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We consider a system of nonlinear spinor and a Bianchi typevigtional fields in
presence of viscous fluid. The nonlinear term in the spinddt fiagrangian is chosen to be
AF, with A being a self-coupling constant afkdbeing a function of the invariantsan J
constructed from bilinear spinor forn&andP. Self-consistent solutions to the spinor and
Bl gravitational field equations are obtained in terms pfvherer is the volume scale of
Bl universe. System of equations forand e, wheree is the energy of the viscous fluid, is
deduced. This system is solved numerically for some spea&#s.
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I. INTRODUCTION

The investigation of relativistic cosmological models aiphas the energy momentum tensor
of matter generated by a perfect fluid. To consider more sgéalmodels, one must take into
account the viscosity mechanisms, which have alreadyctgtiaattention of many researchers.
Misner [1,/2] suggested that strong dissipative due to thérim® viscosity may considerably
reduce the anisotropy of the black-body radiation. Visyasiechanism in cosmology can explain
the anomalously high entropy per baryon in the present vs@, 4]. Bulk viscosity associated
with the grand-unified-theory phase transition [5] may leadn inflationary scenario![5, 7, 8].

A uniform cosmological model filled with fluid which possesggessure and second (bulk)
viscosity was developed by Murphy [9]. The solutions thatdwend exhibit an interesting feature
that the big bang type singularity appears in the infinitet.p&sxact solutions of the isotropic
homogeneous cosmology for open, closed and flat universebeen found by Santos et al [10],
with the bulk viscosity being a power function of energy dgns

The nature of cosmological solutions for homogeneous Biatype | (BI) model was inves-
tigated by Belinsky and Khalatnikov [11] by taking into acot a dissipative process due to vis-
cosity. They showed that viscosity cannot remove the cosgicdl singularity but results in a
gualitatively new behavior of the solutions near singtjyarm hey found the remarkable property
that during the time of thbig bangmatter is created by the gravitational field. Bl solutionsase
of stiff matter with a shear viscosity being the power fuantof of energy density were obtained
by Banerjee|[12], whereas Bl models with bulk viscosity (hat is a power function of energy
densitye and when the universe is filled with stiff matter were studsgdHuang [13]. The effect
of bulk viscosity, with a time varying bulk viscous coeffinte on the evolution of isotropic FRW
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models was investigated in the context of open thermodytgsyistem was studied by Desikan
[14]. This study was further developed by Krori and Mukherjg5] for anisotropic Bianchi mod-
els. Cosmological solutions with nonlinear bulk viscosugre obtained in [16]. Models with both
shear and bulk viscosity were investigated.in [17, 18].

Though Murphy[9] claimed that the introduction of bulk visity can avoid the initial sin-
gularity at finite past, results obtained in [19] show thatisj in general, not valid, since for
some cases big bang singularity occurs in finite past. Toiedita the initial singularities a self-
consistent system of nonlinear spinor and Bl gravitatidieddl was considered by us in a series
of papers|[20, 21, 22, 23]. For some cases we were able to fildd(fieth matter and gravita-
tional) configurations those were always regular. In theepgmentioned above we considered
the system of interacting nonlinear spinor and/or scal&idig a Bl universe filled with perfect
fluid. We also study the above system in presence of cosnualbgonstant\ (both constant
and time varying/[23]). A nonlinear spinor field, suggestgdie symmetric coupling between
nucleons, muons, and leptons, has been investigated bglEiain et. al.|[24] in the classical ap-
proximation. Although the existence of spii2lfermion is both theoretically and experimentally
undisputed, these are describeddgamantumspinor fields. Possible justifications for the existence
of classical spinors has been addressed in [25]. In view aftwlas been mentioned above, it
would be interesting to study the influence of viscous fluidhi® system of material (say spinor
and/or scalar) and Bl gravitational fields in presence/fftarm as well. In arecent paper we stud-
ied the Bianchi type-1 universe filled with viscous fluid inegence of &\ term [26]. This study
was further developed in [26] where we present qualitathedysis of the corresponding system
of equations. Finally in [26] we introduced spinor field int@ system and solved the system for
some special choice of viscosity. The purpose of this pagptr further developed those results
for more general cases and give some numerical resultoutébe noted the in the process there
occurs a very rich system of equations for volume scale, Kutdnstant and energy density. The
gualitative analysis of this system is under active study\ae plan to present those results soon.

