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Spinor field and accelerated regimes in cosmology
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A self-consistent system of interaction nonlinear spinor and scalar fields within the scope
of a BI cosmological model filled with perfect fluid is considered. The role of spinor field
in the evolution of the Universe is studied. It is shown that the spinor field nonlinearity can
generate a negative effective pressure, which can be seen asan alternative source for late
time acceleration of the Universe.
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I. INTRODUCTION

The accelerated mode of expansion of the present day Universe encourages many researchers
to introduce different kind of sources that is able to explain this. Among them most popular is the
dark energy given by aΛ term [1, 2, 3], quintessence [4, 5, 6, 7], Chaplygin gas [8, 9]. Recently
cosmological models with spinor field have been extensivelystudied by a number of authors in a
series of papers [10, 11, 12, 13, 14, 15]. The principal motive of the papers [10, 11, 12, 13, 14]
was to find out the regular solutions of the corresponding field equations. In some special cases,
namely with a cosmological constant (Λ term) that plays the role of an additional gravitation field,
we indeed find singularity-free solutions. It was also foundthat the introduction of nonlinear
spinor field results in a rapid growth of the Universe. This allows us to consider the spinor field
as a possible candidate to explain the accelerated mode of expansion. Note that similar attempt is
made in a recent paper by Kremeret. al. [16]. In this paper we study the role of a spinor field in the
late-time acceleration of the Universe. To avoid lengthy calculations, we mainly confine ourselves
to the study of master equation describing the evolution of BI Universe. We here give the solutions
to the spinor and scalar field equations symbolically, for details one can consult [13, 14].

II. BASIC EQUATIONS: A BRIEF JOURNEY

We consider a self consistent system of nonlinear spinor andscalar fields within the scope of a
Bianchi type-I gravitational field filled with a perfect fluid. The spinor and the scalar field is given
by the Lagrangian

L =
i
2

[

ψ̄γµ∇µψ −∇µψ̄γµ ψ
]

−mψ̄ψ +F +
1
2
(1+λ1F1)ϕ,αϕ ,α , (2.1)
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whereλ is the coupling constant andF andF1 are some arbitrary functions of invariants generated
from the real bilinear forms of a spinor field. Here we assumeF = F(I ,J) andF1 = F1(I ,J) with
I = S2, S= ψ̄ψ, J = P2 andP = iψ̄γ5ψ.

The gravitational field is chosen in the form

ds2 = dt2−a2
1dx2

1−a2
2dx2

2−a2
3dx2

3, (2.2)

whereai are the functions oft only and the speed of light is taken to be unity. We also define

τ = a1a2a3. (2.3)

We consider the spinor and scalar field to be space independent. In that case for the spinor,
scalar and metric functions we find the following expressions [14].

For F = F(I) we findS= C0/τ with C0 being an integration constant. The components of the
spinor field in this case read

ψ1,2(t) = (C1,2/
√

τ)e−iβ , ψ3,4(t) = (C3,4/
√

τ)eiβ , (2.4)

with the integration constants obeyingC0 asC0 = C2
1 +C2

2 −C2
3 −C2

4. Hereβ =
∫

(m−D)dt.
For F = F(J) in case of massless spinor field we findP = D0/τ. The corresponding compo-

nents of the spinor field in this case read: with

ψ1,2 =
(

D1,2eiσ + iD3,4e−iσ)

/
√

τ,

(2.5)
ψ3,4 =

(

iD1,2eiσ +D3,4e−iσ)

/
√

τ,

with D0 = 2(D2
1+D2

2−D2
3−D2

4).
For the scalar field we find

ϕ = C
∫

dt
τ(1+2λ1F1)

, C = const. (2.6)

Solving the Einstein equation for the metric functions we find

ai(t) = Di [τ(t)]1/3exp
[

Xi

t
∫

0

[τ(t ′)]−1dt′
]

, (2.7)

with the integration constants obeying

D1D2D3 = 1, X1+X2+X3 = 0,

As one sees, the spinor, scalar and metric functions are in some functional dependence ofτ. It
should be noted that besides these, other physical quantities such as spin-current, charge etc. and
invariant of space-time are too expressed viaτ [13, 14]. It should be noted that at any space-time
points whereτ = 0 the spinor, scalar and gravitational fields become infinity, hence the space-time
becomes singular at this point [14]. So it is very important to study the equation forτ (which can
be viewed as master equation) in details, exactly what we shall do in the section to follow. In doing
so we analyze the role of spinor field in the character of evolution.
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III. EVOLUTION OF BI UNIVERSE AND ROLE OF SPINOR FIELD

The equation forτ is found from the Einstein one:

Rν
µ − 1

2
δ ν

µ R= κTν
µ +δ ν

µ Λ. (3.1)

