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1 Introduction

The quantum field theory in curved space-time has been a matter of great interest in
recent years because of its applications to cosmology and astrophysics. The evidence of
existence of strong gravitational fields in our Universe led to the study of the quantum
effects of material fields in external classical gravitational field. After the appearance of
Parker’s paper on scalar fields [1] and spin-1

2
fields [2], several authors have studied this

subject. Although the Universe seems homogenous and isotropic at present, there are
no observational data guarantying the isotropy in the era prior to the recombination. In
fact, there are theoretical arguments that sustain the existence of an anisotropic phase
that approaches an isotropic one [3]. Interest in studying Klein-Gordon and Dirac
equations in anisotropic models has increased since Hu and Parker [4] have shown that
the creation of scalar particles in anisotropic backgrounds can dissipate the anisotropy
as the Universe expands.
A Bianchi type-I (B-I) Universe, being the straightforward generalization of the flat
Robertson-Walker (RW) Universe, is one of the simplest models of an anisotropic Uni-
verse that describes a homogenous and spatially flat Universe. Unlike the RW Universe
which has the same scale factor for each of the three spatial directions, a B-I Universe
has a different scale factor in each direction, thereby introducing an anisotropy to the
system. It moreover has the agreeable property that near the singularity it behaves
like a Kasner Universe even in the presence of matter and consequently falls within the
general analysis of the singularity given by Belinskii et al [5]. And in a Universe filled
with matter for p = γ ε, γ < 1, it has been shown that any initial anisotropy in a B-I
Universe quickly dies away and a B-I Universe eventually evolve into a RW Universe
[6]. Since the present-day Universe is surprisingly isotropic, this feature of the B-I
Universe makes it a prime candidate for studying the possible effects of an anisotropy
in the early Universe on present-day observations. In light of the importance of men-
tioned above, several authors have studied linear spinor field equations [7], [8] and the
behavior of gravitational waves (GW’s) [9], [10], [11] in B-I Universe. Nonlinear spinor
field (NLSF) in external cosmological gravitation field was first studied by G. N. Shikin
in 1991 [12]. This study was extended by us for more general case where we consider
nonlinear term as an arbitrary function of all possible invariants generated from spinor
bilinear forms. In that paper we also studied the possibility of elimination of initial
singularity specially for Kasner Universe [13]. In a recent paper [14] we studied the
behavior of self-consistent NLSF in B-I Universe that was followed by the papers [15],
[16] where we studied the self-consistent system of interacting spinor and scalar fields.
The purpose of the paper is to extend our study for more general NLSF in presence of
perfect fluid. In the section 2 we derive fundamental equations corresponding to the
Lagrangian for the self-consistent system of spinor and gravitational fields in presence
of perfect fluid and seek their general solutions. In section 3 we give a detail analysis
of the solutions obtained for different kinds of nonlinearity. In section 4 we study the
role of perfect fluid and in section 5 we sum up the results obtained.
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2 Fundamental equations and general solutions

The Lagrangian for the self-consistent system of spinor and gravitation fields in presence
of perfect fluid is

L =
R

2κ
+
i

2

[

ψ̄γµ∇µψ −∇µψ̄γ
µψ

]

−mψ̄ψ + LN + Lm, (2.1)

with R being the scalar curvature and κ being the Einstein’s gravitational constant.
The nonlinear term LN describes the self-interaction of spinor field and can be presented
as some arbitrary functions of invariants generated from the real bilinear forms of spinor
field having the form:

S = ψ̄ψ, P = iψ̄γ5ψ, vµ = (ψ̄γµψ), Aµ = (ψ̄γ5γµψ), T µν = (ψ̄σµνψ),

where σµν = (i/2)[γµγν − γνγµ]. Invariants, corresponding to the bilnear forms, look

I = S2, J = P 2, Iv = vµ v
µ = (ψ̄γµψ) gµν(ψ̄γ

νψ),

IA = AµA
µ = (ψ̄γ5γµψ) gµν(ψ̄γ

5γνψ), IT = Tµν T
µν = (ψ̄σµνψ) gµαgνβ(ψ̄σαβψ).

