe
with anisotropic back-ground in presence of dark energy. The simplest of anisotropic models,
which nevertheless rather completely describe the anisotropic effects, are Bianchi type-I (BI)
homogeneous models whose spatial sections are flat but the expansion or contraction rate is
direction-dependent. In a number of papers, e.g., [6, 7], we have studied the role of a Λ term
in the evolution of a BI space-time in presence of spinor and/or scalar field with a perfect
fluid satisfying the equation of state p = ζε. In this paper we study the evolution of an
initially anisotropic Universe given by a BI spacetime in presence of a perfect fluid obeying
not only p = ζε, but also the Van der Waals equation of state.

∗Electronic address: saha@thsun1.jinr.ru, bijan@jinr.ru; URL: http://thsun1.jinr.ru/~saha/

http://lanl.arxiv.org/abs/gr-qc/0411080v1
mailto:saha@thsun1.jinr.ru, bijan@jinr.ru
http://thsun1.jinr.ru/~saha/


2 Bijan Saha lambda.tex July 27, 2011

II. BASIC EQUATIONS

The Einstein field equation on account of the cosmological constant we write in the form

Rν
µ −

1

2
δν
µR = κT ν

µ + δν
µΛ. (2.1)

Here Rν
µ is the Ricci tensor, R is the Ricci scalar and κ is the Einstein gravitational con-

stant. As was mentioned earlier, Λ is the cosmological constant. To allow a steady state
cosmological solution to the gravitational field equations Einstein [8] introduced a funda-
mental constant, known as cosmological constant or Λ term, into the system. Soon after E.
Hubble had experimentally established that the Universe is expanding, Einstein returned to
the original form of his equations citing his temporary modification of them as the biggest
blunder of his life. Λ term made a temporary comeback in the late 60’s. Finally after the
pioneer paper by A. Guth [9] on inflationary cosmology researchers began to study the mod-
els with Λ term with growing interest. Note that in our previous papers [6, 7] we studied
the Einstein field equations where the cosmological term appears with a negative sign. Here
following the original paper by Einstein and one by Sahni [10] we choose the sign to be
positive. In this paper a positive Λ corresponds to the universal repulsive force, while a
negative one gives an additional gravitational force. Note that a positive Λ is often taken
to a form of dark energy.

We study the gravitational field given by an anisotropic Bianchi type I (BI) cosmological
model and choose it in the form:

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.2)

with the metric functions a, b, c being the functions of time t only.
The Einstein field equations (2.1) for the BI space-time in presence of the Λ term now

we write in the form

b̈

b
+

c̈

c
+

ḃ

b

ċ

c
= κT 1

1 + Λ, (2.3a)

c̈

c
+

ä

a
+

ċ

c

ȧ

a
= κT 2

2 + Λ, (2.3b)

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
= κT 3

3 + Λ, (2.3c)

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a
= κT 0

0 + Λ. (2.3d)

Here over-dot means differentiation with respect to t. The energy-momentum tensor of the
source is given by

T ν
µ = (ε + p)uµu

ν − pδν
µ, (2.4)

where uµ is the flow vector satisfying

gµνu
µuν = 1. (2.5)

Here ε is the total energy density of a perfect fluid and/or dark energy density, while p is the
corresponding pressure. p and ε are related by an equation of state which will be studied
below in detail. In a co-moving system of coordinates from (2.4) one finds

T 0
0 = ε, T 1

1 = T 2
2 = T 3

3 = −p. (2.6)
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In view of (2.6) from (2.3) one immediately obtains [6]

a(t) = D1τ
1/3 exp

[

X1

∫

dt

τ(t)

]

, (2.7a)

b(t) = D2τ
1/3 exp

[

X2

∫

dt

τ(t)

]

, (2.7b)

c(t) = D3τ
1/3 exp

[

X3

∫

dt

τ(t)

]

. (2.7c)

Here Di and Xi are some arbitrary constants obeying

D1D2D3 = 1, X1 + X2 + X3 = 0,

and τ is a function of t defined to be

τ = abc. (2.8)

From (2.3) for τ one find
τ̈

τ
=

3κ

2

(

ε − p
)

+ 3Λ. (2.9)

On the other hand the conservation law for the energy-momentum tensor gives

ε̇ = −
τ̇

τ

(

ε + p
)

. (2.10)

After a little manipulations from (2.9) and (2.10) we find

τ̇ 2 = 3(κε + Λ)τ 2 + C1, (2.11)

with c1 being an arbitrary constant. Let us now, in analogy with Hubble constant, define

τ̇

τ
=

ȧ

a
+

ḃ

b
+

ċ

c
= 3H. (2.12)

On account of (2.12) from (2.11) one derives

κε = 3H2 − Λ − C1/(3τ 2). (2.13)

