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Nonlinear spinor field in Bianchi type-I Universe filled with viscous fluid:
numerical solutions
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We consider a system of nonlinear spinor and a Bianchi type I gravitational fields in
presence of viscous fluid. The nonlinear term in the spinor field Lagrangian is chosen to be
λF , with λ being a self-coupling constant andF being a function of the invariantsI an J
constructed from bilinear spinor formsSandP. Self-consistent solutions to the spinor and
BI gravitational field equations are obtained in terms ofτ , whereτ is the volume scale of
BI universe. System of equations forτ andε , whereε is the energy of the viscous fluid, is
deduced. This system is solved numerically for some specialcases.
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I. INTRODUCTION

The investigation of relativistic cosmological models usually has the energy momentum tensor
of matter generated by a perfect fluid. To consider more realistic models, one must take into
account the viscosity mechanisms, which have already attracted attention of many researchers.
Misner [1, 2] suggested that strong dissipative due to the neutrino viscosity may considerably
reduce the anisotropy of the black-body radiation. Viscosity mechanism in cosmology can explain
the anomalously high entropy per baryon in the present universe [3, 4]. Bulk viscosity associated
with the grand-unified-theory phase transition [5] may leadto an inflationary scenario [6, 7, 8].

A uniform cosmological model filled with fluid which possesses pressure and second (bulk)
viscosity was developed by Murphy [9]. The solutions that hefound exhibit an interesting feature
that the big bang type singularity appears in the infinite past. Exact solutions of the isotropic
homogeneous cosmology for open, closed and flat universe have been found by Santos et al [10],
with the bulk viscosity being a power function of energy density.

The nature of cosmological solutions for homogeneous Bianchi type I (BI) model was inves-
tigated by Belinsky and Khalatnikov [11] by taking into account a dissipative process due to vis-
cosity. They showed that viscosity cannot remove the cosmological singularity but results in a
qualitatively new behavior of the solutions near singularity. They found the remarkable property
that during the time of thebig bangmatter is created by the gravitational field. BI solutions incase
of stiff matter with a shear viscosity being the power function of of energy density were obtained
by Banerjee [12], whereas BI models with bulk viscosity (η) that is a power function of energy
densityε and when the universe is filled with stiff matter were studiedby Huang [13]. The effect
of bulk viscosity, with a time varying bulk viscous coefficient, on the evolution of isotropic FRW
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models was investigated in the context of open thermodynamics system was studied by Desikan
[14]. This study was further developed by Krori and Mukherjee [15] for anisotropic Bianchi mod-
els. Cosmological solutions with nonlinear bulk viscositywere obtained in [16]. Models with both
shear and bulk viscosity were investigated in [17, 18].

Though Murphy [9] claimed that the introduction of bulk viscosity can avoid the initial sin-
gularity at finite past, results obtained in [19] show that, it is, in general, not valid, since for
some cases big bang singularity occurs in finite past. To eliminate the initial singularities a self-
consistent system of nonlinear spinor and BI gravitationalfield was considered by us in a series
of papers [20, 21, 22, 23]. For some cases we were able to find field (both matter and gravita-
tional) configurations those were always regular. In the papers mentioned above we considered
the system of interacting nonlinear spinor and/or scalar fields in a BI universe filled with perfect
fluid. We also study the above system in presence of cosmological constantΛ (both constant
and time varying [23]). A nonlinear spinor field, suggested by the symmetric coupling between
nucleons, muons, and leptons, has been investigated by Finkelstein et. al. [24] in the classical ap-
proximation. Although the existence of spin-1/2 fermion is both theoretically and experimentally
undisputed, these are described byquantumspinor fields. Possible justifications for the existence
of classical spinors has been addressed in [25]. In view of what has been mentioned above, it
would be interesting to study the influence of viscous fluid tothe system of material (say spinor
and/or scalar) and BI gravitational fields in presence of aΛ-term as well. In a recent paper we stud-
ied the Bianchi type-I universe filled with viscous fluid in presence of aΛ term [26]. This study
was further developed in [26] where we present qualitative analysis of the corresponding system
of equations. Finally in [26] we introduced spinor field intothe system and solved the system for
some special choice of viscosity. The purpose of this paper is to further developed those results
for more general cases and give some numerical results. It should be noted the in the process there
occurs a very rich system of equations for volume scale, Hubble constant and energy density. The
qualitative analysis of this system is under active study and we plan to present those results soon.