According to the Pauli-Fierz theorem [17] among the five invariants only I and J are
independent as all other can be expressed by them: Iv = −IA = I + J and IT = I − J.
Therefore we choose the nonlinear term LN = F (I, J), thus claiming that it describes
the nonlinearity in the most general of its form. Lm is the Lagrangian of perfect fluid.

We choose B-I space-time metric in the form

ds2 = dt2 − γij(t) dx
i dxj. (2.2)

As it admits no rotational matter, the spatial metric γij(t) can be put into diagonal
form. Now we can rewrite the B-I space-time metric in the form [18]:

ds2 = dt2 − a2(t) dx2 − b2(t) dy2 − c2(t) dz2, (2.3)

where the velocity of light is taken to be unity. Einstein equations for a(t), b(t) and
c(t) corresponding to the metric (2.3) and Lagrangian (2.1) read [18]:

ä

a
+
ȧ

a

(

ḃ

b
+
ċ

c

)

= −κ
(

T 1
1 − 1

2
T

)

, (2.4)

b̈

b
+
ḃ

b

(

ȧ

a
+
ċ

c

)

= −κ
(

T 2
2 − 1

2
T

)

, (2.5)

c̈

c
+
ċ

c

(

ȧ

a
+
ḃ

b

)

= −κ
(

T 3
3 − 1

2
T

)

, (2.6)

ä

a
+
b̈

b
+
c̈

c
= −κ

(

T 0
0 − 1

2
T

)

, (2.7)

where points denote differentiation with respect to t, and T = T µ
µ .

3



NLSF equations and components of energy-momentum tensor for the spinor field and
perfect fluid corresponding to (2.1) are

iγµ∇µψ −mψ + FI2Sψ + FJ2Piγ5ψ = 0,

i∇µψ̄γ
µ +mψ̄ − FI2Sψ̄ − FJ2Piψ̄γ5 = 0, (2.8)

where FI := ∂F/∂I and FJ := ∂F/∂J.

T ρ
µ =

i

4
gρν

(

ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ
)

− δρ
µLsp + T ρ

µ (m), (2.9)

while Lsp on account of spinor field equations takes the form:

Lsp = −
[

1

2

(

ψ̄
∂LN

∂ψ̄
+
∂LN

∂ψ
ψ

)

− LN

]

= −[2I FI + 2J FJ − LN ].

Here T ρ
µ (m) is the energy-momentum tensor of perfect fluid. For a Universe filled with

perfect fluid, in the concomitant system of reference (u0 = 1, ui = 0, i = 1, 2, 3) we
have

T ν
µ(m) = (p+ ε)uµu

ν − δν
µp = (ε, −p, −p, −p), (2.10)

where energy ε is related to the pressure p by the equation of state p = γ ε, the general
solution has been derived by Jacobs [6]. γ varies between the interval 0 ≤ γ ≤ 1,
whereas γ = 0 describes the dust Universe, γ = 1

3
presents radiation Universe, 1

3
<

γ < 1 ascribes hard Universe and γ = 1 corresponds to the stiff matter. In (2.8) and
(2.9) ∇µ denotes the covariant derivative of spinor, having the form [19]:

∇µψ =
∂ψ

∂xµ
− Γµψ, (2.11)

where Γµ(x) are spinor affine connection matrices. γµ(x) matrices are defined for the
metric (2.3) as follows. Using the equalities [20], [21]

gµν(x) = ea
µ(x)eb

ν(x)ηab, γµ(x) = ea
µ(x)γ̄

a,

where ηab = diag(1,−1,−1,−1), γ̄α are the Dirac matrices of Minkowski space and
ea

µ(x) are the set of tetradic 4-vectors, we obtain the Dirac matrices γµ(x) of curved
space-time

γ0 = γ̄0, γ1 = γ̄1/a(t), γ2 = γ̄2/b(t), γ3 = γ̄3/c(t),

γ0 = γ̄0, γ1 = γ̄1a(t), γ2 = γ̄2b(t), γ3 = γ̄3c(t).

