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Nonlinear spinor field in Bianchi type-I cosmology: accelerated regimes
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A self-consistent system of interacting nonlinear spinor and scalar fields within the scope
of a Bianchi type-I cosmological model filled with perfect fluid is considered. Exact self-
consistent solutions to the corresponding field equations are obtained. The role of spinor
field in the evolution of the Universe is studied. It is shown that the spinor field gives rise to
an accelerated mode of expansion of the Universe. At the early stage of evolution the spinor
field nonlinearity generates the acceleration while at the later stage it is done by the nonzero
spinor mass.
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I. INTRODUCTION

The accelerated mode of expansion of the present day Universe encourages many researchers
to introduce different kind of sources that is able to explain this. Among them most popular is the
dark energy given by aΛ term [1, 2, 3], quintessence [4, 5, 6, 7], Chaplygin gas [8, 9]. Recently
cosmological models with spinor field have been extensivelystudied by a number of authors in a
series of papers [10, 11, 12, 13, 14, 15]. The principal motive of the papers [10, 11, 12, 13, 14]
was to find out the regular solutions of the corresponding field equations. In some special cases,
namely with a cosmological constant (Λ term) that plays the role of an additional gravitation field,
we indeed find singularity-free solutions. It was also foundthat the introduction of nonlinear
spinor field results in a rapid growth of the Universe. This allows us to consider the spinor field
as a possible candidate to explain the accelerated mode of expansion. Note that similar attempt is
made in a recent paper by Kremeret. al. [16]. In this paper we study the role of a spinor field
in generating an accelerated mode of expansion of the Universe. Since similar systems, though
from different aspects were thoroughly studied in [13, 14],to avoid lengthy calculations regarding
spinor and scalar fields, we mainly confine ourselves to the study of master equation describing
the evolution of BI Universe. We here give the solutions to the spinor and scalar field equations,
details of these solutions can be found in [13, 14].

II. BASIC EQUATIONS: A BRIEF JOURNEY

We consider a self consistent system of nonlinear spinor andscalar fields within the scope of a
Bianchi type-I gravitational field filled with a perfect fluid. The spinor and the scalar field is given
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by the Lagrangian

L =
i
2

[

ψ̄γµ∇µψ −∇µψ̄γµ ψ
]

−mψ̄ψ +F +
1
2
(1+λ1F1)ϕ,αϕ ,α , (2.1)

whereλ1 is the coupling constant andF andF1 are some arbitrary functions of invariants generated
from the real bilinear forms of a spinor field. Here we assumeF = F(I ,J) andF1 = F1(I ,J) with
I = S2, S= ψ̄ψ, J = P2 andP = iψ̄γ5ψ.

The gravitational field is chosen in the form

ds2 = dt2−a2
1dx2

1−a2
2dx2

2−a2
3dx2

3, (2.2)

whereai are the functions oft only and the speed of light is taken to be unity. We also define

τ = a1a2a3. (2.3)

We consider the spinor and scalar field to be space independent. In that case for the spinor and
the scalar fields and metric functions we find the following expressions [14].

For F = F(I) we findS= C0/τ with C0 being an integration constant. The components of the
spinor field in this case read

ψ1,2(t) = (C1,2/
√

τ)e−iβ , ψ3,4(t) = (C3,4/
√

τ)eiβ , (2.4)

with the integration constants obeyingC0 asC0 = C2
1 +C2

2 −C2
3 −C2

4. Hereβ =
∫

(m−D)dt with
D = dF/dS+(λ1ϕ̇2/2)dF1/dS.