It should be noted that the energy density of the Universe is a positive quantity. It is
believed that at the early stage of evolution when the volume scale τ was close to zero, the
energy density of the Universe was infinitely large. On the other hand with the expansion
of the Universe, i.e., with the increase of τ , the energy density ε decreases and an infinitely
large τ corresponds to a ε close to zero. Say at some stage of evolution ε is too small to be
ignored. In that case from (2.13) follows

3H2 − Λ → 0. (2.14)

As it is seen from (2.14) in this case Λ is essentially non-negative. We can also conclude
from (2.14) that in absence of a Λ term beginning from some value of τ the evolution of
the Universe comes stand-still, i.e., τ becomes constant, since H becomes trivial, whereas in
case of a positive Λ the process of evolution of the Universe never comes to a halt. Moreover
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it is believed that the presence of the dark energy (which can be explained with a positive
Λ as well) results in the accelerated expansion of the Universe. As far as negative Λ is
concerned, its presence imposes some restriction on ε, namely, ε can never be small enough
to be ignored. It means in that case there exists some upper limit for τ as well (note that
τ is essentially nonnegative, i.e. bound from below). In our previous papers we came to the
same conclusion [6, 7] [with a positive Λ which in the present paper appears to be negative].

Inserting (2.12) and (2.13) into (2.9) one now finds

Ḣ = −
1

2

(

3H2 − Λ +
C1

3τ 2
+ κp

)

= −
κ

2

(

ε + p
)

−
C1

3τ 2
. (2.15)

In view of (2.13) from (2.15) follows that if the perfect fluid is given by a stiff matter where
p = ε, the corresponding solution does not depend on the constant C1.

Let us now go back to the Eq. (2.11). It is in fact the first integral of (2.9) and can be
written as

τ̇ = ±
√

C1 + 3(κε + Λ)τ 2 (2.16)

On the other hand, rewriting (2.10) in the form

ε̇

ε + p
=

τ̇

τ
, (2.17)

and taking into account that p is a function of ε, one concludes that the right hand side of
the Eq. (2.9) is a function of τ only, i.e.,

τ̈ =
3κ

2

(

ε − p
)

τ + 3Λτ = F(τ). (2.18)

From a mechanical point of view Eq. (2.18) can be interpreted as an equation of motion
of a single particle with unit mass under the force F(τ). Then the following first integral
exists [7]:

τ̇ =
√

2[E − U(τ)] . (2.19)

Here E can be viewed as energy and U(τ) is the potential of the force F . Comparing the
Eqs. (2.16) and (2.19) one finds E = C1/2 and

U(τ) = −
3

2
(κε + Λ)τ 2. (2.20)

Let us finally write the solution to the Eq. (2.9) in quadrature:

dτ
√

C1 + 3(κε + Λ)τ 2
= t + t0, (2.21)

where the integration constant t0 can be taken to be zero, since it only gives a shift in time.
In what follows we study the Eqs. (2.9) and (2.10) for perfect fluid obeying different

equations of state.

III. UNIVERSE FILLED WITH PERFECT FLUID

In this section we consider the case when the source field is given by a perfect fluid. Here
we study two possibilities: (i) the energy density and the pressure of the perfect fluid are
connected by a linear equation of state; (ii) the equation of state is a nonlinear (Van der
Waals) one.
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A. Universe as a perfect fluid with ppf = ζεpf

In this subsection we consider the case when the source field is given by a perfect fluid
fluid obeying the equation of state

ppf = ζ εpf , (3.1)

where ζ is a constant and lies in the interval ζ ∈ [0, 1]. Depending on its numerical value,
ζ describes the following types of Universes [11]

ζ = 0, (dust Universe), (3.2a)

ζ = 1/3, (radiation Universe), (3.2b)

ζ ∈ (1/3, 1), (hard Universes), (3.2c)

ζ = 1, (Zel′dovich Universe or stiff matter). (3.2d)

In view of (3.1), from (2.10) for the energy density and pressure one obtains

εpf = ε0/τ
(1+ζ), ppf = ζε0/τ

(1+ζ), (3.3)

where ε0 is the constant of integration. For τ from (2.21) one finds

dτ
√

C1 + 3(κε0τ 1−ζ + Λτ 2)
= t. (3.4)

As one sees, the positivity of the radical in (3.4) for a negative Λ imposes some restriction
on the upper value of τ , i.e., τ should be bound from above as well. In Fig. 1 the graphical
view of the potential U(τ) is illustrated for a negative Λ. As it was mentioned earlier, E or
C1 in case of ζ = 1 does not play any role. Universe in this case initially expands, reaches
to the maximum and then begin to contract finally giving rise to a space-time singularity [cf
Fig. 2]. For the other cases depending on the choice of E expansion of the Universe is either
non-periodic [Fig. 3] with a singularity at the end or oscillatory one without space-time
singularity [Fig. 2]. In Fig. 4 we demonstrate the evolution of the BI Universe with a
positive Λ. In this case the Universe expands exponentially, the initial anisotropy quickly
dies away and the BI Universe evolves into a isotropic FRW one. There does not any upper
bound for τ in case of a positive Λ. Note that in the Figs. (1 - 4) d, r, h and s stand for
dust, radiation, hard Universe and stiff matter, respectively.