Γµ(x) matrices are defined by the equality

Γµ(x) =
1

4
gρσ(x)

(

∂µe
b
δe

ρ
b − Γρ

µδ

)

γσγδ,

which gives

Γ0 = 0, Γ1 =
1

2
ȧ(t)γ̄1γ̄0, Γ2 =

1

2
ḃ(t)γ̄2γ̄0, Γ3 =

1

2
ċ(t)γ̄3γ̄0. (2.12)
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Flat space-time matrices we choose in the form, given in [22]:

γ̄0 =











1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1











, γ̄1 =











0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0











,

γ̄2 =











0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0











, γ̄3 =











0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0











.

Defining γ5 as follows

γ5 = − i

4
Eµνσργ

µγνγσγρ, Eµνσρ =
√−gεµνσρ, ε0123 = 1,

γ5 = −i√−gγ0γ1γ2γ3 = −iγ̄0γ̄1γ̄2γ̄3 = γ̄5,

we obtain

γ̄5 =











0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0











.

We study the space-independent solutions to NLSF equation (2.8). In this case the
first equation of the system (2.8) together with (2.11) and (2.12) is

iγ̄0
(

∂

∂t
+

τ̇

2τ

)

ψ −mψ + Dψ + iGγ5ψ = 0, τ(t) = a(t)b(t)c(t), (2.13)

where we denote D := 2S FI and G := 2P FJ . For the components ψρ = Vρ(t), where
ρ = 1, 2, 3, 4, from (2.13) one deduces the following system of equations:

V̇1 +
τ̇

2τ
V1 + i(m−D)V1 − GV3 = 0,

V̇2 +
τ̇

2τ
V2 + i(m−D)V2 − GV4 = 0,

V̇3 +
τ̇

2τ
V3 − i(m−D)V3 + GV1 = 0,

V̇4 +
τ̇

2τ
V4 − i(m−D)V4 + GV2 = 0. (2.14)

Let us now define the equations for

P = i(V1V
∗

3 − V ∗

1 V3 + V2V
∗

4 − V ∗

2 V4),

R = (V1V
∗

3 + V ∗

1 V3 + V2V
∗

4 + V ∗

2 V4),

S = (V ∗

1 V1 + V ∗

2 V2 − V ∗

3 V3 − V ∗

4 V4). (2.15)
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After a little manipulation one finds

dS0

dt
− 2G R0 = 0,

dR0

dt
+ 2(m−D)P0 + 2GS0 = 0,

dP0

dt
− 2(m−D)R0 = 0, (2.16)

where S0 = τS, P0 = τP, R0 = τR. From this system we obtain

S0Ṡ0 +R0Ṙ0 + P0Ṗ0 = 0,

that gives
S2 +R2 + P 2 = C2/τ 2, C2 = const. (2.17)

Let us go back to the system of equations (2.14). It can be written as follows if one
defines Wα =

√
τ Vα:

Ẇ1 + iΦW1 − GW3 = 0, Ẇ2 + iΦW2 − GW4 = 0,

Ẇ3 − iΦW3 + GW1 = 0, Ẇ4 − iΦW4 + GW2 = 0, (2.18)

where Φ = m−D. Defining U(σ) = W (t), where σ =
∫ Gdt, we rewrite the foregoing

system as:

U ′

1 + i(Φ/G)U1 − U3 = 0, U ′

2 + i(Φ/G)U2 − U4 = 0,

U ′

3 − i(Φ/G)U3 + U1 = 0, U ′

4 − i(Φ/G)U4 + U2 = 0, (2.19)

where prime (′) denotes differentiation with respect to σ.
Let us now solve the Einstein equations. To do it we first write the expressions for
the components of the energy-momentum tensor explicitly. Using the property of flat
space-time Dirac matrices and the explicit form of covariant derivative ∇µ one can
easily find

T 0
0 = mS − F (I, J) + ε, T 1

1 = T 2
2 = T 3

3 = 2I FI + 2J FJ − F (I, J) − p. (2.20)

Summation of Einstein equations (2.4), (2.5) and (2.6) leads to the equation

τ̈

τ
= −κ(T 1

1 +T 2
2 +T 3

3 −
3

2
T ) =

3κ

2
(mS+2I FI + 2J FJ − 2F (I, J) + ε− p). (2.21)

In case if the right hand side of (2.21) be the function of τ(t) = a(t)b(t)c(t), this
equation takes the form