For F = F(J) in case of massless spinor field we findP = D0/τ. The corresponding compo-
nents of the spinor field in this case read: with

ψ1,2 =
(

D1,2eiσ + iD3,4e−iσ)

/
√

τ,

(2.5)
ψ3,4 =

(

iD1,2eiσ +D3,4e−iσ)

/
√

τ,

with D0 = 2(D2
1+D2

2−D2
3−D2

4). Hereσ =
∫

G dt with G = dF/dP+(λ1ϕ̇2/2)dF1/dP.
For the scalar field we find

ϕ = C
∫

dt
τ(1+λ1F1)

+C1, (2.6)

whereC andC1 are the integration constants.
Solving the Einstein equation for the metric functions we find

ai(t) = Ai [τ(t)]1/3exp
[

Xi

∫

[τ(t ′)]−1dt′
]

, (2.7)

with the integration constantsAi andXi obeyingA1A2A3 = 1 andX1 + X2 + X3 = 0. Note that
to evaluate the metric functions at any given timet̃ we should first integrate

∫ dt
τ , and only then

substitutet by t̃.
The theoretical arguments [17] and recent experimental data which support the existence of

an anisotropic phase that approaches an isotropic one, led us to consider the models of Universe
with anisotropic background. On the other hand the isotropyof the present-day Universe lead
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us to study how the initially anisotropic BI space-time can evolve into an isotropic Friedman-
Robertson-Walker (FRW) one. Since for the FRW Universea1(t) = a2(t) = a3(t), for the BI
universe to evolve into a FRW one we should setD1 = D2 = D3 = 1. Moreover, the isotropic
nature of the present Universe leads to the fact that the three other constantsXi should be close to
zero as well, i.e.,|Xi| << 1, (i = 1,2,3), so thatXi

∫

[τ(t)]−1dt → 0 for t < ∞ (for τ(t) = tn with
n > 1 the integral tends to zero ast → ∞ for anyXi). The rapid growth of the Universe due to the
introduction of the nonlinear spinor field to the system results in the earlier isotropization.

As is seen from (2.4), (2.5), (2.6) and (2.7), the spinor, scalar and metric functions are in some
functional dependence ofτ. It should be noted that besides these, other physical quantities such as
spin-current, charge etc. and invariant of space-time are too expressed viaτ [13, 14]. It should be
noted that at any space-time points whereτ = 0 the spinor, scalar and gravitational fields become
infinity, hence the space-time becomes singular at this point [14]. So it is very important to study
the equation forτ (which can be viewed as master equation) in details, exactlywhat we shall do in
the section to follow. In doing so we analyze the role of spinor field in the character of evolution.

III. EVOLUTION OF BI UNIVERSE AND ROLE OF SPINOR FIELD

In this section we study the role of spinor field in the evolution of the Universe. But first of all
let me qualitatively show the differences that occur at the later stage of expansion depending on
how the sources of the gravitational field were introduced inthe system. In doing so we write the
Einstein equation in the following form:

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= κT1

1 +Λ, (3.1a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
= κT2

2 +Λ, (3.1b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= κT3

3 +Λ, (3.1c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
= κT0

0 +Λ. (3.1d)

HereΛ is the cosmological constant,Tν
µ is the energy-momentum tensor of the source field. The

Eq. (3.1) is thoroughly studied in [13]. After a little manipulation from (3.1) one finds the equation
for τ which is indeed the acceleration equation and has the following general form:

τ̈
τ

=
3
2

κ
(

T1
1 +T0

0

)

+3Λ, (3.2)

Note also that here a positiveΛ corresponds to the universal repulsive force which is oftenconsid-
ered as a form of dark energy, while a negative one gives an additional gravitational force.

