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1 Introduction

Since the early history of elementary particle physics the attempts to construct divergence-
free theory had been being undertaken. In 1912 G. Mie [1] proposed the nonlinear
modification of the Maxwell equations, with the nonlinear electric current of the form
jµ = (AνA

ν)2Aµ. Within the scope of this modification there do exist regular solutions
approximizing the electron structure.

In 1942 N. Rosen [2] considered the system of interacting electromagnetic and complex
scalar fields that also admitted the existence of localized particle-like solutions. Neverthe-
less, these two models suffered one and the same defect: the mass of the localized object
turned to be negative. Recently it was shown that this defect of nonlinear electrodynamics
can be corrected within the framework of general relativity [3].

The aim of this paper is to consider self-consistent system of fields to obtain particle-
like configurations in the framework of general relativity. We show that in the case of
electromagnetic scalar and gravitation fields system with specific type of interactions
there exist droplet-like solutions having zero electric charge and mass. It is noteworthy
to underline that the effective potentials, raised in this case, possess confining property
i.e. create a strong repulsion on certain surfaces in configurational space.

2 Fundamental Equations

As is known, there do not exist regular static spherically or cylindrically symmetric con-
figurations within the framework of gauge invariant nonlinear electrodynamics [4]. One
possible way to overcome this difficulty is the nonlinear generalization of electrodynamics,
with the use of the Lagrangian explicitly containing 4-potential Aµ, µ = 0, 1, 2, 3,
thus breaking the gauge invariance inside the small critical sphere or cylinder. The in-
troduction of the terms explicitly depending on potentials in electromagnetic equations
presents the possibility to give an alternative explanation of the processes like inelastic
photon-photon interaction [5], galactic red-shift anomalies [6], [7], [8], electric screening
at low temperature in the limit of indirect interaction of photon with thermal neutrino
background [9], the excess of high-energy photons in the isotropic flux [10], avoiding the
Big Bang singularity [11], origin of self-focused beam in the effective nonlinear vector
field theory [12]. The corresponding terms appear in our scheme due to the interaction
between the electromagnetic and scalar fields. This interaction being negligible at large
distances, the Maxwellian structure of the electromagnetic equations (and therefore the
gauge invariance) is reinstated far from the center of the system.
We choose the Lagrangian in the form [4]

L =
R

2κ
− 1

16π
Fαβ F αβ +

1

8π
ϕ,α ϕ,α Ψ(I), (2.1)

where κ = 8 π G is the Einstein’s gravitational constant and the function Ψ(I) of the in-
variant I = Aµ Aµ characterizes the interaction between the scalar ϕ and electromagnetic
Aµ fields. In the sequel the function Ψ(I) will be viewed as an arbitrary one, thus the
Lagrangian (2.1) defines the class of models parameterized by Ψ(I). In 1951 J. Schwinger
[13] used the special method to compute the effective coupling between a zero spin neutral
meson and the electromagnetic field using some functions of electromagnetic field. Thus
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our approach to generate an effective Lagrangian generalizes the one proposed by Schwin-
nger. The particular choice of Ψ(I) will be made to obtain droplet-like configurations.
The field equations corresponding to the Lagrangian (2.1) read

Gν
µ = −κ T ν

µ , (2.2)

1√−g

∂

∂xα
(
√−g gαβ ϕ,β Ψ) = 0, (2.3)

1√−g

∂

∂xβ
(
√−g F αβ) − (ϕ,β ϕ,β)ΨI Aα = 0, (2.4)

where ΨI = dΨ/dI and Gν
µ = Rν

µ − δν
µ R/2 is the Einstein tensor. One can write the

energy-momentum tensor of the interacting matter fields in the form:

T ν
µ = (1/4π) [ϕ,µ ϕ,ν Ψ(I) − Fµα F να + ϕ,α ϕ,α ΨI Aµ Aν ]

− δν
µ[

1

8π
ϕ,β ϕ,β Ψ(I) − 1

16π
Fαβ F αβ]. (2.5)

3 Configurations with spherical symmetry

Searching for the static spherically-symmetric solutions to the system of equations (2.2) -
(2.4) , we consider the metric in the form [14]:

ds2 = e2γ dt2 − e2α dξ2 − e2β [dθ2 + sin2θ dφ2], (3.1)

with ξ being the radial variable. Let us now formulate the requirements to be fulfilled by
particle-like solutions (PLS). These are [15]
(a) Stationarity [applied to the metric (3.1)] i.e.