II. DERIVATION OF BASIC EQUATIONS

In this section we derive the fundamental equations fortkeracting spinor, scalar and gravi-
tational fields from the action and write their solutionsamt of the volume scaledefined bellow
(2.186). We also derive the equation fowhich plays the central role here.

We consider a system of nonlinear spinor, scalar and Bl trigenal field in presence of perfect
fluid given by the action

(@40 = | 2v-gda @)
with
The gravitational part of the Lagrangidn (2.2) is given byianBhi type | (Bl hereafter) space-

time, whereasZsp describes the spinor field lagrangian a#th stands for the lagrangian density
of viscous fluid.



Nonlinear spinor field in Bianchi type-I Universe 3

A. Material field Lagrangian

For a spinor fieldy, symmetry betwee and appears to demand that one should choose
the symmetrized Lagrangian [29]. Keep it in mind we choosesthinor field Lagrangian as

Fap= 5 | BV O~ Du By g | —my -+ A, (2.3)

Herem is the spinor mass) is the self-coupling constant afd= F(1,J) with | = S = (g)?
andJ = P2 = (igy®y)?. According to the Pauli-Fierz theorem [30] among the fiveaniants only
| andJ are independent as all other can be expressed by them:—Ia=1+J andlg=1—-J.
Therefore, the choicE = F(I,J), describes the nonlinearity in the most general of its fa2di.[
Note that setting = 0 in (2.3) we come to the case with linear spinor field.

B. The gravitational field

As a gravitational field we consider the Bianchi type | (Blsowlogical model. It is the sim-
plest model of anisotropic universe that describes a homeges and spatially flat space-time
and if filled with perfect fluid with the equation of stage= (e, { < 1, it eventually evolves
into a FRW universe [31]. The isotropy of present-day urseemnakes Bl model a prime candi-
date for studying the possible effects of an anisotropy endgharly universe on modern-day data
observations. In view of what has been mentioned above wesehthe gravitational part of the
Lagrangian[(Z.2) in the form .

97 2’
whereR is the scalar curvature, = 8nG being the Einstein’s gravitational constant. The gravita-
tional field in our case is given by a Bianchi type | (BI) metric

ds’ = dt? — a?d¥¢ — b?dy? — c?dZ, (2.5)

with a, b, ¢ being the functions of timeonly. Here the speed of light is taken to be unity.

(2.4)

C. Field equations

Let us now write the field equations corresponding to theoad2.1).
Variation of [2.1) with respect to spinor fiel () gives spinor field equations

O, —my+ 29 + i’y = 0, (2.6a)

i, Qy* +my — 20 —9igy° = 0, (2.6b)
where we denote I IF
=248, 4 =2AP_-.

Variation of [2.1) with respect to metric tensgy, gives the Einstein’s equations which in
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account of the\-term for the Bl space-timé (2.5) can be rewritten as

b ¢ be 1

5 E+bC_KT1 +A, (2.7a)

c 8 E§:KT22+/\, (2.7b)

cC a ca

a, b ab 5

2 TbTap = KA (2.7¢)
ab_ be €8 _ (104, (2.7d)

where over dot means differentiation with respedt émd T/ is the energy-momentum tensor of
the material field given by

TV ng“ -|-va“. (2.8)
Here Ty, is the energy-momentum tensor of the spinor field which wétrard to[(2.6) has the
form
i _ _ _ _
Tsé)u = ngv (qu Oy + gy, Uuy -0y — Ly Py, Ll’) (2.9)

+ OF (7S+9P—AF).
Tn‘q’“ is the energy-momentum tensor of a viscous fluid having tha fo
Ty = (E+P)upu’ —p'o) + ng"B[uu;B + Ug., — Upu%ug.q — UgUupal, (2.10)

where 5
p'=p—(£—3mul (2.11)

Heree is the energy density - pressurepn andé are the coefficients of shear and bulk viscosity,
respectively. In a comoving system of reference suchuhat (1, 0, 0, 0) we have

Too = &, (2.12a)
Tt = —p’+2ng, (2.12b)
Tz = —p’+2'7§, (2.12c)
Tos = —p’+2n£. (2.12d)

In the Eqgs.[(2.6) and (2.9), is the covariant derivatives acting on a spinor fieldlas |[32, 3

J op
OuW = éfﬂ My, Ou@= w+wru, (2.13)

wherel |, are the Fock-lvanenko spinor connection coefficients definye

2 (MoWo—3uvo ). (2.14)