II. DERIVATION OF BASIC EQUATIONS

In this section we derive the fundamental equations for the interacting spinor, scalar and gravi-
tational fields from the action and write their solutions in term of the volume scaleτ defined bellow
(2.16). We also derive the equation forτ which plays the central role here.

We consider a system of nonlinear spinor, scalar and BI gravitational field in presence of perfect
fluid given by the action

S (g;ψ, ψ̄) =

∫

L
√−gdΩ (2.1)

with
L = Lg+Lsp+Lm. (2.2)

The gravitational part of the Lagrangian (2.2) is given by a Bianchi type I (BI hereafter) space-
time, whereasLsp describes the spinor field lagrangian andLm stands for the lagrangian density
of viscous fluid.
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A. Material field Lagrangian

For a spinor fieldψ, symmetry betweenψ andψ̄ appears to demand that one should choose
the symmetrized Lagrangian [29]. Keep it in mind we choose the spinor field Lagrangian as

Lsp =
i
2

[

ψ̄γµ ∇µψ −∇µψ̄γµψ
]

−mψ̄ψ +λF, (2.3)

Herem is the spinor mass,λ is the self-coupling constant andF = F(I ,J) with I = S2 = (ψ̄ψ)2

andJ = P2 = (iψ̄γ5ψ)2. According to the Pauli-Fierz theorem [30] among the five invariants only
I andJ are independent as all other can be expressed by them:IV = −IA = I +J andIQ = I −J.
Therefore, the choiceF = F(I ,J), describes the nonlinearity in the most general of its form [21].
Note that settingλ = 0 in (2.3) we come to the case with linear spinor field.

B. The gravitational field

As a gravitational field we consider the Bianchi type I (BI) cosmological model. It is the sim-
plest model of anisotropic universe that describes a homogeneous and spatially flat space-time
and if filled with perfect fluid with the equation of statep = ζ ε, ζ < 1, it eventually evolves
into a FRW universe [31]. The isotropy of present-day universe makes BI model a prime candi-
date for studying the possible effects of an anisotropy in the early universe on modern-day data
observations. In view of what has been mentioned above we choose the gravitational part of the
Lagrangian (2.2) in the form

Lg =
R
2κ

, (2.4)

whereR is the scalar curvature,κ = 8πG being the Einstein’s gravitational constant. The gravita-
tional field in our case is given by a Bianchi type I (BI) metric

ds2 = dt2−a2dx2−b2dy2−c2dz2, (2.5)

with a, b, c being the functions of timet only. Here the speed of light is taken to be unity.

C. Field equations

Let us now write the field equations corresponding to the action (2.1).
Variation of (2.1) with respect to spinor fieldψ (ψ̄) gives spinor field equations

iγµ∇µψ −mψ +Dψ +G iγ5ψ = 0, (2.6a)

i∇µψ̄γµ +mψ̄ −Dψ̄ −G iψ̄γ5 = 0, (2.6b)

where we denote

D = 2λS
∂F
∂ I

, G = 2λP
∂F
∂J

.