α = α(ξ), β = β(ξ), γ = γ(ξ);

(b) regularity of the metric and the matter fields in the whole space-time;
(c) asymptotically Schwarzschild metric and corresponding behavior of the field functions.
In view of requirement (a) it is convenient to choose the harmonic ξ coordinate (✷ξ = 0)
in (3.1) to satisfy the subsidiary condition [16]:

α = 2 β + γ. (3.2)

The corresponding coordinate in flat space-time is just ξ = 1/r. With the constraint (3.2)
the system of Einstein equations (2.2) reads:

e−2α (2β ′′ − U) − e−2β = −κ T 0
0 , (3.3)

e−2α U − e−2β = −κ T 1
1 , (3.4)

e−2α (β ′′ + γ′′ − U) = −κ T 2
2 = −κ T 3

3 , (3.5)

where U = β ′2 + 2 β ′ γ′, and prime (′) denotes differentiation with respect to x. Note
that the field functions, as well as the components of the metric tensor depend on the
single spatial variable ξ. Assuming the electromagnetic field to be determined by the time
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component A0 = A(ξ) of the 4-potential one finds the unique non-trivial component of
the field tensor F10 = A′, and the invariant I reduces to I = e−2γ A2(ξ).

One can write the non-zero components of the energy-momentum tensor (2.5) as fol-
lows:

T 0
0 = (1/8π) e−2α [A′2 e−2γ + ϕ′2(Ψ − 2 A2 e−2γ ΨI )], (3.6)

T 1
1 = −T 2

2 = −T 3
3 = (1/8π) e−2α [A′2 e−2γ − ϕ′2 Ψ]. (3.7)

Adding together the equations (3.4) and (3.5) and using the property T 1
1 + T 2

2 = 0, one
obtains the differential equation

β ′′ + γ′′ − e2(β + γ) = 0,

with the solution [17]

e−(β + γ) = S(k, ξ) =











k−1 sh kξ, k > 0,
ξ, k = 0,

k−1 sin kξ, k < 0,
(3.8)

depending on the constant k. Notice that another constant of integration is trivial, so
that ξ = 0 corresponds to the spatial infinity, where eγ = 1 and eβ = ∞. Without loss
of generality one can choose ξ > 0.

The scalar field equation (2.3) has the evident solution

ϕ′ = C P (I), (3.9)

where P (I) = 1/Ψ(I) and C is the integration constant. Putting (3.9) into (2.4) one
gets the equation for the electromagnetic field

(e−2γ A′)′ − C2 PI e−2γ A = 0, (3.10)

where the second term could be naturally interpreted as the induced nonlinearity. In view
of (3.9) one rewrites the Einstein equation (3.4) and the result of adding the equations
(3.3) and (3.4) as follows :

γ′2 = −G (C2 P − A′2 e−2γ) + K, K = k2 signk, (3.11)

γ′′ = G e−2γ (A′2 + C2 A2 PI). (3.12)

One can easily check that the equation (3.11) is the first integral of the equations (3.10)
and (3.12). Eliminating the term (PI A) between (3.10) and (3.12) one gets the equation:

γ′′ = G (A A′ e−2γ)′, (3.13)

with the evident first integral:

γ′ = G A A′ e−2γ + C1, C1 = const. (3.14)

Let us consider the simple case C1 = 0. Then from (3.14) we get

e2γ = G A2 + H, H = const. (3.15)
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Substituting γ′ and e2γ from (3.14) and (3.15) into (3.10), we find for A(ξ) the differential
equation:

A′2 (G A2 + H)−2 = (G C2 P − K)/ G H, (3.16)

which can be solved by quadrature:

∫

dA

(G A2 + H)
√

G C2 P − K
= ± (1/

√
G H) (ξ − ξ0), ξ0 = const. (3.17)

It is clear that the configuration obtained has a center if and only if eβ = 0 at some
ξ = ξc. One can show [16] that the conditions for the center ξc = ∞ to be regular imply
K = 0 and the following behavior of the field quantities in the vicinity of the point
ξc = ∞:

γ′ = O (ξ−2), A′ → Ac 6= ∞, A′ → 0,

ξ4 P (I) → 0, | ξ4 I PI |< ∞. (3.18)

In view of (3.18) we deduce from (3.14) that C1 = 0 in accordance with the earlier
supposition.
Now we can write the boundary conditions on the surface of the critical sphere ξ = ξ0:

T ν
µ = A = A′ = 0, eγ = 1, eβ = 1/ξ0 > 0. (3.19)