The Bianchi identityGν
µ;ν = 0 in our case gives

Ṫ0
0 = − τ̇

τ
(

T0
0 −T1

1

)

. (3.3)

After a little manipulation from (3.2) and (3.3) one finds thefollowing expression forT0
0 :

κT0
0 = 3H2−Λ−C00/τ2, (3.4)
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where the definition of the generalized Hubble constantH as

3H =
τ̇
τ

=
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
= H1+H2+H3. (3.5)

Let us analyze the relation (3.4) in details. Consider the case whenΛ = 0. At the moment when
the expansion rate is zero (it might be at a time prior to the ”Big Bang”, or sometimes in the far
future when the universe cease to expand we haveH = 0.) the nonnegativity ofT0

0 suggests that
C00≤ 0. Before considering the case for largeτ we should like to study the Eq. (3.3) in detail. For
the spinor and scalar fields chosen in this paper they are identically fulfilled. If this is not the case,
an additional equation, know as equation of state, is applied to connect pressure (T1

1 ) with energy
density (T0

0 ). In the long run from (3.3) one finds something like(T0
0 )bτ = const., whereb is some

constant (in case of perfect fluidb = 1+ ζ ). Thus we see that the energy density of the source
field introduced into the system as above decreases with the growth of τ. Now if we consider the
case whenτ is big enough forT0

0 to be neglected, from (3.4) we find

3H2−Λ → 0. (3.6)

On account of (3.5) from (3.6) one finds

τ → exp[
√

3Λ t]. (3.7)

From (3.6) and (3.7) it follows that forτ to be infinitely large,Λ ≥ 0. In case ofΛ = 0 we find that
beginning from some value ofτ the rate of expansion of the Universe becomes trivial, that is the
universe does not expand with time. Whereas, forΛ > 0 the expansion process continues forever.
As far as negativeΛ is concerned, its presence imposes some restriction onτ, namely, there exists
some upper limit forτ (note thatτ is essentially nonnegative, i.e. bound from below). Thus we
see that a negativeΛ, depending on the choice of parameters can give rise to an oscillatory mode
of expansion [13]. Thus we can conclude the following :

Let Tν
µ be the source of the Einstein field equation; T0

0 is the energy density and T1
1 , T2

2 , T3
3

are the principal pressure and T11 = T2
2 = T3

3 . An ever-expanding BI Universe may be obtained if
and only if theΛ term is positive (describes a repulsive force and can be viewed as a form of dark
energy) and is introduced into the system as in(3.1) or if the source field introduced as a part of
energy-momentum tensor behaves like aΛ term asτ → ∞.

It should be noted that the sources of the gravitational fieldsuch as spinor, scalar and electro-
magnetic fields, perfect or imperfect fluids, as well as dark energy such as quintessence, Chaply-
gin gas are introduced into the system as parts of the total energy-momentum tensorTν

µ . It is also
known that the dark energy was introduced into the system to explain the late time acceleration of
the Universe. To show that though the dark energy is introduced into the system as a part of total
energy-momentum tensor, it still behaves like aΛ term asτ → ∞, we write them explicitly. The
quintessence and Chaplygin gas are given by the following equation of states:

pq = wεq, w∈ [−1,0], (3.8a)
pc = −A/εc, A > 0. (3.8b)

Note that the energy densities of the quintessence and Chaplygin gas are related toτ as [9]

εq = ε0q/τ1+w, w∈ [−1,0], (3.9a)

εc =
√

ε0c/τ2+A, A > 0. (3.9b)
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From (3.9) and (3.8) follows thatεc →
√

A andpc →−
√

A asτ → ∞. In case of a quintessence,
for w > −1, both energy density and pressure tend to zero asτ tends to infinity. But forw = −1
(sometimes known as phantom matter) we haveεq → ε0q and pq → −ε0q asτ → ∞. It means a
quintessence withw = −1 and Chaplygin gas behave like aλ term whenτ → ∞ and hence can
give rise to an ever expanding Universe.