τ̈ + Φ(τ) = 0. (2.22)

As is known this equation possesses exact solutions for arbitrary function Φ(τ). Giv-
ing the explicit form of LN = F (I, J), from (2.21) one can find concrete function
τ(t) = abc. Once the value of τ is obtained, one can get expressions for components
Vα(t), α = 1, 2, 3, 4. Let us express a, b, c through τ . For this we notice that subtrac-
tion of Einstein equations (2.4) - (2.5) leads to the equation

ä

a
− b̈

b
+
ȧċ

ac
− ḃċ

bc
=

d

dt

(

ȧ

a
− ḃ

b

)

+
(

ȧ

a
− ḃ

b

)(

ȧ

a
+
ḃ

b
+
ċ

c

)

= 0. (2.23)
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Equation (2.23) possesses the solution

a

b
= D1exp

(

X1

∫

dt

τ

)

, D1 = const., X1 = const. (2.24)

Subtracting equations (2.4) - (2.6) and (2.5) - (2.6) one finds the equations similar to
(2.23), having solutions

a

c
= D2exp

(

X2

∫

dt

τ

)

,
b

c
= D3exp

(

X3

∫

dt

τ

)

, (2.25)

where D2, D3, X2, X3 are integration constants. There is a functional dependence be-
tween the constants D1, D2, D3, X1, X2, X3:

D2 = D1D3, X2 = X1 + X3.

Using the equations (2.24) and (2.25), we rewrite a(t), b(t), c(t) in the explicit form:

a(t) = (D2
1D3)

1

3 τ
1

3 exp
[

2X1 +X3

3

∫ dt

τ(t)

]

,

b(t) = (D−1
1 D3)

1

3 τ
1

3 exp
[

−X1 −X3

3

∫

dt

τ(t)

]

,

c(t) = (D1D
2
3)

−
1

3 τ
1

3 exp
[

−X1 + 2X3

3

∫

dt

τ(t)

]

. (2.26)

Thus the previous system of Einstein equations is completely integrated. In this process
of integration only first three of the complete system of Einstein equations have been
used. General solutions to these three second order equations have been obtained. The
solutions contain six arbitrary constants: D1, D3, X1, X3 and two others, that were
obtained while solving equation (2.22). Equation (2.7) is the consequence of first three
of Einstein equations. To verify the correctness of obtained solutions, it is necessary to
put a, b, c into (2.7). It should lead either to identity or to some additional constraint
between the constants. Putting a, b, c from (2.26) into (2.7) one can get the following
equality:

1

3τ

[

3τ̈ − 2
τ̇ 2

τ
+

2

3τ

(

X2
1 +X1X3 +X2

3

)]

= −κ
(

T 0
0 − 1

2
T

)

, (2.27)

that guaranties the correctness of the solutions obtained. In fact we can rewrite (2.21)
and (2.27) as

τ̈

τ
=

3κ

2
(T 0

0 + T 1
1 ), (2.28)

and
τ̈

τ
− 2

3

τ̇ 2

τ 2
+

2

9τ 2
X = −κ

2
(T 0

0 − 3T 1
1 ), (2.29)

where X := X2
1 + X1X3 + X2

3 . Combining (2.28) and (2.29) together one gets the
solution for τ in quadrature:

∫ dτ
√

3κτ 2T 0
0 + X /3

= t. (2.30)
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Let us note that in our further study we exploit the equations (2.21) to obtain τ and
(2.27) to estimate integration constants.
It should be emphasized that we are dealing with cosmological problem and our main
goal is to investigate the initial and the asymptotic behavior of the field functions and
the metric ones. As one sees, all these functions are in some functional dependence

with τ : ψ ∼ 1/
√
τ and ai ∼ τ 1/3e±

∫

dt/τ . Therefore in our further investigation we
mainly look for τ , though in some particular cases we write down field and metric
functions explicitly.