Nonlinear spinor field in Bianchi type-I Universe 5

For the metric[(25) one has the following components of hie@ connection coefficients

1. 1, 1.
Mo=0, = éa(t)yl)_/o, M= éb(t))_'z)_p, M3= éc(t))_’gf’o- (2.15)
The Dirac matriceg*(x) of curved space-time are connected with those of Minkowsld as
follows:
Y=V, vi=v/a v¥=¥/b, y=p/c
with

P (53 7-(59) #7(479)

whereg; are the Pauli matrices:

1_ 01 2 0 —i < 10
2= (30) 2= (P0) #-(6%)

Note that they and theg matrices obey the following properties:

VY +yy=2n ij=0123
YYP+vyY =0, (P)?=I1, i=0123

Gij:5jk+i£jk|G|, j,k1=1,23

wheren;; = {1,—-1,—-1,—-1} is the diagonal matrixdj is the Kronekar symbol andj is the
totally antisymmetric matrix witlg03 = +1.
We study the space-independent solutions to the spinordigidtions[(2]6) so that = y(t).

Here we define
T =abc=./—g (2.16)
The spinor field equatiof (2.6a) in account[of (2.13) andqptakes the form

(0 T .
|;7°<E+2—T)Lp—mw+9w+%y5w:o. (2.17)

SettingVj(t) = vTY;(t), j=1,2,3,4, from (2.17) one deduces the following system of equa-
tions:

+i(m—2)V1—9V3 = 0, (2.18a)

V2+ (M—2)Vo -9\, = O, (2.18b)

V3—|(m PIWN3+9G\V, = 0, (2.18c)

V4—|(m .@)V4—|—gV2 = 0. (2.18d)

From [2.64) we also write the equations for the invaridhts P andA = @y®yPy

S—29A; = 0, (2.19a)

Po—2(m—2)Ag = O, (2.19b)

Ao+2(M=—2)Py+29S = 0, (2.19¢)

where§ =T1S, Py = 1P, andAy = TA. The Eq. [2.1DB) leads to the following relation
SP+P2+A2=C?/1?,  C?=const (2.20)
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Giving the concrete form df from (2.18) one writes the components of the spinor fungtion

in explicitly and using the solutions obtained one can wh&components of spinor current:
iH=gyiy. (2.21)
The componen;®
%= % [ViVL+ V3 Vo + V3 V34V, Vy) (2.22)
defines the charge density of spinor field that has the folgwhronometric-invariant form
p=(jo-9Y2 (2.23)

The total charge of spinor field is defined as

Q= /p\/—Sgdxdydz: pTY, (2.24)

where? is the volume. From the spin tensor
gvE = %J{yfaﬁ‘v + oty Ly (2.25)

one finds chronometric invariant spin tensor
0= (5081972, (2.26)

and the projection of the spin vector &raxis

[ee]

S = /SQHO\/—3gdxdydz: sy, (2.27)

Let us now solve the Einstein equations. To do it, we firstemtie expressions for the compo-
nents of the energy-momentum tensor explicitly:

T = mS-AF+e=T¢, (2.28a)

13
[
Q_).

i = _@S+%P—)\F—p’+2025 L+2n, (2.28b)

T2 = @S+%P—AF—p’+2ngE ~11+2ng,, (2.28¢)

T3 = _@S+%P—)\F—p’+2l7—25'|:11+2’7—27- (2.28d)

Ibn account of[(2,28) subtracting (2]7a) from (2.7b), onedititk following relation betweemand
2~ Dsexp( | w) (2.29)

Analogically, one finds

—2K [ ndt —2K [ ndt
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HereDq, Do, D3, X1, X, X3 are integration constants, obeying
DiDoD3=1 Xi+Xo+X3=0. (2.31)

In view of (2.31) from[[2.2B) and (2.80) we write the metriaiéitions explicitly [21]

_ —2K [ ndt
a(t) = (D1/D3)Y31Y3exp X1 XS/ © dt|, (2.32a)
3 T(t)
—2K [ ndt
b(t) = (D2Dg) Y371 /3exp| — 2L / € dt|, (2.32b)
3 T(t)
—2K [ ndt
ct) = (D1D§)1/3r1/3explxlzzxs / © 0 dt}. (2.32¢)

As one sees frond (2.3Ral), (2.32b) and (2132c)rfert" with n > 1 the exponent tends to unity at
larget, and the anisotropic model becomes isotropic one.