Variation of (2.1) with respect to metric tensorgµν gives the Einstein’s equations which in
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account of theΛ-term for the BI space-time (2.5) can be rewritten as

b̈
b

+
c̈
c

+
ḃ
b

ċ
c

= κT1
1 +Λ, (2.7a)

c̈
c

+
ä
a

+
ċ
c

ȧ
a

= κT2
2 +Λ, (2.7b)

ä
a

+
b̈
b

+
ȧ
a

ḃ
b

= κT3
3 +Λ, (2.7c)

ȧ
a

ḃ
b

+
ḃ
b

ċ
c

+
ċ
c

ȧ
a

= κT0
0 +Λ, (2.7d)

where over dot means differentiation with respect tot andTµ
ν is the energy-momentum tensor of

the material field given by
Tν

µ = T ν
spµ +T ν

mµ . (2.8)

HereT ν
spµ is the energy-momentum tensor of the spinor field which with regard to (2.6) has the

form

T ρ
spµ =

i
4

gρν
(

ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇ν ψ̄γµψ
)

(2.9)

+ δ ρ
µ
(

DS+G P−λF
)

.

Tν
mµ is the energy-momentum tensor of a viscous fluid having the form

Tν
mµ = (ε + p′)uµuν − p′δ ν

µ +ηgνβ [uµ;β +uβ :µ −uµuαuβ ;α −uβ uαuµ;α ], (2.10)

where

p′ = p− (ξ − 2
3

η)uµ
;µ . (2.11)

Hereε is the energy density,p - pressure,η andξ are the coefficients of shear and bulk viscosity,
respectively. In a comoving system of reference such thatuµ = (1, 0, 0, 0) we have

T0
m0 = ε, (2.12a)

T1
m1 = −p′ +2η

ȧ
a
, (2.12b)

T2
m2 = −p′ +2η

ḃ
b
, (2.12c)

T3
m3 = −p′ +2η

ċ
c
. (2.12d)

In the Eqs. (2.6) and (2.9)∇µ is the covariant derivatives acting on a spinor field as [32, 33]

∇µψ =
∂ψ
∂xµ −Γµψ, ∇µψ̄ =

∂ψ̄
∂xµ + ψ̄Γµ , (2.13)

whereΓµ are the Fock-Ivanenko spinor connection coefficients defined by

Γµ =
1
4

γσ
(

Γν
µσ γν −∂µ γσ

)

. (2.14)



Nonlinear spinor field in Bianchi type-I Universe· · · 5

For the metric (2.5) one has the following components of the spinor connection coefficients

Γ0 = 0, Γ1 =
1
2

ȧ(t)γ̄1γ̄0, Γ2 =
1
2

ḃ(t)γ̄2γ̄0, Γ3 =
1
2

ċ(t)γ̄3γ̄0. (2.15)

The Dirac matricesγµ(x) of curved space-time are connected with those of Minkowski one as
follows:

γ0 = γ̄0, γ1 = γ̄1/a, γ2 = γ̄2/b, γ3 = γ̄3/c

with

γ̄0 =

(

I 0
0 −I

)

, γ̄ i =

(

0 σ i

−σ i 0

)

, γ5 = γ̄5 =

(

0 −I
−I 0

)

,

whereσi are the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Note that thēγ and theσ matrices obey the following properties:

γ̄ i γ̄ j + γ̄ j γ̄ i = 2η i j , i, j = 0,1,2,3

γ̄ i γ̄5+ γ̄5γ̄ i = 0, (γ̄5)2 = I , i = 0,1,2,3

σ jσk = δ jk + iε jkl σ l , j,k, l = 1,2,3

whereηi j = {1,−1,−1,−1} is the diagonal matrix,δ jk is the Kronekar symbol andε jkl is the
totally antisymmetric matrix withε123 = +1.

We study the space-independent solutions to the spinor fieldequations (2.6) so thatψ = ψ(t).
Here we define

τ = abc=
√−g (2.16)

The spinor field equation (2.6a) in account of (2.13) and (2.15) takes the form

iγ̄0
(

∂
∂ t

+
τ̇
2τ

)

ψ −mψ +Dψ +G iγ5ψ = 0. (2.17)

SettingVj(t) =
√

τψ j(t), j = 1,2,3,4, from (2.17) one deduces the following system of equa-
tions:

V̇1+ i(m−D)V1−GV3 = 0, (2.18a)
V̇2+ i(m−D)V2−GV4 = 0, (2.18b)
V̇3− i(m−D)V3+GV1 = 0, (2.18c)
V̇4− i(m−D)V4+GV2 = 0. (2.18d)

From (2.6a) we also write the equations for the invariantsS, P andA = ψ̄ γ̄5γ̄0ψ

Ṡ0−2G A0 = 0, (2.19a)
Ṗ0−2(m−D)A0 = 0, (2.19b)

Ȧ0 +2(m−D)P0+2G S0 = 0, (2.19c)

whereS0 = τS, P0 = τP, andA0 = τA. The Eq. (2.19) leads to the following relation

S2+P2+A2 = C2/τ2, C2 = const. (2.20)
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Giving the concrete form ofF from (2.18) one writes the components of the spinor functions
in explicitly and using the solutions obtained one can writethe components of spinor current:

jµ = ψ̄γµψ. (2.21)

The componentj0

j0 =
1
τ
[

V∗
1 V1+V∗

2 V2+V∗
3 V3+V∗

4 V4
]

, (2.22)

defines the charge density of spinor field that has the following chronometric-invariant form

ρ = ( j0 · j0)1/2. (2.23)

The total charge of spinor field is defined as

Q =

∞
∫

−∞

ρ
√

−3gdxdydz= ρτV , (2.24)

whereV is the volume. From the spin tensor

Sµν,ε =
1
4

ψ̄
{

γεσ µν +σ µν γε}ψ. (2.25)

one finds chronometric invariant spin tensor

Si j ,0
ch =

(

Si j ,0Si j ,0)1/2
, (2.26)

and the projection of the spin vector onk axis

Sk =

∞
∫

−∞

Si j ,0
ch

√

−3gdxdydz= Si j ,0
ch τV. (2.27)

Let us now solve the Einstein equations. To do it, we first write the expressions for the compo-
nents of the energy-momentum tensor explicitly:

T0
0 = mS−λF + ε ≡ T̃0

0 , (2.28a)

T1
1 = DS+G P−λF − p′ +2η

ȧ
a
≡ T̃1

1 +2η
ȧ
a
, (2.28b)

T2
2 = DS+G P−λF − p′ +2η

ḃ
b
≡ T̃1

1 +2η
ḃ
b
, , (2.28c)

T3
3 = DS+G P−λF − p′ +2η

ċ
c
≡ T̃1

1 +2η
ċ
c
, . (2.28d)

In account of (2.28) subtracting (2.7a) from (2.7b), one finds the following relation betweena and
b:

a
b

= D1exp

(

X1

∫

e−2κ
∫

ηdtdt
τ

)

. (2.29)

Analogically, one finds

b
c

= D2exp

(

X2

∫

e−2κ
∫

ηdtdt
τ

)

,
c
a

= D3exp

(

X3

∫

e−2κ
∫

ηdtdt
τ

)

. (2.30)
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HereD1, D2, D3, X1, X2,X3 are integration constants, obeying

D1D2D3 = 1, X1+X2+X3 = 0. (2.31)

In view of (2.31) from (2.29) and (2.30) we write the metric functions explicitly [21]

a(t) = (D1/D3)
1/3τ1/3exp

[

X1−X3

3

∫

e−2κ
∫

ηdt

τ(t)
dt

]

, (2.32a)

b(t) = (D2
1D3)

−1/3τ1/3exp

[

−2X1+X3

3

∫

e−2κ
∫

ηdt

τ(t)
dt

]

, (2.32b)

c(t) = (D1D2
3)

1/3τ1/3exp

[

X1+2X3

3

∫

e−2κ
∫

ηdt

τ(t)
dt

]

. (2.32c)

As one sees from (2.32a), (2.32b) and (2.32c), forτ = tn with n > 1 the exponent tends to unity at
larget, and the anisotropic model becomes isotropic one.

