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1 Introduction

When the general theory of relativity (GTR) and quantum theory of field were devel-
oped, an interest to study the role of gravitational interaction in elementary particle
physics arose. On this context, to obtain and study the particle-like solutions to the
consistent systems of wave and gravitational fields present a major interest. To obtain
and study the properties of regular localized solutions to the nonlinear classical field
equations (soliton- or particle-like solutions) is connected with the hope to develop a
divergence-free theory of elementary particle, which in its turn would describe the com-
plex spatial structure of particle, observed experimentally. In doing so one should keep
in mind that the nonlinear generalization of field theory is necessary irrespective of the
question of divergence as the consideration of interaction between the fields inevitably
leads to the advent of nonlinear terms in the field equations. Consequently, nonlinearity
should be considered not only as one of the ways to eliminate difficulties of theory, but
also the reflection of objective properties of field. As it is noticed by N. N. Bogoluibov
and D. B. Shirkov [1], the complete description of elementary particles with all their
physical characteristics (say, magnetic momentum) can give only the interacting field
theory. So one can say that individual free (linear) fields present themselves as the basis
to describe these particles in the framework of interacting field theory. As elementary
particle is a quantum object, so the attempts to develop a classical model of particle
remain preliminary but necessary stage of study for transformation to quantum theory.

In this paper the system of interacting scalar and electromagnetic fields are being
considered in the Robertson-Walker Universe with the metric [2]:

ds2 = dt2 − R2(t)
[

dr2

1 − kr2
+ r2 dθ2 + r2 sin2θ dφ2

]

, (1.1)

where R(t) defines the size of the Universe, and k takes the values 0 and ±1. Droplet:
it is some kind of soliton-like solutions to the field equations possessing sharp boundary.
Similar solution was first obtained by Werle [3]. Further, a series of work was done
where the solutions with sharp boundary to the nonlinear field equations were being
found and studied in external gravitational field as well as in the selfconsistent one
[4-10]. Present paper generalizes the partial results obtained by the authors earlier.
Moreover here the question of stability is considered which presents a growing interest.

2 Fundamental equations and their solutions

We will choose the Lagrangian of interacting scalar (ϕ) and electromagnetic (Fαβ)
fields in the form [4]:

L = (1/2)ϕ,α ϕ,α − (1/4)Fαβ Fαβ Ψ(ϕ), (2.1)

where the function Ψ(ϕ) = 1 + κ Φ(ϕ) characterizes the interaction (Ψ(ϕ) = 1 cor-
responds to the system of free fields). We will seek the static spherically symmetric
solutions assuming that the scalar field ϕ is the function of r only, and the vector field
Aµ possesses one component A0(r), i.e.

ϕ = ϕ(r), Aµ = δ0
µA0(r) = δ0

µA(r).

2



It means that (Fαβ) also possesses one component i.e.

Fαβ = (δ0
α δ1

β − δ0
β δ1

α)F01(r) = A′(r),

where ′ denotes differentiation with respect to r.
The equations to scalar and electromagnetic fields write:

∂ν (
√
−g gµν ϕ,µ) + (

√
−g/2)Fαβ Fαβ Ψϕ(ϕ) = 0, Ψϕ(ϕ) = ∂Ψ/∂ϕ, (2.2)

∂ν (
√
−gFµν Ψ(ϕ)) = 0. (2.3)

In accordance with the assumption, made above, the equation (2.3) is easily inte-
grated at r > 0:

F01(r) = q P (ϕ)/
√

−g′ = q P (ϕ)
√

1 − k r2/R3 r2, (2.4)

where q = const, P (ϕ) = 1/Ψ(ϕ) and −g′ = −g/sin2θ = R6 r4

(1− k r2)
.

The equation (2.2) for ϕ(r) in this case metamorphoses to the equation with ”in-
duced nonlinearity” [5]:

√

−g′
(

√

−g′ g11 ϕ′
)′

= q2 g11 Pϕ. (2.5)

Let us make the following assuption of the cosmological character of time in Robertson-
Walker Universe. Let us suppose that the cosmological time scale is much greater

than the usual time scale. In other words in the case considered R(t) can be interpreted
as a constant. Then it is also easy to find the first integral and solution in quadrature
for the equation (2.5):

ϕ′ = −
√

2 q
√

P + C/R r2
√

1 − k r2, C = const, (2.6)
∫

dϕ/
√

P + C =
√

1 − k r2/R r + C3. (2.7)

The regularity condition of T 0
0 at the center leads to the fact that C = 0. Choosing

P (ϕ) in the form

P (ϕ) = 1/Ψ(ϕ) = J2−4/σ
(

1 − J2/σ
)2

, (2.8)

where J = λ ϕ, σ = 2n + 1, n = 1, 2 · · ·, for ϕ(r) one gets:

ϕ(r) =
1

λ

[

1 − exp
(

−2
√

2 q λ

R σ

√

1/r2 − k + C3

)]σ/2

. (2.9)

