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Exact particle-like static, spherically and/or cylindrically symmetric solutions to the equations of
interacting scalar and electromagnetic field system have been obtained. We considered Freedman-
Robertson-Walker (FRW) space-time as an external homogenous and isotropic gravitational field
whereas the homogeneous and anisotropic Universe is given by the Gödel model. Beside the usual
solitonian solutions some special regular solutions know as droplets, anti-droplets and bags (confined
in finite interval and having trivial value beyond it) have been obtained. It has been shown that in
FRW space-time equations with different interaction terms may have stable solutions while within
the scope of Gödel model only the droplet-like and the hat-like configurations may be stable, if they
are located in the region where g00 > 0.
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1. INTRODUCTION

The concept of soliton as regular localized stable solutions of nonlinear differential equations is being widely utilized
in pure science [1]. One of the fields to apply the soliton concept is the elementary particle physics, where the soliton
solutions of nonlinear field equations are used as the simplest models of extended particles [2,3]. Development of general
relativity (GR) and quantum field theory (QFT) leads to the increasing interest to study the role of gravitational
field in elementary particle physics. To obtain and study the properties of regular localized solutions to the nonlinear
classical field equations is motivated mainly by a hope to create a consistent, divergence-free theory. These solutions,
as was remarked by Rajaraman [4] give us one of the ways of modeling elementary particles as extended objects
with complicated spatial structure. In such attempts it is natural to treat the field nonlinearity not only as a tool
for avoiding the theoretical difficulties (such as singularities) but also as a reflection of real properties of physical
system. It should be also emphasized that the complete description of elementary particles with all their physical
characteristics (e.g., magnetic momentum) can be given only in the framework of interacting field theory [5]. Let
us remark that the choice the field equations is one of the principle problems in nonlinear theory. At present there
is no criterion for the selection of interaction Lagrangian and any Lorentz-invariant combination of field functions
can be considered as such Lagrangian. The purpose of this paper is to present some new results (anti-droplets and
hats), in addition to those illustrated in [6] for an interacting system of scalar and electromagnetic fields, confining
ourselves to static, spherically and/or cylindrically symmetric configurations since the effect of gravitational fields on
the properties of regular localized solutions significantly depends on the symmetry of the system.

2. FUNDAMENTAL EQUATIONS

So that the field equations possess regular solutions it is necessary to introduce nonlinear terms, describing the
field interactions, in the Lagrangian. We consider the nonlinear generalization of the theory that is related to the
introduction of direct interaction between neutral scalar and electromagnetic fields. The decay process like π0 → 2γ,
described by the effective Lagrangian [7]

Lint = ϕπ0FαβF ∗αβ ,

indicates to the possibility of such generalization. Thus we consider a system with the Lagrangian

L =
1

2
ϕ,αϕ,α − 1

16π
FαβFαβΨ(ϕ) (2.1)

where Ψ(ϕ) is some arbitrary function characterizing interaction between the scalar (ϕ) and electromagnetic (Fµν)
fields takes the form

Ψ(ϕ) = 1 + λΦ(ϕ).
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As is seen, for λ = 0, Ψ(ϕ) ≡ 1 and we have the system with minimal coupling. Note that the Lagrangian (2.1)
describes the system of fields with positive definite energy if Ψ(ϕ) ≥ 0. This kind of interaction has been thoroughly
discussed in [8]. Let us write the scalar and the electromagnetic field equations corresponding to the Lagrangian(2.1)

1√−g

∂

∂xν

(√−ggνµ ∂ϕ

∂xµ

)

+
1

16π
FαβFαβΨϕ = 0, Ψϕ =

∂Ψ

∂ϕ
(2.2)

1√−g

∂

∂xν

(√−gF νµΨ(ϕ)

)

= 0 (2.3)

The corresponding energy-momentum tensor reads

T ν
µ = ϕ,µϕ,ν − 1

4π
FµβF νβΨ(ϕ) − δν

µ

[1

2
ϕ,αϕ,α − 1

16π
FαβFαβΨ(ϕ)

]

(2.4)

3. SPHERICALLY SYMMETRIC CONFIGURATIONS

A. Solutions in FRW Universe

As an external homogenous and isotropic gravitational field we choose the FRW space-time. This Universe is very
important as the corresponding cosmological models coincides with observation. The interval in the FRW Universe
in general takes the form [9,10]

ds2 = dt2 − R2(t)

[

dr2

1 − kr2
+ r2

{

dϑ2 + sin2ϑdφ2
}

]

(3.1)

Here R(t) defines the size of the Universe, and k takes the values 0 and ±1. We consider the simple most case putting
R(t) = R = constant, which corresponds to the static FRW Universe. In static case k = 0 corresponds to usual
Minkowski space, k = +1 describes the close Einstein Universe [11] and k = −1 corresponds to the space-time with
hyperbolic spatial cross-section. Note that the velocity of light c has been taken to be unity.