Further we will investigate the existence of singularity (singular point) of the gravitational
case, which can be done by investigating the invariant characteristics of the space-time. In general
relativity these invariants are composed from the curvature tensor and the metric one. In a 4D
Riemann space-time there are 14 independent invariants. Instead of analyzing all 14 invariants,
one can confine this study only in 3, namely the scalar curvature I1 = R, I2 = RR

µν µν , and the

Kretschmann scalarI3 = Rαβ µνRαβ µν . At any regular space-time point, these three invariants
I1, I2, I3 should be finite. One can easily verify that

I1 ∝
1
τ2 , I2 ∝

1
τ4 , I3 ∝

1
τ4 .

Thus we see that at any space-time point, whereτ = 0 the invariantsI1, I2, I3, as well as the scalar
and spinor fields become infinity, hence the space-time becomes singular at this point.

In what follows, we write the equation forτ and study it in details.
Summation of Einstein equations (2.7a), (2.7b), (2.7c) and(2.7d) multiplied by 3 gives

τ̈ =
3
2

κ
(

T̃0
0 + T̃1

1

)

τ +3κητ̇ +3Λτ, (2.33)

which can be rearranged as

τ̈ − 3
2

κξ τ̇ =
3
2

κ
(

mS+DS+G P−2λF + ε − p
)

τ +3Λτ. (2.34)

For the right-hand-side of (2.34) to be a function ofτ only, the solution to this equation is well-
known [34].

On the other hand from Bianchi identityGν
µ;ν = 0 one finds

Tν
µ;ν = Tν

µ,ν +Γν
ρνTρ

µ −Γρ
µνTν

ρ = 0, (2.35)

which in our case has the form

1
τ
(

τT0
0

)·− ȧ
a

T1
1 − ḃ

b
T2

2 − ċ
c
T3

3 = 0. (2.36)



8 Bijan Saha

This equation can be rewritten as

˙̃T0
0 =

τ̇
τ

(

T̃1
1 − T̃0

0

)

+2η
( ȧ2

a2 +
ḃ2

b2 +
ċ2

c2

)

. (2.37)

Recall that (2.19) gives
(m−D)Ṡ0−G Ṗ0 = 0.

In view of that after a little manipulation from (2.37) we obtain

ε̇ +
τ̇
τ

ω − (ξ +
4
3

η)
τ̇2

τ2 +4η(κT0
0 +Λ) = 0, (2.38)

where
ω = ε + p, (2.39)

is the thermal function. For further purpose we would like tonote that in absence of shear viscosity
from Eqs. (2.33) and (2.37) one finds

κT̃0
0 = 3H2−Λ+C00, C00 = const. (2.40)

where in analogy with Hubble constant introduce the quantity H, such that

τ̇
τ

=
ȧ
a

+
ḃ
b

+
ċ
c

= 3H. (2.41)

Then (2.34) and (2.38) in account of (2.28) can be rewritten as

Ḣ =
κ
2

(

3ξH −ω
)

−
(

3H2−κε −−Λ
)

+
κ
2

(

mS+DS+G P−2λF
)

, (2.42a)

ε̇ = 3H
(

3ξH −ω
)

+4η
(

3H2−κε −Λ
)

−4ηκ
(

mS−λF
)

. (2.42b)

Thus, the metric functions are found explicitly in terms ofτ and viscosity. To writeτ and com-
ponents of spinor field as well and scalar one we have to specify F in Lsp. In the next section we
explicitly solve Eqs. (2.18) and (2.42) for some concrete value ofF .