Due to (3.19) and (3.15) we infer that H = 1. The condition K = 0 leads to k = 0 in
(3.8) and the space-time (3.1) that fulfills the regularity conditions (3.18) takes the form

ds2 = (GA2 + 1)dt2 − 1

ξ2 (GA2 + 1)

(dξ2

ξ2
+ [dθ2 + sin2θdφ2]

)

. (3.20)

We can finally write A and ϕ as follows:

∫ dA

(G A2 + 1)
√

P
= ±C (ξ − ξ0), (3.21)

ϕ = C
∫

Pdξ =
∫ √

Pe−2γdA =
∫

√
PdA

GA2 + 1
. (3.22)

Let us now calculate the matter field energy density:

T 0
0 = (C2/ 8 π) e−2α [ P (1 + e2γ) + 2 I PI(I) ]. (3.23)

One can readily derive from (3.23) the energy Ef of the matter fields:

Ef =
∫

d3x
√

−3 g T 0
0 = (C/2)

A(ξ→∞)
∫

A(ξ=0)

dA e−3γ [
√

P (1 + e2γ) + 4 I (
√

P )I ]. (3.24)

Thus the equations to the scalar and electromagnetic fields are completely integrated. As
one sees, to write the scalar (ϕ) and vector (A) functions, as well as the energy density
(T 0

0 ) and energy of the material fields (Ef), explicitly, one has to give P (I) in explicit
form. Here we will give the detail analysis for some concrete forms of P (I).
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I. Let us consider P (I) in the form

P (I) = P0(λI − N)s R(λI), 2 ≤ s ≤ 3, (3.25)

where R(λI) is some arbitrary, continuous, positive defined function, having non-trivial
value at the center; λ is the coupling parameter; N > 0 is some dimensionless constant
that is equal to the value of λI at the center. The other constant P0 is defined from the
condition P = 1 at spatial infinity ξ = 0. For R = const. one gets the most simple form of
P (I) that leads to regular solutions. In this case the energy density is positive if λI ≥ N.

a) Choosing P (I) in the form

P (I) = P0(λI − N)2, (3.26)

we get

A(ξ) =

√

N

λ − GN
cthΛ(ξ + ξ1), (3.27)

where Λ =
√

C2NP0(λ − GN), the integration constant ξ1 is defined from A(0) = m/q
with m and q being the mass and the charge of the system. In this case we get

P0 = (λm2/q2 − N)−2, λm2/q2 > N.

Inasmuch
√

λm/|q| >
√

N , then δ =
√

Gm/|q| >
√

GN/λ = σ. Taking δ < 1 and σ < 1
we get the inequality:

0 < σ < δ < 1.

Now we can rewrite P0 in the form

P0 =
G2

λ2
(δ2 − σ2)−2.

The metric function e2γ , electric field and the total energy of the material field system
can be written as

e2γ = GA2 + 1 =
C2

q2

[ σ2

1 − σ2
cth2Λ(ξ + ξ1) + 1

]

, (3.28)

|E| = (−F10F
10)1/2 =

Λ
√

N
√

λ(1 − σ2)

ξ2

sh2Λ(ξ + ξ1)
, (3.29)

Ef =
q

2
√

G

[δ − σ

δ + σ

δ + 2σ

3
+

4(δ2 + δσ + σ2) − 3

3(δ + σ)

+
1 − σ2

2(δ2 − σ2)
ln

(1 + δ)(1 − σ)

(1 − δ)(1 + σ)

]

. (3.30)

As one sees

Ef |δ→σ → qδ√
G

= m, Ef |δ→1 → ∞.

The infinite vale of Ef can be interpreted as the physical reason of existence of limitation
δ < 1.
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b) Let us consider the case with Ic = 0, choosing

P (I) = λI. (3.31)

On the spatial infinity, where I = I0 = m2/q2, P = 1, that leads to λ = q2/m2, i.e. the
coupling constant is connected with mass and charge. In this case we get

A(ξ) =
1√

Gsh m(ξ + ξ1)
, (3.32)

where as in previous case ξ1 is defined from A(0) = m/q. The metric function e2γ, electric
field and the total energy of the material field system can be written as

e2γ =
C2

q2
cth2 mC(ξ + ξ1)/q, (3.33)

|E| =
mC2

q2
√

G

ξ2ch mC(ξ + ξ1)/q

sh2 mC(ξ + ξ1)/q
, (3.34)

Ef =
q

4
√

G

[

3δ
1

δ
ln (1 − δ2)

]

. (3.35)

As one sees
Ef |δ≪1 ≈ m, Ef |δ→1 → ∞.