As was mentioned earlier, we seek the static, spherically symmetric solutions to the equations (2.2) and (2.3). To
this end we assume that the scalar field is the function of r only, i.e. ϕ = ϕ(r) and the electromagnetic field possesses
only one component F10 = ∂A0/∂r = A′.

Under the assumption made above, the solution to the equation (2.3) reads

F 01 = q̄P (ϕ)

√
1 − kr2

R3r2
(3.2)

where q̄ is the constant of integration and P (ϕ) = 1/Ψ(ϕ). Putting (3.2) into (2.2) for the scalar field we obtain the
equation with ”induced nonlinearity” [12,13]

(1 − kr2)ϕ′′ +
2 − 3kr2

r
ϕ′ − 2q2

R2r4
Pϕ = 0, q2 =

q̄2

16π
(3.3)

This equation can be written in the form

∂2ϕ

∂z2
− 2q2

R2
Pϕ = 0 (3.4)

with the first integral

∂ϕ

∂z
=

2q

R

√

P + C0 (3.5)

where we substitute z =
√

1/r2 − k. Here C0 is the constant of integration, which under the regularity condition of T 0
0

at the center turns to be trivial, i.e., C0 = 0. Finally we write the solution to the scalar field equation in quadrature
∫

∂ϕ√
P

=
2q

R
(z − z0) (3.6)



B. Saha 3

In accordance with (3.2) and (3.5) from (2.4) we find the density of field energy of the system

T 0
0 =

4q2P

R4r4
(3.7)

and total energy of the material field system

Ef =

∫

T 0
0

√

−3gd3x = −8πq

∫ √
Pdϕ (3.8)

Thus, we see that the energy density T 0
0 and total energy Ef of the configurations obtained do not depend on the

conventional values of the parameter k. As one sees, to write the scalar (ϕ) and vector (A) functions as well as the
energy density (T 0

0 ) and energy of the material fields (Ef ) explicitly, one has to give P (ϕ) in explicit form. Here we
will give a detailed analysis for some concrete forms of P (ϕ). Let us choose P (ϕ) in the form

P (ϕ) = P0cos2
(λϕ

2

)

(3.9)

with λ being the interaction parameter. Inserting (3.9) into (3.4) we get the sin-Gordon type equation [14]

∂2ϕ

∂z2
+

λq2P0

4R2
sin(λϕ) = 0 (3.10)

with the solution

ϕ(z) =
2

λ
arcsin tanh[b(z + z1)], b =

λq
√

P0

R
, z1 = const (3.11)

Let us analyze the solution (3.11). It can be shown that lim
r→0

ϕ = π/λ for all k. As one sees, the solution possesses

meaning only in the region where z =
√

1/r2 − k > 0. It means, in case of k = +1 the configuration confines in the
interval 0 ≤ r ≤ 1. Then the asymptotic behavior of the solution (3.11) can be written as

ϕ →







0, k = −1, z1 = −1, r → ∞
0, k = 0, z1 = 0, r → ∞
0, k = +1, z1 = 0, r ≥ 1

(3.12)

From (3.8) we find the total energy of the system Ef = −16πq
√

P0/λ. For the choice of P (ϕ) in the form

P = λ(a2 − ϕ2)2 (3.13)

with λ being the coupling constant and a being some arbitrary constant, from (3.4) we obtain

4λa2ϕ − 4λϕ3 +
∂2ϕ

∂z2
= 0 (3.14)

The equation (3.14) can be seen as an MKdV one. Indeed, a KdV equation

∂u

∂t
+ αup ∂u

∂x
+ β

∂3u

∂x3
= 0, (3.15)

can always be converted to

− Du + α
up+1

p + 1
+ β

d2u

dz2
= 0 (3.16)

if one looks for stationary solution of the form u = u(z) where z = x − Dt. In our particular case p = 2 and the
equation (3.14) is an MKdV one. The scalar field function in this case has the form