Further we will investigate the existence of singularitin@ular point) of the gravitational
case, which can be done by investigating the invariant cleniatics of the space-time. In general
relativity these invariants are composed from the cuneatansor and the metric one. In a 4D
Riemann space-time there are 14 independent invarianstedd of analyzing all 14 invariants,
one can confine this study only in 3, namely the scalar curgdiu= R, |, = Rﬁvuv, and the

Kretschmann scalds = RO,BWR"B“V. At any regular space-time point, these three invariants
I1, 12, I3 should be finite. One can easily verify that

1 1 1
I]_Dp, |2DF, |3DF
Thus we see that at any space-time point, wirete0 the invariantds, I, I3, as well as the scalar
and spinor fields become infinity, hence the space-time bes@mngular at this point.
In what follows, we write the equation farand study it in details.

Summation of Einstein equations (2.7&), (2.7b), (2.7c)@ad) multiplied by 3 gives

T= 2K<-|:00+-|~_11>T+3KI’)T+3/\T, (2.33)

which can be rearranged as

f—gxft:gx(ms+%+gp—2/\F+e—p)r+3/\r. (2.34)
For the right-hand-side of (2.84) to be a functiontadnly, the solution to this equation is well-
known [34].

On the other hand from Bianchi identi@};., = 0 one finds

T =Ty +T T =TTy =0, (2.35)

which in our case has the form

1 . a b ¢
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This equation can be rewritten as

z0_ T(#1 %o & &
1§ =—(T-10) +2n(Z++ 5): (2.37)
Recall that[(2.19) gives _ .
(M= 2)S— 9Py =0.
In view of that after a little manipulation frord (2.37) we abt
LT 4 12 0
£+ 0= (E+3N 5 +4(KTP+A) =0, (2.38)

where
wWw=E&+p, (2.39)
is the thermal function. For further purpose we would likette that in absence of shear viscosity
from Egs. [2.3B) and (2.37) one finds
kT =3H2—A+Cgo, Coo= const (2.40)

where in analogy with Hubble constant introduce the qugahtitsuch that

T a b ¢
S T X 2.41
T a+b+c ( )

Then [2.3%) and (2.38) in account 6f (2.28) can be rewritten a

H = g(&fH—w)—(3H2—K£——/\)+g(m8+98+£4P—2/\F), (2.42a)
& = 3H(3¢H — w) +4n (3H*— ke —A\) —4nk (MS—AF). (2.42b)

Thus, the metric functions are found explicitly in termsrond viscosity. To writer and com-
ponents of spinor field as well and scalar one we have to spEdii Z5p. In the next section we
explicitly solve Eqgs.[(2.18) and (2.42) for some concrefeeafF.

The Egs. [(2.42) can be written in terms of dynamical scalarvels For this purpose let us
introduce the dynamical scalars such as the expansion argh#ar scalar as usual

6=u, o°= %Uwa“", (2.43)
where 1 1
Oy =5 (uu;aP\‘,’ + uv;aPﬁ> — §9Pyv- (2.44)
HereP is the projection operator obeying
P>=P (2.45)
For the space-time with signatufe, —, —, —) it has the form
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For the Bl metric the dynamical scalar has the form
a b ¢ 1
6=—+_—+-=-— 2.47
a + b + c T (2.47)
and 2 R &2
a ¢ 1
202 =S54+ S+ -5 — =62 2.48
2 2T E 3 (2.48)
In account of((2.32) one can also rewrite share scalar as

2 B +X X +X3) o4k [ ndt.

20% = o2 (2.49)
From (2.7¢l) now yields
%92—02:K[ms—/\F+e]+/\ (2.50)
The Egs.[(2.42) now can be written in termsfoéndo as follows
0 = %K(ée—w) - %K(mS— 9S—9P) — 302, (2.51a)
£ = 0(60—w)+4no°. (2.51b)

Note that the Eqs[.(2.51) without spinor and scalar field ioutions coincide with the ones given
in [12].

. SOME SPECIAL SOLUTIONS
In this section we first solve the spinor field equations fanespecial choice d¥, which will

be given in terms of. Thereafter, we will study the systeim (2.42) in details aive g@xplicit
solution for some special cases.

A. Solutions to the spinor field equations
As one sees, introduction of viscous fluid has no direct efbecthe system of spinor field

equations[(2.18). Viscous fluid has an implicit influence loa $ystem through. A detailed
analysis of the system in question can be found. in [21]. Hexgust write the final results.