3 Analysis of the solutions obtained for some spe-

cial choice of nonlinearity

Let us now study the system for some special choice of LN . First we analyze the system
only for the NLSF which will be followed by the study when the Universe is filled with
perfect fluid. But first of all we study the linear case. The reason to get the solution
to the self-consistent system of equations for the linear spinor and gravitational fields
is the necessity of comparing this solution with that for the system of equations for the
nonlinear spinor and gravitational fields that permits to clarify the role of nonlinear
spinor terms in the evolution of the cosmological model in question. Using the equation
(2.21) one gets

τ(t) = (1/2)Mt2 + y1t + y0 (3.1)

where M = 3
2
κmC0, C0 = C2

1 + C2
2 − C2

3 − C2
4 and y1, y0 are the constants. In this

case we get explicit expressions for the components of spinor field functions and metric
functions:

Vr(t) = (Cr/
√
τ) e−imt, r = 1, 2; Vl(t) = (Cl/

√
τ ) eimt, l = 3, 4. (3.2)

a(t) = (D2
1D3)

1

3 (
1

2
Mt2 + y1t+ y0)

1

3Z2(2X1+X3)/3B ,

b(t) = (D−1
1 D3)

1

3 (
1

2
Mt2 + y1t+ y0)

1

3Z−2(X1−X3)/3B,

c(t) = (D1D
2
3)

−
1

3 (
1

2
Mt2 + y1t+ y0)

1

3Z−2(X1+2X3)/3B , (3.3)

where Z = (t−t1)
(t−t2)

, B = M(t1 − t2), and t1,2 = −y1/M ±
√

(y1/M)2 − 2y0/M are the

roots of the quadratic equation Mt2 + 2y1t + 2y0 = 0. Substituting τ(t) into (2.27),
one gets

y2
1 − 2My0 = (X2

1 +X1X3 +X2
3 )/3 = X /3 > 0. (3.4)

This means that the quadratic polynomial in (3.1) possesses real roots, i.e. τ(t) in
(3.1) turns into zero at t = t1,2 and the solution obtained is the singular one. Let us
now study the solutions (3.1) - (3.3) at t→ ∞. In this case we have

τ(t) ≈ 3

4
κmC0t

2, a(t) ≈ b(t) ≈ c(t) ≈ t2/3,
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that leads to the conclusion about the asymptotical isotropization of the expansion
process for the initially anisotropic B-I space. Thus the solution to the self-consistent
system of equations for the linear spinor and gravitational fields is the singular one
at the initial time. In the initial state of evolution of the field system the expansion
process of space is anisotropic, but at t → ∞ there happens isotropization of the
expansion process.
Once the solutions to the linear spinor field equations and corresponding to them metric
functions are obtained, let us now study the nonlinear case.

I. Let us consider the case when LN = F (I). It is clear that in this case G = 0. From
(2.16) we find

S = C0/τ, C0 = const. (3.5)

As in the considered case LN = F depends only on S, from (3.5) it follows that F (I)
and FI(I) are functions of τ = abc. Taking this fact into account, integration of the
system of equations (2.14) leads to the expressions

Vr(t) = (Cr/
√
τ ) e−iΩ, r = 1, 2, Vl(t) = (Cl/

√
τ) eiΩ, l = 3, 4. (3.6)

where Cr and Cl are integration constants. Putting (3.6) into (2.15) one gets

S = (C2
1 + C2

2 − C2
3 − C2

4)/τ. (3.7)

Comparison of (3.5) with (3.7) gives C0 = C2
1 + C2

2 − C2
3 − C2

4 .
Let us consider the concrete type of NLSF equation with F (I) = λI(n/2) = λSn where
λ is the coupling constant, n > 1. In this case for τ one gets:

τ̈ = (3/2)κC0[m+ λ(n− 2)Cn−1
0 /τn−1]. (3.8)

The first integral of the foregoing equation takes form:

τ̇ 2 = 3κC0[mτ − λCn−1
0 /τn−2 + g2], (3.9)

where from (2.27) one determines g2 = X /9κC0. The sign C0 is determined by the
positivity of the energy-density T 0

0 of linear spinor field:

T 0
0 = mC0/τ > 0. (3.10)

It is obvious from (3.10) that C0 > 0. Now one can write the solution to the equation
(3.9) in quadratures:

∫

τ (n−2)/2dτ
√

mτn−1 + g2τn−2 − λCn−1
0

=
√

3κC0 t (3.11)