Before solving the equation forτ we have to write the components of the energy-momentum
tensor of the source fields in details:

T0
0 = mS−F +

1
2
(1+λ1F1)ϕ̇2 + εp f ,

(3.10)

T1
1 = T2

2 = T3
3 = DS+G P−F − 1

2
(1+λ1F1)ϕ̇2− pp f ,

where,D = 2SdF/dI +λ1Sϕ̇2dF1/dI andG = 2PdF/dJ+λ1Pϕ̇2dF1/dJ. In (3.10)εp f andpp f
are the energy density and pressure of the perfect fluid, respectively and related by the equation of
state

pp f = ζ εp f , ζ ∈ [0, 1]. (3.11)

Let us now study the equation forτ in details and clarify the role of material field in the
evolution of the Universe. For simplicity we consider the case when bothF andF1 are the functions
of I (S) only. We also setC = 1 andC0 = 1. Thanks to the spinor field equations and those for the
invariants of the bilinear spinor form, the energy-momentum conservation law for the spinor field
satisfied identically [13]. As a result the Eq. (3.3) now reads [13]

ε̇ +
τ̇
τ
(ε + p) = 0. (3.12)

In view of (3.11) from (3.12) for the energy density and pressure of the perfect fluid one finds

εp f =
ε0

τ1+ζ , pp f =
ζ0ε0

τ1+ζ .

Further we setε0 = 1. Assume thatF = λSq andF1 = Sr whereλ is the self-coupling constant.
As it was shown in [13], the spinor field equation, more precisely the equations for bilinear spinor
forms, in this case givesS= C0/τ. Then settingC0 = 1 for the energy density and the pressure
from (3.10) we find

T0
0 =

m
τ
− λ

τq +
τ r−2

2(λ1+ τ r)
+

1

τ1+ζ ≡ ε

(3.13)

T1
1 =

(q−1)λ
τq − [(1− r)λ1+ τ r ]τ r−2

2(λ1+ τ r)2 − ζ
τ1+ζ ≡ p.

Taking into account thatT0
0 and T1

1 are the functions ofτ only, the Eq. (3.2) can now be
presented as

τ̈ = F (q1,τ), (3.14)

where we define

F (q1,τ) = (3/2)κ
(

m+λ (q−2)τ1−q+λ1rτ r−1/2(λ1+ τ r)2+(1−ζ )/τζ
)

, (3.15)
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whereq1 = {κ,m,λ ,λ1,q, r,ζ} is the set of problem parameters. The En. (3.14) allows the fol-
lowing first integral:

τ̇ =
√

2[E−U (q1,τ)] (3.16)

where we denote

U (q1,τ) = −3
2

[

κ
(

mτ −λ/τq−2−λ1/2(λ1+ τ r)+ τ1−ζ
)]

. (3.17)

From a mechanical point of view Eq. (3.14) can be interpretedas an equation of motion of a single
particle with unit mass under the forceF (q1,τ). In (3.16)E is the integration constant which can
be treated as energy level, andU (q1,τ) is the potential of the forceF (q1,τ). We solve the Eq.
(3.14) numerically using Runge-Kutta method. The initial value ofτ is taken to be a reasonably
small one, while the corresponding first derivativeτ̇ is evaluated from (3.16) for a givenE.

Let us go back to the Eq. (3.14). In view of (3.15) one sees,τ̈ → (3/2)κm> 0 asτ → ∞,
i.e., if τ̈ is considered to be the acceleration of the BI Universe, thenthe massive spinor field
essentially can be viewed as a source for ever lasting acceleration. Note that it does not contradicts
our previous statement about the role of energy-momentum tensor on ever expanding Universe,
since the spinor field satisfies the Bianchi identity identically.

Now a few words about considering̈τ as acceleration. The Einstein equations for the FRW
model read

2
ä
a

+
( ȧ

a

)2
= κT1

1 , (3.18a)

3
( ȧ

a

)2
= κT0

0 . (3.18b)

From (3.18) one finds
ä
a

= −κ
6
(T0

0 −3T1
1 ), (3.19)

The equation (3.19) is known as the acceleration equation. In analogy for the BI Universe from
(3.1) we can write

ä1

a1
+

ä2

a2
+

ä3

a3
= −κ

2
(T0

0 −3T1
1 ), (3.20)

and declare it as acceleration equation. Though settinga1 = a2 = a3 we recover the original
definition, hardly it will be helpful in our case. So in BI Universe we assumëτ be the acceleration
and Eq. (3.2) be the acceleration equation.