1. Casewith =F(l)

Here we consider the case when the nonlinear spinor fieldéndiyF = F(1). As in the case
with minimal coupling from[(2.19a) one finds

S= %, Co = const (3.1)
For components of spinor field we find [21]
_ G s _ % i
Ll"l(t) - ﬁe ) Llj2<t) - \/?e )
(3.2)
_ G s _Cagp
L,U3(t> - \/?e' ’ l|U4(t) - \/?e' 9
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with C; being the integration constants and are relate@gt@sCo = C? + C3 — CZ — C2. Here
B = [(m-2)dt.
For the components of the spin current frdam (2.21) we find

. 1 . 2

i0 = ?[Cf+C§+C§+Cﬂ, it= ar [C1C4+ CoCs] cog2B),

) 2 ) ) 2

2 = - [C1Ca—CC3]sin(2B), = = [C1C3 —CyC4] cog2B),

whereas, for the projection of spin vectors on ¥hé& andZ axis we find

g0 _ CC+CC g0 q20_ CE-C+CG-C
ber ’ 2abr '

The total charge of the system in a volurfi@n this case is
Q=[CZ+C5+C5+Cal7. (3.3)

Thus, fort # 0 the components of spin current and the projection of spitove are singularity-
free and the total charge of the system in a finite volume isgdAainite. Note that, setting = 0,
i.e., B = mtin the foregoing expressions one get the results for thatiapinor field.

2. Case with =F(J)

Here we consider the case wih= F (J). In this case we assume the spinor field to be massless.
Note that, in the unified nonlinear spinor theory of Heisegpthe massive term remains absent,
and according to Heisenberg, the particle mass should l@nellt as a result of quantization of
spinor prematter | [37]. In the nonlinear generalization laksical field equations, the massive
term does not possess the significance that it possesseslindar one, as it by no means defines
total energy (or mass) of the nonlinear field system. Thubout losing the generality we can
consider massless spinor field puttimg= 0. Then from [2.19b) one gets

P=Do/1, Do=const (3.4)
In this case the spinor field components take the form

1 ig | —ig 1 ig | —ig
Y = —\/? (Dle' +iD3e ), Yo = —ﬁ (Dzel +1iD4e ),
(3.5)
1 . io —ig 1 . o —ig

The integration constan®; are connected t®q by Do = 2(D? + D3 — D — D?). Here we set
o= [9dt.
For the components of the spin current fram (2.21) we find

. 2 . 4

j® = Z[Df+D5+D3+DF], j'= _[D2Ds+DiDs]cog20),

_ 4 . . 4

J2 = E [D2D3 — D1D4] Sln(ZO'), J3 = E [D1D3 - D2D4] 005(20)7
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whereas, for the projection of spin vectors on ¥h&' andZ axis we find

30 _ 2(D1D2+DsDs)  g10_ o G20 _ Di -D3+D3-Dj
bcr ’ ’ 2abr

We see that for any nontrivial as in previous case the components of spin current and the pro
jection of spin vectors are singularity-free and the totarge of the system in a finite volume is
always finite.

B. Determination of T

In this subsection we simultaneously solve the system catops fort ande. Since setting
m= 0 in the equations foF = F (1) one comes to the case whEn= F (J), we consider the case
with F being the function of only. LetF be the power function 0§, i.e.,F = S". As it was
established earlier, in this caSe- Cp/1, or settingCo = 1 simplyS= 1/71. EvaluatingZ in terms
of T we then come to the following system of equations

. 3K, . 3k/m A(n-2)
t== ,fr+—2 <— A +£—p>r+3/\r, (3.6a)
: T 4 12 m A

or in terms ofH

T = 3HT, (3.7a)
.1 2 K/m A(nN—2)

H = 2(38H - @)~ (3HZ ke —A) + 5 (T + 502, (3.7b)
g = 3H(3€H—a))+4n(3H2—K£—/\)—4nK[?—%]. (3.7¢)

Heren and¢ are the bulk and shear viscosity, respectively and they atte fositively definite,
i.e.,
n>0 ¢&>0. (3.8)

They may be either constant or function of time or energy. Wesler the case when
n=~As% ¢&=BeP, (3.9)
with A andB being some positive quantities. Fowe set as in perfect fluid,
p=<_e, {€(01]. (3.10)

Note that in this cas€ # 0, since for dust pressure, hence temperature is zero, dbalts in
vanishing viscosity.