ϕ(z) = atanh[
√

λab(z + z2)], b =
2q

R
(3.17)
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Taking into account that z =
√

1/r2 − k one sees that at the origin lim
r→0

ϕ = a whereas at the asymptotic region for

different value of k we get

ϕ →







0, k = −1, z2 = −1, r → ∞
0, k = 0, z2 = 0, r → ∞
0, k = +1, z2 = 0, r ≥ 1

(3.18)

From (3.8) we find the total energy of the system to be Ef = −16πq
√

λa3/3. A specific type of solution to the
nonlinear field equations in flat space-time was obtained in a series of interesting articles [15]. These solutions are
known as droplet-like solutions or simply droplets. The distinguishing property of these solutions is the availability
of some sharp boundary defining the space domain in which the material field happens to be located, i.e., the field is
zero beyond this area. It was found that the solutions mentioned exist in field theory with specific interactions that
can be considered as an effective one, generated by initial interactions of unknown origin. In contrast to the widely
known soliton-like solutions, with field functions and energy density asymptotically tending to zero at spatial infinity,
the solutions in question vanish at a finite distance from the center of the system (in the case of spherical symmetry)
or from the axis (in the case of cylindrical symmetry). Thus, there exists a sphere or cylinder with critical radius r0

outside of which the fields disappear. Therefore the field configurations have a droplet-like structure [12,15,16].
To obtain the droplet-like configuration we choose a very specific type of interaction function P (ϕ) which has the

form [17] [cf. FIG. 1]

P (ϕ) = J2−4/σ

(

J2/σ − 1

)2

(3.19)

where J = λϕ, σ = 2n + 1, n = 1, 2 · · ·. Putting (3.19) into (3.6) one gets

|J2/σ − 1| = exp
[

±4qλ

Rσ
(z − z0)

]

(3.20)

Let us consider the case when |J2/σ − 1| = 1 − J2/σ. Taking the sign in exponent to be ”minus” one from (3.20) we
obtain

ϕ(z) =
1

λ

[

1 − exp

(

−4qλ

Rσ

(

z − z0

)

)]σ/2

(3.21)

Recalling that z =
√

1/r2 − k from (3.21) we see that at r → 0 the scalar field ϕ takes the value ϕ(0) → 1/λ and at

r → rc = 1/
√

z2
0 + k, the scalar field function becomes trivial, i.e., ϕ(rc) → 0. It is obvious that for r > rc the value

of the square bracket turns out to be negative and ϕ(r) becomes imaginary, since σ is an odd number. Since we are
interested in real ϕ only, without loss of generality we may assume the value of ϕ to be zero for r ≥ rc, the matching
at r = rc (i.e., z = z0) being smooth [cf. FIG. 2]. Note that, for k = +1, the scalar field is confined in the region
0 ≤ r ≤ 1, as it was in previous two cases. The total energy of the droplet we obtain from (3.8) has the form

Ef =
4πq

λ(σ − 1)
(3.22)

As is seen from (3.22), the value of the total energy does not depend on the size of the droplet, it means droplets of
different linear size share the same total energy. Let us now back to (3.20) again and consider the sign in exponent
to be ”plus”. In this case we find

ϕ(z) =
1

λ

[

1 − exp

(

4qλ

Rσ

(

z − z0

)

)]σ/2

(3.23)

Contrary to the droplet this configuration possesses trivial value up to r = rc = 1/
√

z2
0 + k, then begins to increase

taking maximum value at spatial infinity:

ϕ =
1

λ

[

1 − exp
(4qλz0

Rσ

)]σ/2 ≤ 1

Note that the total energy of the anti-droplet (3.23) is equal to that of the droplet. Finally we consider another very
interesting case putting
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P (ϕ) =
σ2

4
Q2−4/σ

(

A2 − 4Q2/σ

)

(3.24)

where Q = Rϕ/2q, σ = 2n + 1, n = 1, 2 · · ·. Putting (3.24) into (3.6) one gets

ϕ(z) =
2q

R

[

(z − a)(b − z)
]σ/2

(3.25)

where we put A = b − a and 2z0 = b + a. As one sees this configuration is completely localized in the interval
r ∈ (1/

√
b2 + k, 1/

√
a2 + k) having trivial value out of it [cf. FIG. 3]. The total energy of this configuration is trivial.