Let us now define the deceleration parameter. In FRW cosmology the deceleration parameter
has the form

dfrw = −aä
ȧ2 = −

[

1+
Ḣfrw

Hfrw

]

=
d
dt

( 1
Hfrw

)

−1, (3.21)

whereHfrw = ȧ/a is the Hubble parameter for FRW model. In analogy we can definea deceleration
parameter as well. If we define the generalized decelerationparameter in the following way:

d = −
[

1+
Ḣ1+ Ḣ2+ Ḣ3

H2
1 +H2

2 +H2
3

]

, (3.22)

whereHi = ȧi/ai , then the standard deceleration parameter is recovered ata1 = a2 = a3. But is
this case the definition for acceleration adopted here is no longer valid. So we switch to the second
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choice and following Belinchon and Harkoet. al. [18, 19] define the generalized deceleration
parameter as

d =
d
dt

( 1
3H

)−1 = −ττ̈
τ̇2 . (3.23)

After a little manipulation in view of (3.1) and (3.4) the deceleration parameter can be presented
as

d = −κ
2

(T1
1 +T0

0 )τ2

κT0
0 τ2 +C00

(3.24)

Let us now go back to the equations (3.14), (3.15), (3.16) and(3.17). As one sees, the positivity
of the radical imposes some restriction on the value ofτ, namely in case ofλ > 0 andq≥ 2 the
value ofτ cannot be too close to zero at any space-time point. It is clearly seen from the graphical
view of the potential [cf. Fig. 1]. Thus we can conclude that for some special choice of problem
parameters the introduction of nonlinear spinor field givenby a self-action provides singularity-
free solutions. As it was shown in [13] the regular solution is obtained only at the expense of
broken dominant-energy condition in the Hawking-Penrose theorem.

If, in an eigentetrad of Tµν , ε denotes the energy density and p1, p2, p3 denote the three prin-
cipal pressure, then the dominant energy condition can be written as[20]:

ε +∑
α

pα ≥ 0; (3.25a)

ε + pα ≥ 0, α = 1,2,3. (3.25b)

The dominant energy condition for the BI metric can be written in the form:

T0
0 ≥ T1

1 a2
1+T2

2 a2
2+T3

3 a2
3, (3.26a)

T0
0 ≥ T1

1 a2
1, (3.26b)

T0
0 ≥ T2

2 a2
2, (3.26c)

T0
0 ≥ T3

3 a2
3. (3.26d)

In Fig. 2 we plot the potential for a negativeλ . As one sees, in the vicinity ofτ = 0 there exists
a bottomless potential hole. As one sees, if in case of a self-action the initial value ofτ is too close
to zero and the constantE is less thanUmax (the maximum value of the potential in presence of a
self-action), the Universe will never come out of the hole.

For numerical solutions we setκ = 1, spinor massm= 1, the power of nonlinearity we choose
asq = 4, r = 4 and for perfect fluid we setζ = 1/3 that corresponds to a radiation. We also set
C00 = −0.001 andE = 10. The initial value ofτ is taken to beτ0 = 0.4. The coupling constant is
chosen to beλ1 = 0.5, while the self coupling constant is taken to be eitherλ = 0.5 or λ = −0.5.
Here, in the figures we use the following notations:
1 corresponds to the case with self-action and interaction;
2 corresponds to the case with self-action only;
3 corresponds to the case with interaction only.