It is obvious that at r → 0 ϕ(0) → 1/λ, and beginning with some

r = rc = 2
√

2q λ/
√

(R2 σ2 C2
3 + 8 k q2 λ2),

ϕ(r) becomes totally imaginary as in this case the square bracket possesses negative
value. As far as we are dealing with a real scalar field, ϕ(r) at r > rc becomes non-
physical. So without losing the generality we may write that at r → rc, ϕ(rc) → 0.
(An illustration of the inverse interaction function P (ϕ) and the scalar field obtained
is given in Figure 1 and Figure 2.)
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Let us write the energy-momentum tensor for the interacting fields:

T ν
µ = ϕ,µ ϕ,ν − Fµβ Fνβ Ψ(ϕ) − δν

µ L. (2.10)

From (2.10) we find the density of field energy of the system:

T 0
0 =

3

2

q2 P

R4 r4
(2.11)

and total energy

Ef =
∫

T 0
0

√

−3g d3x =
3
√

2 q π

2λ (σ − 1)
. (2.12)

Thus, we came to the conclusion that energy density T 0
0 and total energy of the configu-

rations obtained do not depend on the conventional values of the parameter k = 0, ±1.

3 Stability problem

To study the stability of the configurations obtained we will write the linearized equa-
tions for the radial perturbations of scalar field. Assuming that

ϕ(r, t) = ϕ(r) + ξ(r, t), ξ ≪ ϕ, (3.1)

from (2.2) in view of (2.5) we get the equation for ξ(r, t) :

ξ̈ + 3
Ṙ

R
ξ̇ − 1 − k r2

R2
ξ′′ − 2 − 3 k r2

r R2
ξ′ +

q2 Pϕϕ

R4 r4
ξ = 0. (3.2)

As far as according to the assumption the external gravitational field is cosmological
one, we can consider that R(t) is a slowly varying time-function: Ṙ(t) ≈ 0. Assuming
that

ξ(r, t) ≈ v(r) exp(−i Ω t), Ω = ω/ R, (3.3)

from (3.2) we obtain

(1 − k r2) v′′ + (2/ r − 3 k r) v′ + (ω2 − q2 Pϕϕ

R4 r4
) v = 0. (3.4)

Let us first consider the case when k = +1. Then substituting v(r) = y(x), where
x = 1 − 1/r2, from (3.4) we get the equation

4 x yxx + 2 yx +
(

ω2

(1 − x)2
− q2 Pϕϕ

R4

)

y = 0, (3.5)

which for y(x) = u(z), x = z2, takes the form

uzz +
(

ω2

(1 − z2)2
− q2 Pϕϕ

R4

)

u = 0. (3.6)

Further substitution

η(ζ) = u(z)/
√

1 − z2, z = −th ζ,
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leads the equation (3.6) to the normal form of Liouville [11]

ηζζ +
(

ω2 − 1 − q2 Pϕϕ

R4
sech4 ζ

)

η = 0. (3.7)

In case of k = −1 the equation (3.4) can analogously be transferred to the form (3.7)
doing the following substitutions: x = 1 + 1/r2, x = z2 and z = th ζ.

At last in case of k = 0 from (3.4) we get

W ′′ +
(

ω2 − q2 Pϕϕ

R4 r4

)

W = 0, (3.8)

where W (r) = r · v(r).
Using the form of Pϕϕ from (2.8), we come to the conclusion that for σ ≥ 5 the

expressions of the potentials

V±(ϕ) = 1 +
q2 Pϕϕ

R4
sech4 ζ and V0(ϕ) =

q2 Pϕϕ

R4 r4

tends to +∞ at r → 0 as well as at r → rc = 2
√

2q λ√
(R2 σ2 C2

3
+ 8 k q2 λ2)

. It means that

for σ ≥ 5 for P (ϕ) given by (2.8) the configuration obtained is stable for the class of
perturbation, vanishing at r = 0 and r = rc.

In stability can be assured in general introducing the variable

ζ = −
r

∫

dr√
−g′ g11

=
1

R

r
∫

dr

r2
√

1 − k r2

and rewriting the equation for perturbation in the form

d2 ξ

dζ2
+ (Ω2 − q2 Pϕϕ) ξ = 0.

The equation mentioned possesses at Ω = 0 nonnegative solution ξ = − dϕ/ dζ , which
according to the Sturm theorem corresponds to the absence of ”coupled” state with
Ω2 < 0.

4 Conclusion

Thus, we obtain the object with sharp boundary, described by the regular function
ϕ(r). In the center of the system r = 0 ϕ(0) → 1/λ, and at some critical value
of radius r = rc function ϕ(r) possesses trivial value. The configuration obtained,
possesses limited energy density and finite total energy. From (2.12) it is explicit that
the expression for energy does not contain r, defining the size of droplet. It means that
the droplets of different linear sizes up to the soliton with rc → ∞ share one and the
same total energy. For different values of k, the field function ϕ(r) changes it’s form. It
is noteworthy to notice that at rc → ∞ for k = 0 droplet transfers to usual solitonian
solution, while in case of k = ±1 this type of transition remains absent. It should
also be emphasized that the values k = ±1 enforce the stability of the configurations
obtained, which is obvious from the expressions of V0(ϕ) and V±(ϕ).
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