The constant of integration in (3.11) has been taken zero, as it only gives the shift of
the initial time. Let us study the properties of solution to equation (3.8) for n > 2.
From (3.11) one gets

τ(t) |t→∞≈ (3/4)κmC0t
2, (3.12)

which coincides with the asymptotic solution to the equation (3.3). It leads to the
conclusion about isotropization of the expansion process of the B-I space. It should

9



be remarked that the isotropization takes place if and only if the spinor field equation
contains the massive term [cf. the parameter m in (3.12)]. If m=0 the isotropization
does not take place. In this case from (3.11) we get

τ(t) |t→∞≈
√

3κC0g2 t. (3.13)

Substituting (3.13) into (2.26) one comes to the conclusion that the functions a(t), b(t)
and c(t) are different. Let us consider the properties of solutions to equation (3.8)
when t→ 0. For λ < 0 from (3.11) we get

τ(t) = [(3/4)n2κ|λ|Cn
0 ]1/nt2/n → 0, (3.14)

i.e. solutions are singular. For λ > 0, from (3.11) it follows that τ = 0 cannot
be reached for any value of t as in this case the denominator of the integrand in
(3.11) becomes imaginary. It means that for λ > 0 there exist regular solutions to
the previous system of equations [14]. The absence of the initial singularity in the
considered cosmological solution appears to be consistent with the violation for λ > 0,
of the dominant energy condition in the Hawking-Penrose theorem [18].
Let us consider the Heisenberg-Ivanenko equation when in (3.8) n=2 [23]. In this case
the equation for τ(t) does not contain the nonlinear term and its solution coincides
with that of the linear equation (3.3). With such n chosen the metric functions a, b, c
are given by the equality (3.2), and the spinor field functions are written as follows:

Vr = (Cr/
√
τ) e−imtZ4iλC0/B, Vl = (Cl/

√
τ ) eimtZ−4iλC0/B (3.15)

As in the linear case, the obtained solution is singular at initial time and asymptotically
isotropic as t→ ∞.
We now study the properties of solutions to equation (3.8) for 1 < n < 2. In this case
it is convenient to present the solution (3.11) in the form:

∫

dτ
√

mτ − λτ 2−nCn−1
0 + g2

=
√

3κC0 t (3.16)

As t → ∞, from (3.16) we get the equality (3.12), leading to the isotropization of the
expansion process. If m = 0 and λ > 0, τ(t) lies on the interval

0 ≤ τ(t) ≤ (g2/λCn−1
0 )1/(2−n).

If m=0 and λ < 0, the relation (3.16) at t→ ∞ leads to the equality:

τ(t) ≈ [(3/4)n2κ|λ|Cn
0 ]1/nt2/n. (3.17)

Substituting (3.17) into (2.26) and taking into account that at t→ ∞
∫

dt

τ
≈ n(3κ|λ|n2Cn

0 )1/n

(n− 2)22/n
t−2/n+1 → 0

due to −2/n+ 1 < 0, we obtain

a(t) ∼ b(t) ∼ c(t) ∼ [τ(t)]1/3 ∼ t2/3n → ∞. (3.18)

10



It means that the solution obtained tends to the isotropic one. In this case the
isotropization is provided not by the massive parameter, but by the degree n in the
term LN = λSn. (3.16) implies

τ(t) |t→0≈
√

3κC0g2 t→ 0, (3.19)

which means the solution obtained is initially singular. Thus, for 1 < n < 2 there exist
only singular solutions at initial time. At t → ∞ the isotropization of the expansion
process of B-I space takes place both for m 6= 0 and for m = 0.
Let us finally study the properties of the solution to the equation (3.8) for 0 < n < 1.
In this case we use the solution in the form (3.16). As now 2 − n > 1, then with
the increasing of τ(t) in the denominator of the integrand in (3.16) the second term
λτ 2−nCn−1

0 increases faster than the first one. Therefore the solution describing the
space expansion can be possible only for λ < 0. In this case at t → ∞, for m = 0 as
well as for m 6= 0, one can get the asymptotic representation (3.17) of the solution.
This solution, as for the choice 1 < n < 2, provides asymptotically isotropic expansion
of the B-I space. For t→ 0 in this case we shall get only singular solution of the form
(3.19).