II. A specific type of solutions to the nonlinear field equations in flat space-time were
obtained in a series of interesting articles [18], [19], [20], [21]. These solutions are known
as droplet-like solutions or simply droplets. Distinguishable property of these solutions is
the availability of some sharp boundary, defining the space domain, in which the material
field happens to be located i.e. the field is zero beyond this area. As was found the
solutions mentioned exist in field theory with specific interactions that can be considered
as effective, generated by initial interactions of the unknown origin. Contrary to the
widely known soliton-like solutions, with field functions and energy density asymptotically
tending to zero at spatial infinity, the solutions in question vanish at a finite distance from
the center of the system (in the case of spherical symmetry) or from the axis (in the case
of cylindrical symmetry). Thus, there exists the sphere or cylinder with critical radius
r0, outside of which the fields disappear. Therefore the field configurations have the
droplet-like structure [18], [22], [23].
Let us now choose the function P (I) as follows [24] [see Figure 2]:

P (J) = J (1− 2/σ) [(1 − J)1/σ − J1/σ]2 (1 − J), (3.36)

where J = G I; σ = 2n + 1; n = 1, 2, 3 · · · Then on account of K = 0 and H = 1
we get from (3.17) the following expression for A(ξ) [see Figure 1]:

A(ξ ≤ ξ0) = 0, A(ξ ≥ ξ0) = (1/
√

G) [1 − exp (−2 C
√

G

σ
(ξ − ξ0))]

σ/2. (3.37)

As one can see from (3.37), the conditions (3.18) for the center to be regular and the
matching conditions (3.19) on the surface of the critical sphere are fulfilled if σ > 2. It is
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also obvious from (3.37) that for ξ < ξ0 the value of square bracket turns to be negative
one and A(ξ) becomes imaginary since σ is an odd number. Since we are interested in
the real A(ξ) only, without loss of generality we may assume the value of A(ξ) be zero for
ξ ≤ ξ0, the matching at ξ = ξ0 being smooth.
Recalling that J = G A2/ (G A2 + 1), we get from (3.37) that J(∞) = 1/2 and J(ξ0) =
0, thus implying:

P (I) |ξ =∞ = P (I) |ξ = ξ0 = 0. (3.38)

It means that at ξ = ξc = ∞ and ξ = ξ0, the interaction function Ψ(I) = 1/P (I) is
singular. It turns out nevertheless that the energy density T 0

0 is regular at these points
due to the fact that it contains Ψ(I) as a multiplier in the form:

e−2α ϕ′2 Ψ = C2 e−2α P (I), (3.39)

which tends to zero as ξ → ξc or ξ → ξ0. As follows from (3.37), for the limiting case
ξ0 = 0, when the critical sphere goes to the spatial infinity and the solution in question
is defined at 0 ≤ ξ ≤ ∞, it appears that at spatial infinity (ξ = 0) A = 0 and
P (I) = 0. In this case we obtain the usual soliton-like configuration not possessing any
sharp boundary.
It should be emphasized that at spatial infinity (ξ = 0) one can compare the metric
found with the Schwarzschild one and the electrical field with the Coulomb one, thus
determining the total mass m and the charge q of the system:

G m = − γ′(0), q = −A′(0).

Taking into account that e2γ = G A2 + 1, one can find through the use of (3.37) that
for ξ0 = 0, A′(0) = −q = 0 and γ′(0) = −G m = 0. Therefore, the total energy
of the soliton-like system,defined as the sum of the material fields energy and that of
the gravitational field, vanishes. If now one chooses the integration constant ξ0 > 0,
then the field configuration with the sharp boundary (droplet) appears. In this case for
ξ ≤ ξ0 one obtains A(ξ) = 0 and e2γ = 1, i.e. outside of the droplet gravitational
and electromagnetic fields disappear, that implies the vanishing of the total mass and the
charge of the system. This unusual property makes the droplet-like object poorly visible
for the outer observer.
It should be emphasized that the field energy is localized in the region (ξ0 ≤ ξ < ∞) :

T 0
0 (ξ) |ξ→∞→ 0, T 0

0 (ξ) |ξ→ξ0 → 0, (3.40)

namely, inside the critical sphere with the radius

R =

∞
∫

0

dξ eα(ξ) =

∞
∫

0

dξ /ξ2
{

[1 − e−2C
√

G(ξ−ξ0)/σ]σ + 1
}(1/2)

< ∞.