The Eqs. (2.42) can be written in terms of dynamical scalar aswell. For this purpose let us
introduce the dynamical scalars such as the expansion and the shear scalar as usual

θ = uµ
;µ , σ2 =

1
2

σµν σ µν , (2.43)

where

σµν =
1
2

(

uµ;αPα
ν +uν;αPα

µ

)

− 1
3

θPµν . (2.44)

HereP is the projection operator obeying

P2 = P. (2.45)

For the space-time with signature(+, −, −, −) it has the form

Pµν = gµν −uµuν , Pµ
ν = δ µ

ν −uµuν . (2.46)



Nonlinear spinor field in Bianchi type-I Universe· · · 9

For the BI metric the dynamical scalar has the form

θ =
ȧ
a

+
ḃ
b

+
ċ
c

=
τ̇
τ
, (2.47)

and

2σ2 =
ȧ2

a2 +
ḃ2

b2 +
ċ2

c2 −
1
3

θ2. (2.48)

In account of (2.32) one can also rewrite share scalar as

2σ2 =
6(X2

1 +X1X3+X2
3)

9τ2 e−4κ
∫

ηdt. (2.49)

From (2.7d) now yields
1
3

θ2−σ2 = κ
[

mS−λF + ε
]

+Λ (2.50)

The Eqs. (2.42) now can be written in terms ofθ andσ as follows

θ̇ =
3κ
2

(

ξ θ −ω
)

− 3κ
2

(

mS−DS−G P
)

−3σ2, (2.51a)

ε̇ = θ
(

ξ θ −ω
)

+4ησ2. (2.51b)

Note that the Eqs. (2.51) without spinor and scalar field contributions coincide with the ones given
in [12].

III. SOME SPECIAL SOLUTIONS

In this section we first solve the spinor field equations for some special choice ofF, which will
be given in terms ofτ. Thereafter, we will study the system (2.42) in details and give explicit
solution for some special cases.

A. Solutions to the spinor field equations

As one sees, introduction of viscous fluid has no direct effect on the system of spinor field
equations (2.18). Viscous fluid has an implicit influence on the system throughτ. A detailed
analysis of the system in question can be found in [21]. Here we just write the final results.

1. Case with F= F(I)

Here we consider the case when the nonlinear spinor field is given byF = F(I). As in the case
with minimal coupling from (2.19a) one finds

S=
C0

τ
, C0 = const. (3.1)

For components of spinor field we find [21]

ψ1(t) =
C1√

τ
e−iβ , ψ2(t) =

C2√
τ

e−iβ ,

(3.2)

ψ3(t) =
C3√

τ
eiβ , ψ4(t) =

C4√
τ

eiβ ,
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with Ci being the integration constants and are related toC0 asC0 = C2
1 +C2

2 −C2
3 −C2

4. Here
β =

∫

(m−D)dt.
For the components of the spin current from (2.21) we find

j0 =
1
τ
[

C2
1 +C2

2 +C2
3 +C2

4

]

, j1 =
2
aτ

[

C1C4+C2C3
]

cos(2β ),

j2 =
2
bτ

[

C1C4−C2C3
]

sin(2β ), j3 =
2
cτ

[

C1C3−C2C4
]

cos(2β ),

whereas, for the projection of spin vectors on theX, Y andZ axis we find

S23,0 =
C1C2 +C3C4

bcτ
, S31,0 = 0, S12,0 =

C2
1 −C2

2 +C2
3 −C2

4

2abτ
.

The total charge of the system in a volumeV in this case is

Q = [C2
1 +C2

2 +C2
3 +C2

4]V . (3.3)

Thus, forτ 6= 0 the components of spin current and the projection of spin vectors are singularity-
free and the total charge of the system in a finite volume is always finite. Note that, settingλ = 0,
i.e.,β = mt in the foregoing expressions one get the results for the linear spinor field.

2. Case with F= F(J)

Here we consider the case withF = F(J). In this case we assume the spinor field to be massless.
Note that, in the unified nonlinear spinor theory of Heisenberg, the massive term remains absent,
and according to Heisenberg, the particle mass should be obtained as a result of quantization of
spinor prematter [37]. In the nonlinear generalization of classical field equations, the massive
term does not possess the significance that it possesses in the linear one, as it by no means defines
total energy (or mass) of the nonlinear field system. Thus without losing the generality we can
consider massless spinor field puttingm = 0. Then from (2.19b) one gets

P = D0/τ, D0 = const. (3.4)

In this case the spinor field components take the form

ψ1 =
1√
τ
(

D1eiσ + iD3e−iσ)

, ψ2 =
1√
τ
(

D2eiσ + iD4e−iσ)

,

(3.5)

ψ3 =
1√
τ
(

iD1eiσ +D3e−iσ)

, ψ4 =
1√
τ
(

iD2eiσ +D4e−iσ)

.