II. We study the system when LN = F (J), which means in the case considered D = 0.
Let us note that, in the unified nonlinear spinor theory of Heisenberg the massive term
remains absent, as according to Heisenberg, the particle mass should be obtained as a
result of quantization of spinor prematter [24]. In nonlinear generalization of classical
field equations, the massive term does not possess the significance that it possesses in
linear one, as by no means it defines total energy (or mass) of nonlinear field system.
Thus without losing the generality we can consider massless spinor field putting m = 0
that leads to Φ = 0. This assumption metamorphoses (2.16) to get

P (t) = D0/τ, D0 = const. (3.20)

The system of equations (2.19) in this case reads

U ′

1 − U3 = 0, U ′

2 − U4 = 0,

U ′

3 + U1 = 0, U ′

4 + U2 = 0. (3.21)

Differentiating the first equation of system (3.21) and taking into account the third
one we get

U ′′

1 + U1 = 0, (3.22)

which leads to the solution

U1 = D1e
iσ + iD3e

−iσ, U3 = iD1e
iσ +D3e

−iσ. (3.23)

Analogically for U2 and U4 one gets

U2 = D2e
iσ + iD4e

−iσ, U4 = iD2e
iσ +D4e

−iσ, (3.24)

where Di are the constants of integration. Finally, we can write

V1 = (1/
√
τ )(D1e

iσ + iD3e
−iσ), V2 = (1/

√
τ)(D2e

iσ + iD4e
−iσ),

V3 = (1/
√
τ )(iD1e

iσ +D3e
−iσ), V4 = (1/

√
τ)(iD2e

iσ +D4e
−iσ). (3.25)
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Putting (3.25) into the expressions (2.15) one finds

P = 2 (D2
1 +D2

2 −D2
3 −D2

4)/τ. (3.26)

Comparison of (3.20) with (3.26) gives D0 = 2 (D2
1 +D2

2 −D2
3 −D2

4).
Let us now estimate τ using the equation

τ̈ /τ = 3κλ(n− 1)P 2n, (3.27)

where we chose LN = λP 2n. Putting the value of P into (3.20) and integrating one
gets

τ̇ 2 = −3κλD2n
0 τ

2−2n + y2, (3.28)

where y2 is the integration constant and can be defined from (2.27): y2 = X /3 > 0.
The solution to the equation (3.28) in quadrature reads

∫

dτ
√

−3κλD2n
0 τ 2−2n + y2

= t. (3.29)

Let us now analyze the solution obtained here. As one can see the case n = 1 is the
linear one. In case of λ < 0 for n > 1 i.e. 2 − 2n < 0, we get

τ(t) |t→0≈ [(
√

3κ|λ|Dn
0n)t]1/n,

and
τ |t→∞≈

√

3κy2 t,

it means that for the term LN considered with λ < 0 and n > 1 the solution is initially
singular and the space-time is anisotropic at t→ ∞. Let us now study it for n < 1. In
this case we obtain

τ |t→0≈
√

3κy2 t,

and
τ |t→∞≈ [(

√

3κ|λ|Dn
0n)t]1/n.

The solution is initially singular as in previous case, but as far as 1/n > 1, it provides
asymptotically isotropic expansion of B-I space-time.

III. In this case we study LN = F (I, J). Choosing

LN = F (K±), K+ = I + J = Iv = −IA, K− = I − J = IT , (3.30)

in case of massless NLSF we find

D = 2SFK±
, G = ±2PFK±

, FK±
= dF/dK±.