The details can be found in [13]. This equation indeed describes the evolution of the universe and
has the following general form:

τ̈
τ

=
3
2

κ
(

T1
1 +T0

0

)

+3Λ, (3.2)

whereΛ is the cosmological constant,Tν
µ is the energy-momentum tensor. Note also that here a

positiveΛ corresponds to the universal repulsive force, while a negative one gives an additional
gravitational force. Note that a positiveΛ is often considered to be a form of dark energy. Though
our main object is to verify the role of spinor field in the evolution of the Universe, we include the
Λ term in order to explain some results obtained later. For this purpose we recall that the Bianchi
identityGν

µ;ν = 0 gives

Ṫ0
0 = − τ̇

τ
(

T0
0 −T1

1

)

. (3.3)

After a little manipulation from (3.2) and (3.3) one finds thefollowing expression forT0
0 :

κT0
0 = 3H2−Λ−C00/τ2, (3.4)

where the definition of the generalized Hubble constantH as

H =
1
3

τ̇/τ, (3.5)

Let us now stop here for a while. Consider the case whenΛ = 0. At the moment when expansion
rate is zero (it might be at a time prior to the ”Big Bang”, or sometimes in the far future when the
universe cease to expand we haveH = 0. Then the nonnegativity ofT0

0 suggests thatC00 ≤ 0. Let
us now consider another case whenτ is large enough for the term 1/τ2 to be omitted. As we know
T0

0 (the energy density), decreases with the increase ofτ. If τ is big enough forT0
0 to be neglected,

from (3.4) we find
3H2−Λ → 0.

It means forτ to be infinitely large,Λ ≥ 0. In case ofΛ = 0 we find that beginning from some
value of τ the rate of expansion of the Universe becomes trivial, that is the universe does not
expand with time. Whereas, forΛ > 0 the expansion process continues forever. As far as negative
Λ is concerned, its presence imposes some restriction on the energy densityT0

0 , namely,T0
0 can

never be small enough to be ignored. It imposes some restrictions onτ, precisely, there exists
some upper limit forτ (note thatτ is essentially nonnegative, i.e. bound from below). Thus we
see that a negativeΛ, depending on the choice of parameters can give rise to an oscillatory mode
of expansion. Thus we come to the following conclusion:

Let Tν
µ be the source of the Einstein field equation; T0

0 is the energy density and T1
1 , T2

2 , T3
3

are the principal pressure and T11 = T2
2 = T3

3 . An ever-expanding BI Universe may be obtained if
and only if theΛ term is positive (describes a repulsive force and can be viewed as a form of dark
energy) and is introduced into the system as in(3.1).
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It should be noted that the other types of dark energy such as quintessence, Chaplygin gas enters
into the system as a part ofTν

µ and corresponding energy density decreases with the increase of
the Universe, hence cannot be considered as source for ever-expanding Universe.

Let us now go back to the Eq. (3.2). The components of the energy-momentum tensor read:

T0
0 = mS−F +

1
2
(1+2λ1F1)ϕ̇2 + εp f ,

(3.6)

T1
1 = T2

2 = T3
3 = DS+G P−F − 1

2
(1+2λ1F1)ϕ̇2− pp f ,

where,D = 2SdF/dI + λ1Sϕ̇2dF1/dI andG = 2PdF/dJ+ λ1Pϕ̇2dF1/dJ. In (3.6) εp f and pp f
are the energy density and pressure of the perfect fluid, respectively and related by the equation of
statepp f = ζ εp f , whereζ ∈ [0, 1].

Let us now study the equation forτ in details and clarify the role of material field in the
evolution of the Universe. For simplicity we consider the case when bothF andF1 are the functions
of I (S) only. For simplicity we setC = 1 andC0 = 1. Note that from the Bianchi identity forεp f

and pp f we find εp f = ε0/τ1+ζ and pp f = ζ0ε0/τ1+ζ . Further we setε0 = 1. Assuming that
F = λSq andF1 = Sr , for the effective energy density and effective pressure wefind

T0
0 =

m
τ
− λ

τq +
τ r−2

2(2λ1+ τ r)
+

1

τ1+ζ +Λ ≡ ε

(3.7)

T1
1 =

(q−1)λ
τq − [(2− r)λ1+ τ r ]τ r−2

2(2λ1+ τ r)2 − ζ
τ1+ζ −Λ ≡ p.