In absence of the Λ term one immediately finds

τ = At2/(1+ζ), (3.5)

with A being some integration constant. As one sees from (2.7), in absence of a Λ term,
for ζ < 1 the initially anisotropic Universe eventually evolves into an isotropic FRW one,
whereas, for ζ = 1, i.e., in case of stiff matter the isotropization does not take place.

B. Universe as a van der Waals fluid

Here we consider the case when the source field is given by a perfect fluid with a van der
Waals equation of state in absence of dissipative process. The pressure of the van der Waals
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FIG. 1: View of the potential U(τ). As one

sees in case of stiff matter this potential al-

lows only non-periodic solution.

FIG. 2: Evolution of volume scale τ with a

negative Λ and C = −0.1. As one sees, in

this case the model with perfect fluid given

by dust, radiation and hard Universe allow

oscillation, whereas, stiff matter gives rise

to a non-periodic solution.

FIG. 3: Evolution of volume scale τ with a

negative Λ and C = 0. In this case the model

with perfect fluid given by dust, radiation,

hard Universe and a stiff matter gives rise to

a non-periodic solution.

FIG. 4: Evolution of the Universe with a

positive positive Λ. In this case indepen-

dent to the choice of zeta the expansion of

the Universe is always exponential.

fluid pw is related to its energy density εw by [1]

pw =
8Wεw

3 − εw
− 3ε2

w. (3.6)

In (3.6) the pressure and the energy density is written in terms of dimensionless reduced
variables and W is a parameter connected with a reduced temperature. In the Figs. 5 and
6 the energy density and the pressure of the system are illustrated with a negative and a
positive Λ term as well as in absence of it.
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FIG. 5: View of energy density ε and pres-

sure p in case of a Van der Waals fluid with

a negative Λ.

FIG. 6: View of energy density ε and pres-

sure p in case of Van der Waals fluid with

Λ ≥ 0.

FIG. 7: Evolution of τ(t) with the BI Uni-

verse filled with Van der Waals fluid. Inde-

pendent to the sign of Λ the model provides

provides with exponentially expanding Uni-

verse.

FIG. 8: Evolution of the BI Universe filled

with different types of perfect fluid in ab-

sence of a Λ term. As one sees, in case of

Van der Waals fluid τ(t) grows faster at the

early stage, then slows down with time.

Inserting (3.6) into (2.15) on account of (2.13) one finds

Ḣ = −
{3H2 − Λ − C1/(3τ 2)}[(3 + 8W )κ − {3H2 − Λ − C1/(3τ 2)}]

2(3κ − {3H2 − Λ − C1/(3τ 2)})

+
3

2κ

(

{3H2 − Λ − C1/(3τ 2)}
)2

. (3.7)

It can be easily verified that the Eq. (3.7) in absence of λ term and C1 = 0 and κ = 3
coincides with that given in [1] :

Ḣ = −
3

2

[

H2 +
8WH2

3 − H2
− 3H4

]

. (3.8)
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The solution of the second-order differential equation (3.7) for H(t) can be found by
specifying the initial value for H(t) at t = 0, for a given value of parameter W . Here we
graphically present some results concerning the evolution of BI Universe with a Van der
Waals fluid. In Fig. 7 we compare the evolution of τ with and without Λ term. As one
sees, the character of evolution does not depend on the sign of Λ. In all cases we find
exponentially expanding Universe, though the rapidity of growth depends on Λ. The Fig. 8
gives the comparison of the expansion of τ with perfect fluid obeying different equations of
state.

IV. CONCLUSION

The evolution of an anisotropic Universe given by a Bianchi type I cosmological model
is studied in presence of a perfect fluid and a Λ term. It has been shown that in case of
a perfect fluid obeying p = ζε, where p and ε are the pressure and energy density of the
fluid, respectively, a negative Λ may generate an oscillation in the system thus giving rise
to a singularity-free mode of expansion. Introduction of a positive Λ in this case results
in a rapid expansion of the Universe. If the Universe is filled with a Van der Waals fluid,
no oscillatory or non-periodic mode of expansion occurs. Independent to the sign of Λ the
Universe in this case expands exponentially.
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