Putting them into (2.16) we find

S2
0 ± P 2

0 = D±. (3.31)

Choosing F = λKn
±

from (2.21) we get

τ̈ = 3κλ(n− 1)Dn
±
τ 1−2n, (3.32)
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with the solution
∫

τn−1dτ
√

g2τ 2n−2 − 3κλDn
±

= t, (3.33)

where g2 = X /3. Let us study the case with λ < 0. For n < 1 from (3.33) one gets

τ(t) |t→0≈ gt→ 0, (3.34)

i.e. the solutions are initially singular, and

τ(t) |t→∞≈ [
√

(3κ|λ|Dn
±)t]1/n, (3.35)

which means that the anisotropy disappears as the Universe expands. In case of n > 1
we get

τ(t) |t→0≈ t1/n → 0,

and
τ(t) |t→∞≈ gt,

i.e. the solutions are initially singular and the metric functions a(t), b(t), c(t) are dif-
ferent at t → ∞, i.e. the isotropization process remains absent. For λ > 0 we get
the solutions those are initially regular, but it violates the dominant energy condition
in Hawking-Penrose theorem [18]. Note that one comes to the analogical conclusion
choosing LN = λS2nP 2n.

4 Analysis of the results obtained when the B-I

Universe is filled with perfect fluid

Let us now analyze the system filled with perfect fluid. Let us recall that the energy-
momentum tensor of perfect fluid is

T ν
µ(m) = (p+ ε)uµu

ν − δν
µp = (ε,−p,−p,−p). (4.1)

As we saw earlier the introduction of perfect fluid does not change the field equations,
thus leaving the solutions to the NLSF equations externally unchanged. Changes in
the solutions performed by perfect fluid carried out through Einstein equations, namely
through τ . So, let us first see how the quantities ε and p connected with τ . In doing
this we use the well-known equality T ν

µ;ν = 0, that leads to

d

dt
(τε) + τ̇ p = 0, (4.2)

with the solution

lnτ = −
∫

dε

(ε+ p)
. (4.3)

Recalling the equation of state p = ξε, 0 ≤ ξ ≤ 1 finally we get

T 0
0(m) = ε =

ε0

τ 1+ξ
, T 1

1(m) = T 2
2(m) = T 3

3(m) = −p = − ε0ξ

τ 1+ξ
, (4.4)
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where ε0 is the integration constant. Putting them into (2.21) we get

τ̈

τ
=

3κ

2

(ξ − 1)ε0

τ (ξ+1)
(4.5)

which shows that for stiff matter (ξ = 1) the contribution of fluid to the solution is
missing. Let us now study the system with nonlinearity type I. In this case we get

∫ dτ
√

mC0τ − λCn
0 /τ

(n−2) + ε0τ (1−ξ) + g2
= ±

√
3κt. (4.6)

As one can see in case of dust (ξ = 0) the fluid term can be combined with the massive
one, whereas in case of stiff matter (ξ = 1) it mixes up with the constant. Analyzing
the equation (4.6) one comes to the conclusion that the presence of perfect fluid does
not influence the result obtained earlier for the nonlinear term type I. One comes to the
same conclusion analyzing the system with perfect fluid for the other types of nonlinear
terms considered here. At least both at t→ 0 and at t→ ∞ the key role is played by
the other terms rather than the term presenting fluid.

5 Conclusions

Exact solutions to the NLSF equations have been obtained for the nonlinear terms being
arbitrary functions of the invariant I = S2 and J = P 2, where S = ψ̄ψ and P = iψ̄γ5ψ
are the real bilinear forms of spinor field, for B-I space-time. Equations with power
nonlinearity in spinor field Lagrangian LN = λSn, where λ is the coupling constant,
have been thoroughly studied. In this case it is shown that equations mentioned possess
solutions both regular and singular at the initial moment of time for n > 2 . Singularity
remains absent for the case of field system with broken dominant energy condition. It
is also shown that if in the NLSF equation the massive parameter m 6= 0 and n ≥ 2
then at t→ ∞ isotropization of B-I space-time expansion takes place, while for m = 0
the expansion is anisotropic. Properties of solutions to the spinor field equation for
1 < n < 2 and 0 < n < 1 we also studied. It was found that in these cases there
does not exist solution that is initially regular. At t→ ∞ the isotropization process of
B-I space-time takes place both for m 6= 0 and for m = 0. In case of nonlinear term
LN = λP 2n, we found the solutions those are initially singular and the isotropization
process of B-I space-time depends on the choice of n. For LN = λ(I±J)n we obtained
the solutions those may be initially singular or regular depends on the sign of coupling
constant λ, but isotropization process depends on the value of power n. It is also shown
that the results remain unchanged even in the case when the B-I space-time is filled
with perfect fluid.
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