The system (317) without spinor field have been extensivealyied in literature either partially
[9,112,/13] or as a whole [11]. Here we try to solve the sysierd)(fr some particular choice of
parameters.
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1. Case with bulk viscosity

Let us first consider the case with bulk viscosity alone sgttioefficient of shear viscosity
n = 0. We also demand the coefficient of bulk viscosity be inversgortional to expansion, i.e.,

E0=3EH=Cy, C,=-const (3.11)
Insertingn = 0, (3.11) and(3.10) intd (3.Fc) one finds

1 Cs

Then from [[3.68) we get the following equation for determg:

3k(1- Q) Cortt¢ —C3 N 3kA(n-2)
2(1+2) ¢ 2 1

T= %Km—l—:%[%f( —i—/\] T+

Z(9,1), (3.13)

whereq is the set of problem parameters. As one sees, the right hdaea&the Eq. [(3.13) is
a function oft, hence can be solved in quadrature [34]. We solve the [Eq3)8udmerically. It
can be noted that the Ed. (3113) can be viewed as one desggrtit@mmotion of a single particle.
Sometimes it is useful to plot the potential of the corresjong equation which in this case is

Y(q1) = —2 / F(q,7)dr. (3.14)

The problem parameters are chosen as follows: 1, m=1,A =05, =1/3,n=4,C; =2
andCs; = 1. Here we consider the cases with differ@nthamely withA = —2,0, 1, respectively.
The initial value oft is taken to be a small one, whereas, the first derivative, ok., T at that
point of time is calculated froni (2.40). In Figl. 1 we haveslitated the potential corresponding to
Eq. (3.18). As one sees, independent to the sigh o have the expanding mode of evolution,
though a positive\ accelerates the process, while the negative one decaler@@responding
behavior oft is given in Fig[2.

2. Case with bulk and shear viscosities

Let us consider a more general case. Following [26] we chéloseshear viscosity being
proportional to the expansion, namely,

3 1
n=-—5H=-586. (3.15)

In absence of spinor field this assumption leads to
3H2=ke+C4, Cy=const (3.16)

It can be shown that the relatidn (3116) in our case can beaetiionly for massless spinor field
with the nonlinear term being
F = RpSK-D/k,

Equation fort in this case has the form

Tf—0.5(1—¢)T?— 15K ETT — 3[A— 0.5(1— {)Csq — AFor2EX)/K]12 = 0. (3.17)
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60; A>0
sog
405
] A=0
30:
105 A<O
o
0 02 04 06 08 1 1,2 1,4 z_
FIG. 1: View of the potential corresponding to FIG. 2: Evolution oft depending on the signs of
the different sign of thé\ term. the A term.

In case ofé = const andA = 0O there exists several special solutions available in haokion
differential equations. But for nonzerowe can investigate this equation only numerically. We
consider the case when the bulk viscosity is given by a cahstéaking this into account for
problem parameters we s¢t=1/3,& =1,Fp=1,A = 0.5 andC, = 1. We study the role of\
term. In doing this we consider the cases with positive, iegand trivialA. Since the nonlinear
term in this case depends of we also consider the cases with differennamely withk > 1 and

Kk < 1. In Figs.[3 andl4 the evolution afis illustrated fork < 1 andk > 1, respectively. In case
of K < 1 we have non-periodic mode of evolution for All while for k > 1 a negative\ gives a
non-periodic mode of expansion. A non-negativen this case gives an ever expanding mode of
evolution.

IV. CONCLUSION

We consider a self consistent system of nonlinear spinorgraditational fields within the
framework of Bianchi type-l cosmological model filled witiseous fluid. The spinor filed non-
linearity is taken to be some power law of the invariants bhbar spinor forms. Solutions to the
corresponding equations are given in terms of the volumle tahe Bl space-time, i.e., in terms
of T = abc The system of equations for determiningenergy-density of the viscous flugdand
Hubble parametef has been worked out. Exact solution to the aforementionsisyhas been
given only for the case of bulk viscosity. As one sees fromZpor (2.51), the system in question
is a multi-parametric one and may have several solutionsrtipg on the choice of the problem
parameters. As one sees, solutions can be non-periodipendent to the sign ok term. Given
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FIG. 3: Evolution of the universe with nontrivial FIG. 4: Evolution of the universe for different
A term andk < 1. values ofA term withk > 1.

the richness of(316) we plan to give qualitative analysithaf system in near future.
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