Taking into account that e2γ = 1/(1 − J) and e−3γ dA = dJ/2
√

G J, we rewrite total
energy of the material fields in terms of J :

Ef = (C/4
√

G)

1/2
∫

0

{

4
d
√

J P

dJ
+

√
P J

1 − J

}

dJ.
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Contribution of the first term of the foregoing equality is trivial for the choice of P (I) in
the form (3.36) as in this case P (I)|0 = P (I)|λ/2 = 0. As P (I) is positive and J lies in
the interval (0, 1/2), one estimates

Ef =
C

4
√

G

1/2
∫

0

√
P J

1 − J
dJ > 0.

Let us note that we consider the constant C to be a positive one. Knowing that the
total energy of the droplet-like object is zero this inequality implies the negativity of its
gravitational energy. Thus the droplet-like configuration of the fields obtained is totally
regular with zero total energy (including the energy of proper gravitational field) and null
electric charge and remains unobservable to one located outside the sphere with radius R
[24], [25]. In order to clarify the fact that the role of the gravitational field in forming the
droplet-like configuration is not decisive it is worthwhile to compare the solution obtained
with that in the flat space-time, described by the interval

ds2 = dt2 − dr2 − r2 [dθ2 + sin2θ dφ2].

In the latter case the equation (2.3) admits the solution

ϕ′(r) = −C P (I)/r2. (3.41)

Substituting (3.41) into (2.4), one finds that the equation for the electromagnetic field
can be solved by quadrature:

∫

dA/
√

P = ±C (
1

r
− 1

r0

), r0 = const. (3.42)

Note that the droplet-like configuration A(r) will be similar to (3.37) if one chooses the
function P (I) more simple than (3.36):

P (I) = J1− 2/σ (1 − J1/σ)2, J = λ I, (3.43)

where λ = const; σ = 2 n + 1; n = 1, 2, 3, · · ·. Then substituting (3.43) into (3.42)
one gets the solution

A(r) = (1/
√

λ) [1 − exp(−2 C λ

σ
(
1

r
− 1

r0
))]σ/2. (3.44)

One can see from (3.44) that A(r) = 0 as r ≥ r0, i.e. the charge of the flat space-
time droplet configuration also vanishes. For this solution the regularity conditions at
the center r = 0 and on the surface of the critical sphere r = r0 are evidently fulfilled.
It similarly appears that for r = ∞ one finds the usual soliton-like structure with field
vanishing as r → ∞. The field energy Ef is defined as follows:

Ef = C

A(0)
∫

A(r0)

dA (
√

P + I PI/
√

P ) = C
√

P I |A(0)
A(r0)

. (3.45)

Inspecting that P I = 0 both at r = 0 and r = r0, we arrive through (3.45) at Ef = 0.
Thus in the flat space-time as well as for the self-gravitating system, the total energy and
charge of the droplet-like configuration vanish.
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4 Configurations with cylindrical symmetry

Obviously, in view of physics, the most interesting case is the spherically symmetric
one, nevertheless in some cases it is necessary to study the two-dimensional cylindrically
symmetric regular solutions in the vicinity of symmetry axis (vortex [26], string-like solu-
tions [27]). These solutions can describe realistic objects like fluxion [28], light-beam [29]
and can serve as the logical approximation to the objects with toroidal structure [30]. Let
us now search for static cylindrically-symmetric solutions to the equations (2.2)-(2.4). In
this case the metric can be chosen as follows [31], [32]:

ds2 = e2γ dt2 − e2α dx2 − e2β dφ2 − e2µ dz2. (4.1)

The requirements to be fulfilled by soliton-like solutions in this case are [34]
(a) Stationarity [applied to the metric (4.1)] i.e.

α = α(x), β = β(x), γ = γ(x), µ = µ(x).

It means for (4.1) that all the components of the metrical tensor depend on the single
spatial coordinate x ∈ [x0, xa], where xa is the value of x on the axis of symmetry, defined
by the condition exp[β(xa)] = 0, and x0 is the value of x on the surface of the critical
cylinder. The coordinates z and φ take their standard values: z ∈ [−∞, ∞], φ ∈
[0, 2π].
(b) regularity of the metric and the matter fields in the whole space-time;
(c) localized in space-time (with finite field energy):

Ef =
∫

T 0
0

√

−3g dV < ∞.