As one sees from Fig. 1, in presence of a self-action of the spinor field with a positiveλ , there
occurs an infinitely high barrier asτ → 0, it means that in the case considered hereτ cannot be
trivial [if treated classically, the Universe cannot approach to a point unless it stays at an infinitely
high energy level]. Thus, the nonlinearity of the spinor field provided by the self-action generates
singularity-free evolution of the Universe. But, as was already mentioned, this regularity can be
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FIG. 1: View of the potentialU (τ) for λ > 0. FIG. 2: View of the potentialU (τ) for a nega-
tive λ .

achieved only at the expense of dominant energy condition inHawking-Penrose theorem. It is also
clear that if the nonlinearity is induced by a scalar field,τ may be trivial as well, thus giving rise to
space-time singularity. Note that cases in presence of aΛ term are thoroughly studied in [13, 14].
It was shown that introduction of a positiveΛ just accelerates the speed of expansion, whereas, a
negativeΛ depending of the choice ofE generates oscillatory or non-periodic mode of evolution.
Note also that the regular solution obtained my means of a negativeΛ in case of interaction does
not result in broken dominant energy condition [14].

In Figs. 3 and 4 we plot the corresponding energy density and pressure. As one sees, in case
of a positiveλ the energy density is initially negative while the pressureis positive. In this case
though the solution is singularity-free, the violation of dominant energy takes place. In case of a
negativeλ the pressure is always negative.

The purpose of plotting the energy density and pressure is toshow that the energy density of
the source field indeed decreases with the increase of the Universe. This also shows that there
exists an interval where the energy density of the system with spinor field nonlinearity generated
by the self-action is negative. This is in line with our earlier assumption. Moreover, we see the
pressure of the source field becomes negative in course of evolution (In case of self-action with a
positiveλ pressure is initially positive, but with the expansion of the Universe it becomes negative,
whereas, in case of of a negativeλ as well as in case of interacting fields the pressure is always
negative). Recall that the dark energy (e.g. quintessence,Chaplygin gas), modelled to explain the
late time acceleration of the Universe, has the negative pressure. So we argue that the models with
nonlinear spinor field and interacting spinor and scalar fields to some extent can be considered as
an alternative to dark energy which is able to explain the late time acceleration of the Universe.

In the Figs. 5 and 6 we illustrate the acceleration of the Universe for positive and negativeλ ,
respectively. As one sees, in both cases we have decreasing acceleration that tends to(3/2)κmas
τ → ∞.

In Figs. 7 and 8 we plot the deceleration parameter.
The Figs. 5, 6, 7 and 8 show the accelerated mode of expansion of the Universe. As one sees,
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FIG. 3: Energy density and pressure correspond-
ing to a positiveλ .

FIG. 4: Energy density and pressure in case of a
negativeλ .

FIG. 5: Acceleration of the Universe corre-
sponding to a positiveλ .

FIG. 6: Acceleration of the Universe in case of
a negativeλ .

the acceleration is decreasing with time. Depending of the choice of nonlinearity it undergoes an
initial deceleration phase. It is also seen that the nonlinear term plays proactive role at the initial
stage while at the later stage spinor mass is crucial for the accelerated mode of expansion.
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FIG. 7: Deceleration parameter corresponding
to a positiveλ .

FIG. 8: Deceleration parameter in case of a neg-
ativeλ .

IV. CONCLUSION

We considered a system of interaction nonlinear spinor and scalar fields within the scope of
a BI cosmological model filled with perfect fluid. The spinor field nonlinearity gives rise to an
effective negative pressure in the course of evolution. Comparison of the effective pressure of the
nonlinear spinor field with that of a dark energy given by a quintessence or Chaplygin gas leads
us to conclude that the spinor field can be seen as an alternative to the dark energy able to explain
the acceleration of the Universe. It was shown that the nonlinear spinor term is proactive at the
early stage of the evolution and essentially accelerates the process of evolution, while at the later
stage of evolution the spinor mass holds the key. Given the fact that neutrino is described by
the spinor field equation and it too possesses mass (though too small but nonzero), the presence
of huge number of neutrino in the Universe can be seen as one ofthe possible factor of the late
time acceleration of the Universe. It was also shown that forsome specific choice of parameters
it is possible to construct singularity-free model of the Universe, but this regularity results in the
broken dominant energy condition of the Hawking-Penrose theorem.
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