The integration constantsDi are connected toD0 by D0 = 2(D2
1 + D2

2−D2
3−D2

4). Here we set
σ =

∫

G dt.
For the components of the spin current from (2.21) we find

j0 =
2
τ
[

D2
1+D2

2+D2
3 +D2

4

]

, j1 =
4
aτ

[

D2D3 +D1D4
]

cos(2σ),

j2 =
4
bτ

[

D2D3−D1D4
]

sin(2σ), j3 =
4
cτ

[

D1D3−D2D4
]

cos(2σ),
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whereas, for the projection of spin vectors on theX, Y andZ axis we find

S23,0 =
2(D1D2+D3D4)

bcτ
, S31,0 = 0, S12,0 =

D2
1−D2

2+D2
3−D2

4

2abτ

We see that for any nontrivialτ as in previous case the components of spin current and the pro-
jection of spin vectors are singularity-free and the total charge of the system in a finite volume is
always finite.

B. Determination of τ

In this subsection we simultaneously solve the system of equations forτ andε. Since setting
m= 0 in the equations forF = F(I) one comes to the case whenF = F(J), we consider the case
with F being the function ofI only. Let F be the power function ofS, i.e., F = Sn. As it was
established earlier, in this caseS= C0/τ, or settingC0 = 1 simplyS= 1/τ. EvaluatingD in terms
of τ we then come to the following system of equations

τ̈ =
3κ
2

ξ τ̇ +
3κ
2

(m
τ

+
λ (n−2)

τn + ε − p
)

τ +3Λτ, (3.6a)

ε̇ = − τ̇
τ

ω +(ξ +
4
3

η)
τ̇2

τ2 −4η
[

κ
(m

τ
− λ

τn

)

+Λ
]

, (3.6b)

or in terms ofH

τ̇ = 3Hτ, (3.7a)

Ḣ =
1
2

(

3ξH −ω
)

−
(

3H2−κε −Λ
)

+
κ
2

(m
τ

+
λ (n−2)

τn

)

, (3.7b)

ε̇ = 3H
(

3ξH −ω
)

+4η
(

3H2−κε −Λ
)

−4ηκ
[m

τ
− λ

τn

]

. (3.7c)

Hereη andξ are the bulk and shear viscosity, respectively and they are both positively definite,
i.e.,

η > 0, ξ > 0. (3.8)

They may be either constant or function of time or energy. We consider the case when

η = Aεα , ξ = Bεβ , (3.9)

with A andB being some positive quantities. Forp we set as in perfect fluid,

p = ζ ε, ζ ∈ (0,1]. (3.10)

Note that in this caseζ 6= 0, since for dust pressure, hence temperature is zero, that results in
vanishing viscosity.

The system (3.7) without spinor field have been extensively studied in literature either partially
[9, 12, 13] or as a whole [11]. Here we try to solve the system (3.6) for some particular choice of
parameters.
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1. Case with bulk viscosity

Let us first consider the case with bulk viscosity alone setting coefficient of shear viscosity
η = 0. We also demand the coefficient of bulk viscosity be inverseproportional to expansion, i.e.,

ξ θ = 3ξH = C2, C2 = const. (3.11)

Insertingη = 0, (3.11) and (3.10) into (3.7c) one finds

ε =
1

1+ζ

[

C2−
C3

τ1+ζ

]

, C3 = const. (3.12)

Then from (3.6a) we get the following equation for determiningτ:

τ̈ =
3κ
2

m+3
[C2

2
κ +Λ

]

τ +
3κ(1−ζ )

2(1+ζ )

C2τ1+ζ −C3

τζ +
3κ
2

λ (n−2)