Requirement (c) assumes the rapid decreasing of energy density of material field at spatial
infinity, which together with (b) guaranties the finiteness of Ef . Let us note that Ef may
be finite even for singular solutions on the axis. Requirement (b) means the regularity
of material fields as well as the regularity of metric functions that entails the demand
of finiteness of energy-momentum tensor of material fields all over the space. If the
system considered contains scalar ϕ and electric E (or magnetic H) fields, the regularity
conditions on x = xa take the form [31]:

eβ = 0; |γ| < ∞; |µ| < ∞; e2(β−α)(β ′)2 = 1; e−2α(γ′)2 = 0;

{|E| = 0; |H‖| < ∞; |H⊥| = 0}; |T ν
µ | < ∞, (4.2)

where H‖ and H⊥ are the longitudinal and transverse magnetic fields defined as chrono-
metric invariants [33]. In view of requirement (a) it is convenient to choose the coordinate
x in (4.1) to satisfy the subsidiary condition [32]:

α = β + γ + µ,

that permits to present the system of the Einstein equations in the form:

µ′′ + β ′′ − V = −κ T 0
0 e2α, (4.3)

µ′ β ′ + β ′ γ′ + γ′ µ′ = V = −κ T 1
1 e2α, (4.4)
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γ′′ + β ′′ − V = −κ T 2
2 e2α, (4.5)

µ′′ + γ′′ − V = −κ T 3
3 e2α. (4.6)

As in the preceding section, the electromagnetic field is described by the time component
of the 4-potential A0(x) = A(x) and by the component F1 0 = dA/dx = A′ of the field
strength tensor and the energy-momentum tensor of interacting fields is defined by the
equations (3.6), (3.7).
Adding together the equations (4.4) and (4.5) and using (3.7), one obtains the simple
equation:

γ′′ + β ′′ = 0, (4.7)

with the solution
β(x) + γ(x) = C2 x, C2 = const. (4.8)

Notice that the second integration constant in (4.8) can be taken trivial, as it determines
only the choice of scale.
In a similar way the addition of equations (4.4) and (4.6) leads to the equation:

γ′′ + µ′′ = 0, (4.9)

with the solution
µ(x) + γ(x) = C3 x, C3 = const. (4.10)

whereas the substraction of (4.5) and (4.6) gives

β ′′ − µ′′ = 0, (4.11)

with the solution
β(x) − µ(x) = C4 x, C4 = const. (4.12)

Solving the equation (2.2) in the metric (4.1), one gets the same result as in (3.9), i.e.

ϕ′(x) = C P (I). (4.13)

Substituting (4.13) into (2.4), one finds the equation for the electromagnetic field, coinci-
dent with (3.10) i.e.

(e−2γ A′)′ − C2 PI e−2γ A = 0, (4.14)

where the second term could be naturally interpreted as the induced nonlinearity. Now
as in the previous case, we use the equation (4.4) and sum of equations (4.3) and (4.4)
which in view of (4.8) and (4.10), take the form:

γ′2 − C2 C3 = −G (C2 P − A′2 e−2γ), (4.15)

γ′′ = G e−2γ (A′2 + C2 A2 PI). (4.16)

Elimination of PI A between the equations (4.14) and (4.16) gives the equation

γ′′ = G (A A′ e−2γ)′, (4.17)

with the evident first integral:

γ′ = G A A′ e−2γ + C1, C1 = const. (4.18)

11



Integrating (4.18) under the choice C1 = 0, one again obtains

e2γ = G A2 + H, H = const. (4.19)

Finally, substituting γ′ from (4.18) and e2γ from (4.19) into (4.15), one gets the equation
for A(x) :

A′2 (G A2 + H)−2 = (G C2 P − C2 C3)/ G H. (4.20)

The equation (4.20) can be solved by quadrature:

∫

dA

(G A2 + H)
√

G C2 P − C2 C3

= ± (1/
√

G H) (x − x0). (4.21)

Let us formulate regularity conditions to be satisfied by the solutions to the equations
(2.2)-(2.4) on the axis of symmetry defined by the value x = xa, where exp[β(xa)] = 0.
As according to the regularity conditions formulated earlier |γ(xa)| < ∞ and |β(xa)| < ∞
from (4.8) and (4.12) one gets β(x) ≈ C2x → −∞ (whereas xa = −∞ if C2 > 0 and
xa = +∞ if C2 < 0); β(x) ≈ C4x → −∞ (whereas xa = −∞ if C4 > 0 and xa = +∞
if C4 < 0). It leads to C2 = C4, γ(x) ≡ −µ(x) and α(x) ≡ β(x). As one sees, from
γ(x) ≡ −µ(x) follows C3 = 0. The regularity conditions are similar to (3.18) for the case
of spherical symmetry, implying that the following relations hold as x → xa = ∞ :

γ′ → 0, A′ → Ac 6= ∞, A′ → 0,

e2|C2|x P (I) → 0, e2|C2|x | I PI |< ∞. (4.22)