Taking into account thatT0
0 andT1

1 are the functions ofτ, only, the Eq. (3.2) can now be presented
as

τ̈ = F (q1,τ), (3.8)

where we define

F (q1,τ) = (3/2)κ
(

m+λ (q−2)τ1−q+λ1rτ r−1/2(2λ1+ τ r)2+(1−ζ )/τζ
)

+3Λτ, (3.9)

whereq1 = {κ,m,λ ,λ1,q, r,ζ} is the set of problem parameters. The En. (3.8) allows the follow-
ing first integral:

τ̇ =
√

2[E−U (q1,τ)] (3.10)

where we denote

U (q1,τ) = −3
2

[

κ
(

mτ −λ/τq−2−λ1/2(2λ1+ τ r)+ τ1−ζ
)

−Λτ2
]

. (3.11)

From a mechanical point of view Eq. (3.8) can be interpreted as an equation of motion of a single
particle with unit mass under the forceF (q1,τ). In (3.10)E is the integration constant which can
be treated as energy level, andU (q1,τ) is the potential of the forceF (q1,τ). We solve the Eq.
(3.8) numerically using Runge-Kutta method. The initial value of τ is taken to be a reasonably
small one, while the corresponding first derivativeτ̇ is evaluated from (3.10) for a givenE. As
one sees, the positivity of the radical imposes some restriction on the value ofτ, namely in case
of λ > 0 andq ≥ 2 the value ofτ cannot be too close to zero at any space-time point. It is
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clearly seen from the graphical view of the potential [cf. Fig. 1]. Thus we can conclude that for
some special choice of problem parameters the introductionof nonlinear spinor field given by a
self-action provides singularity-free solutions. For numerical solutions we setκ = 1, spinor mass
m= 1, the power of nonlinearity we choose asq = 4, r = 4 and for perfect fluid we setζ = 1/3
that corresponds to a radiation. Here, in the figures we use the following notations:
1 corresponds to the case with self-action and interaction,i.e.,λ = 1, λ1 = 1;
2 corresponds to the case with self-action only, i.e.,λ = 1, λ1 = 0;
3 corresponds to the case with interaction only, i.e.,λ = 0, λ1 = 1.

FIG. 1: View of the potentialU (τ) [Eq. (3.11)]
as a function ofτ corresponding to three differ-
ent cases.

FIG. 2: Effective energy density and effective
pressure corresponding to three different cases.

As one sees from Fig. 1, in presence of a self-action of the spinor field, there occurs an infinitely
high barrier asτ → 0, it means that in the case considered hereτ cannot be trivial [if treated
classically, the Universe cannot approach to a point unlessit stays at an infinitely high energy
level]. Thus we see, the nonlinearity of the spinor field provided by the self-action generates
singularity-free evolution of the Universe. But, as it was shown in [13], this regularity can be
achieved only at the expense of dominant energy condition inHawking-Penrose theorem. It is
also clear that if the nonlinearity is induced by a scalar field, τ may be trivial as well, thus giving
rise to space-time singularity. It should be noted that introduction of a positiveΛ just accelerates
the speed of expansion, whereas, a negativeΛ depending of the choice ofE generates oscillatory
or non-periodic mode of evolution. These cases are thoroughly studied in [13, 14]. As it was
shown in [14] the regular solution obtained my means of a negative Λ is case of interaction does
not result in broken dominant energy condition. In Fig. 2 we plot the effective energy density
and effective pressure of the matter field. In case of self-action pressure is initially positive, but
with the expansion of the Universe it becomes negative. In case of interaction field the pressure
is always negative. It means, the models with nonlinear spinor field and interacting spinor and
scalar fields can to some extent explain the late time acceleration of the Universe. As one sees, the
corresponding quantities (potential, energy density and pressure) differs only at the initial stage
depending on the type of nonlinearity.

In Fig. 3 we graphically justified our assumptions about the role ofΛ term, namely, in absence
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FIG. 3: Evolution of the Hubble constant as the
Universe expands.

FIG. 4: Expansion of the BI Universe with time
for three different cases.

of the cosmological constant,H → 0 as the Universe expands. Finally, in Fig. 4 we illustrate the
evolution of the Universe. As one sees, the character of evolution differs only at the initial stage
depending on the choice of nonlinearity.

Finally we would like to emphasize that here we restrict within three cases only. Cases with
nontrivialΛ term is not considered, since they were thoroughly studied in previous papers [3, 13,
14]. Our main aim here was to emphasize the new role of spinor field to explain the late time
acceleration of the Universe.

IV. CONCLUSION

We considered a system of interaction nonlinear spinor and scalar fields within the scope of
a BI cosmological model filled with perfect fluid. It is shown that the spinor field nonlinearity
can generate a negative effective pressure, which can be seen as an alternative source for late time
acceleration of the Universe. Here, beside spinor and scalar fields, we consider usual perfect fluid
obeyingpp f = ζ εp f . We plan to consider a few other fluids in near future that can provide an
initial inflation as well.
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