τn−1 ≡ F (q,τ), (3.13)

whereq is the set of problem parameters. As one sees, the right hand side of the Eq. (3.13) is
a function ofτ, hence can be solved in quadrature [34]. We solve the Eq. (3.13) numerically. It
can be noted that the Eq. (3.13) can be viewed as one describing the motion of a single particle.
Sometimes it is useful to plot the potential of the corresponding equation which in this case is

U (q,τ) = −2
∫

F (q,τ)dτ. (3.14)

The problem parameters are chosen as follows:κ = 1, m= 1, λ = 0.5, ζ = 1/3, n = 4, C2 = 2
andC3 = 1. Here we consider the cases with differentΛ, namely withΛ = −2,0,1, respectively.
The initial value ofτ is taken to be a small one, whereas, the first derivative ofτ, i.e., τ̇ at that
point of time is calculated from (2.40). In Fig. 1 we have illustrated the potential corresponding to
Eq. (3.13). As one sees, independent to the sign ofΛ we have the expanding mode of evolution,
though a positiveΛ accelerates the process, while the negative one decelerates. Corresponding
behavior ofτ is given in Fig. 2.

2. Case with bulk and shear viscosities

Let us consider a more general case. Following [26] we choosethe shear viscosity being
proportional to the expansion, namely,

η = − 3
2κ

H = − 1
2κ

θ . (3.15)

In absence of spinor field this assumption leads to

3H2 = κε +C4, C4 = const. (3.16)

It can be shown that the relation (3.16) in our case can be achieved only for massless spinor field
with the nonlinear term being

F = F0S2(κ−1)/κ .

Equation forτ in this case has the form

ττ̈ −0.5(1−ζ )τ̇2−1.5κξ ττ̇ −3[Λ−0.5(1−ζ )C4−λF0τ2(1−κ)/κ ]τ2 = 0. (3.17)
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FIG. 1: View of the potential corresponding to
the different sign of theΛ term.

FIG. 2: Evolution ofτ depending on the signs of
theΛ term.

In case ofξ = const. andλ = 0 there exists several special solutions available in handbooks on
differential equations. But for nonzeroλ we can investigate this equation only numerically. We
consider the case when the bulk viscosity is given by a constant. Taking this into account for
problem parameters we setζ = 1/3, ξ = 1, F0 = 1, λ = 0.5 andC4 = 1. We study the role ofΛ
term. In doing this we consider the cases with positive, negative and trivialΛ. Since the nonlinear
term in this case depends ofκ , we also consider the cases with differentκ , namely withκ > 1 and
κ < 1. In Figs. 3 and 4 the evolution ofτ is illustrated forκ < 1 andκ > 1, respectively. In case
of κ < 1 we have non-periodic mode of evolution for allΛ, while for κ > 1 a negativeΛ gives a
non-periodic mode of expansion. A non-negativeΛ in this case gives an ever expanding mode of
evolution.

IV. CONCLUSION

We consider a self consistent system of nonlinear spinor andgravitational fields within the
framework of Bianchi type-I cosmological model filled with viscous fluid. The spinor filed non-
linearity is taken to be some power law of the invariants of bilinear spinor forms. Solutions to the
corresponding equations are given in terms of the volume scale of the BI space-time, i.e., in terms
of τ = abc. The system of equations for determiningτ, energy-density of the viscous fluidε and
Hubble parameterH has been worked out. Exact solution to the aforementioned system has been
given only for the case of bulk viscosity. As one sees from (2.42) or (2.51), the system in question
is a multi-parametric one and may have several solutions depending on the choice of the problem
parameters. As one sees, solutions can be non-periodic independent to the sign ofΛ term. Given
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FIG. 3: Evolution of the universe with nontrivial
Λ term andκ < 1.

FIG. 4: Evolution of the universe for different
values ofΛ term withκ > 1.

the richness of (3.6) we plan to give qualitative analysis ofthis system in near future.
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