Boundary conditions on the surface of the critical cylinder x = xa can be written as
follows:

T ν
µ = A = A′ = 0, eγ = 1, eβ = e−|C2|x > 0. (4.23)

The conditions (4.23) together with the relations e2γ = G A2 + H, imply that H = 1.
Therefore the metric (4.1) that satisfies the regularity conditions reads:

ds2 = (GA2 + 1)dt2 − 1

(GA2 + 1)

[

e2C2x{dx2 + dφ2} + dz2
]

. (4.24)

As in the previous case, we will study the system for different P (I).
I. Note that some class of regular solutions can be obtained choosing P (I) in the form

P (I) = P0(λI − N)s Q(λI), (4.25)

where Q(λI) is some arbitrary, continuous, positive defined function, having non-trivial
value at the center; λ is the coupling parameter; N > 0 is some dimensionless constant
that is equal to the value of λI at the center. The other constant P0 is defined from the
condition P = 1 at spatial infinity ξ = 0. For R = const. one gets the most simple form of
P (I) that leads to regular soltions. As in the spherically-symmetric case, for the regular
solutions λ ≥ GN.
a) Choosing P (I) in the form

P (I) = P0(λI − N)2, (4.26)
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we get

A(ξ) =

√

N

λ − GN
th bx, (4.27)

where b =
√

C2NP0(λ − GN), the integration constant x1 is taken to be trivial. The

regularity condition implies b ≥ 1. The metric function e2γ , radial electric field and the
total energy of the material field system can be written as

e2γ =
λ

λ − GN

[

1 − GN

λch2bx

]

, (4.28)

|E| = |C|eγ−β
√

P (I), (4.29)

Ef =
λC

2G
√

G

[ σ√
1 − σ2

√
1 − σ2

2
ln

1 + σ

1 − σ

]

, (4.30)

where σ2 = GN/λ < 1. As one sees |E| → 0 as x → ±∞. The solution obtained satisfies
all the regularity conditions and is a solitonian one. The density of mass (ρm) and the
density of effective charge (ρe) are

ρm|x→−∞ →
{

const b = 1;
0 b > 1;

ρm|x→+∞ → 0 b ≥ 1;

ρe|x→−∞ →
{

2C2
√

G(1 − σ2)/πσ b = 1;
0 b > 1;

ρe|x→+∞ → 0 b ≥ 1.

The total charge of the system is equal to zero.
b) Let us consider the case with Ic = 0, choosing

P (I) = λI. (4.31)

In this case we get

A(ξ) =
1√

Gsh (
√

λCx)
. (4.32)

The metric function e2γ in this case reads

e2γ = cth2 (
√

λCx), (4.33)

that gives
e2γ |x → ±∞ → 1, e2γ |x → ±0 → ∞.

Inasmuch e2β = e−2γ+2C2x, x = x1 = −∞ corresponds to one of the axes of the field
configurations. This axis is regular if

√
λC > 1 and A(x1) = 0 and e2γ(x1) = 1. So

for e2γ |x → ±0 → ∞, one gets e2β|x → ±0 → 0, i.e. x = x2 = 0 corresponds to the
second, singular axis. In this case the solution obtained is defined on −∞ ≤ x ≤ 0. At
x → +∞ e2β|x → +∞0 → ∞ and A(x) → 0. It means that x = +∞ defines the spatial
infinity. In this case the solution is defined on 0 ≤ x ≤ ∞ and possesses one singular axis
corresponding x = 0.
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II. Let us now obtain the droplet-like configuration. Choosing P (I) in the form [see
Figure 2]:

P (J) = J (1− 2/σ) [(1 − J)1/σ − J1/σ]2 (1 − J), (4.34)

where J = G I; σ = 2n + 1; n = 1, 2, 3 · · · one can find the expression for A(x)
which is similar to the one in spherically-symmetrical case [see Figure 1]:

A(x) = (1/
√

G) [1 − exp (−2 C
√

G

σ
(x − x0))]

σ/2. (4.35)

As one can readily see from (4.35), the conditions (4.22) and (4.23) are fulfilled if | C2 |
≤ C

√
G/σ. It is noteworthy that at x ≤ x0, A(x) ≡ 0 and the space-time is flat, the

gravitational field being absent [35].
There is a principal difference between solutions (3.37) and (4.35). For the case of spher-
ical symmetry the droplet-like solution can be transformed to the soliton-like one if the
boundary ξ0 is removed by putting ξ0 = 0 (as in this case exp[β(ξ0)] = 1/ξ0 = ∞). On
the contrary, for the case of cylindrical symmetry the removal of the boundary is equiv-
alent to putting x0 = −∞, as in this case exp[β(x0)] = exp(− | C2 | x0) = ∞. Under
this last choice the solution (4.35) takes constant value A(x) = 1/

√
G and the soliton

structure disappears. For the considered case, as well as for that of spherical symmetry,
the density of the field energy is given by equation (3.23) and the linear density of energy
is similar to (3.24):

Ef = (C/4)

1/
√

G
∫

0

dA e−3γ [
√

P (1 + e2γ) + 4 I (
√

P )I ], (4.36)

Substituting P (I) from (4.34) into (4.36), one can find that Ef is finite and the total
energy Ef + Eg turns out to be zero.
Let us now define the effective charge density ρe and total charge Q, corresponding to the
unit length on z-axis. In generally from (2.4) one gets [34]

jα =
1

4π
(ϕ,β ϕ,β)ΨI Aα, (4.37)

that for static radial electric field leads to

j0 =
C2

4π
e−2(α+γ) PI A. (4.38)

Then for chronometric invariant electric charge density ρe we have

ρe =
j0

√
g00

=
C2

4π
e−(2α+γ) PI A. (4.39)

The total charge is defined from the equality

Q = 2π

x∞
∫

xa

ρe

√

−3g dx. (4.40)

Putting the corresponding quantities into the foregoing equality after some simple calcu-
lations we obtain

Q =
1

2
e−2γ A′ |x∞

xa

= 0. (4.41)
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Now it is worthwhile to make again the comparison with the flat-space solutions of the
equations (2.3) and (2.4), using the interval:

ds2 = dt2 − dρ2 − ρ2 dφ2 − dz2.

In this case the scalar field equation (2.3) admits the solution:

ϕ′(ρ) = C P (I)/ρ, P (I) = 1/Ψ(I), C = const. (4.42)

Inserting (4.42) into (2.4), one can find the electromagnetic field equation which admits
the solution in quadratures:

∫

dA
√

P (I)
= ±C ln

ρ

ρ0
, ρ0 = const. (4.43)

Substituting P (I) from (4.34) in (4.43), one gets the solution of the droplet-like form:

A(ρ) = (1/
√

λ) [1 − (
ρ

ρ0

)2 C
√

λ/σ]σ/2. (4.44)

One concludes from (4.44) that A(ρ ≥ ρ0) ≡ 0. It means that the electric charge of
the system is zero . For the solution (4.34) the regularity conditions both on the axis
ρ = 0 and on the surface of the critical cylinder ρ = ρ0 are fulfilled if C

√
λ ≥ σ. It is

noteworthy that in the case of cylindrical symmetry, both in the flat space-time and with
account of the proper gravitational field, there do not exist any soliton-like solutions, as
for the choice ρ0 = ∞ the solution (4.44) degenerates into the constant: A(ρ) = 1/

√
λ.

The linear density of the field energy in flat space-time can be found from the expression
similar to (3.23), and as well as in the case of spherical symmetry, it is equal to zero:

Ef =
C

2

√
P I |A(0)

A(ρ0) = 0,

as was expected.

5 Discussion

Exact regular static spherically- and/or cylindrically-symmetrical particle-like solutions
to the equations of scalar nonlinear electrodynamics in General Relativity have been ob-
tained. As a particular case we found a class of regular solutions with sharp boundary
(droplet-like solutions or simply droplets). It is shown that outside the droplet gravi-
tational and electromagnetic fields remain absent i.e. total energy and total charge of
the configuration are zero. We underline once more the principal difference between the
droplet-like solutions with spherical symmetry and those with cylindrical one. In the first
case there exists a possibility of continuous transformation of the droplet-like configura-
tion into the solitonian one by transporting the sharp boundary to the infinity. As for the
second case, there is no such a possibility, and the soliton-like configuration disappears
when the boundary is smoothed tending to the infinity. Further we intend to study the
interaction processes of droplets with external electromagnetic and gravitational fields
and also the scattering of photons and electrons on droplets.
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Caption of figures

Figure 1. Perspective view of droplet-like solution. The configurations are plotted for
λ = 1, x0 = 2 and σ takes the values 3, 5, 7, 9. (Note that in the figures illustrated
here 3, 5, 7, 9 correspond to the value of σ ).

Figure 2. Perspective view of the inverse function to the interaction one (i.e. P (I)) that
provides us with the droplet-like configurations (Figure 1). As is seen from Figure 1, the
stronger the interaction the more localized the corresponding droplet-like configuration.
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