B. Stability problem

To study the stability of the configurations obtained we write the linearized equations for the radial perturbations
of scalar field assuming that

ϕ(r, t) = ϕ(r) + ξ(r, t), ξ ≪ ϕ (3.26)

Putting (3.26) into (2.2) in view of (3.3) we get the equation for ξ(r, t)

ξ̈ + 3
Ṙ

R
ξ̇ − 1 − kr2

R2
ξ′′ − 2 − 3kr2

rR2
ξ′ +

q2Pϕϕ

R4r4
ξ = 0 (3.27)

The second term in (3.27) is zero since we assume the FRW space-time to be static one putting R = constant.
Assuming that

ξ(r, t) ≈ v(r)exp(−iΩt), Ω = ω/R (3.28)

from (3.27) we obtain

(1 − kr2)v′′ − 2 − 3kr2

r
v′ +

[

ω2 − q2Pϕϕ

R2r4

]

v = 0 (3.29)

The substitution

η(ζ) = r · v(r), ζ =
1√
k
arcsin(

√
kr) (3.30)

leads the equation (3.29) to the Liouville one [18]

ηζζ +
(

ω2 − V (ϕ)
)

η = 0, V (ϕ) = −k +
q2Pϕϕ

R2ζ4

(

√
kζ

sin(
√

kζ)

)4

(3.31)

For the interaction term (3.9) we see that

V (ϕ) > 0, if and only if tanh2b(z + z1) >
kζ4R2

P0q2λ2

(sin(
√

kζ)√
kζ

)4

+
1

2
(3.32)

Thus we find that the equations with trigonometric nonlinearity contain stable solutions. Given P (ϕ) in the form
(3.13) we find that

V (ϕ) > 0, if tanh2b(z + z2) >
kζ4R2

12q2λ

(sin(
√

kζ)√
kζ

)4

+
a2

3
(3.33)

As is seen from (3.33) the equations with polynomial type of nonlinearity too contain some stable solutions. For the
droplet-like configurations, i.e., for the interacting term P (ϕ) given by (3.19), it can be shown that the potential

lim
r→0

V (ϕ) → +∞, lim
r→rc

V (ϕ) → +∞ (3.34)

beginning with σ ≥ 5. It means that the droplet-like configurations (3.21) with σ ≥ 5 are stable for the class of
perturbation, vanishing at r = 0 and r = rc. The same can be concluded for the solutions (3.23) and (3.25).
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4. CYLINDRICALLY SYMMETRIC CONFIGURATIONS

A. Solutions in Gödel Universe

In the previous section we studied the possibility of formation of regular localized configuration in homogenous and
isotropic FRW Universe. Let us now continue our study in the homogenous but anisotropic Universe. In particular
we consider the model proposed by Gödel. The linear element of Gödel Universe in cylindrical coordinates reads [19]

ds2 = dt2 − dρ2 +
1

Ω2
[sinh4Ωρ − sinh2Ωρ]dφ2 −

√
8

Ω
sinh2Ωρdφdt − dz2 (4.1)

where the constant Ω is related with the angular velocity ω: ω =
√

2Ω. This form of linear element of the four-
dimensional homogenous space S directly exhibits its rotational symmetry, since the gµν do not depend on φ. It is
easy to find

lim
Ω→0

√−g = lim
Ω→0

1

2Ω
sinh(2Ωρ) → ρ

i.e. at ω → 0 Gödel Universe transfers to the flat one.
As in spherically symmetric case, here too we seek the static solutions to the equations (2.2) and (2.3) assuming

the scalar field to be the function of ρ only, i.e., ϕ = ϕ(ρ) and the electromagnetic possesses only one component
F10 = ∂A0/∂ρ = A′. For the electromagnetic field in this case we find

F 01 = 2ΩDP/sinh(2Ωρ), D = const (4.2)

The scalar field equation (2.2) with regards to (4.2) reads

∂2ϕ

∂ρ2
+ 2Ωcoth(2Ωρ)

∂ϕ

∂ρ
=

8q2Ω2Pϕ

sinh2(2Ωρ)
, q2 = D2/16π (4.3)

Putting y = 1

2Ω
ln tanh(Ωρ) from (4.3) one gets

∂2ϕ

∂y2
− 8q2Ω2Pϕ = 0 (4.4)

with the first integral

∂ϕ

∂y
= ±4qΩ

√

P + D0 (4.5)

Here D0 is the constant of integration, which under the regularity condition of T 0
0 at the center turns to be trivial,

i.e., D0 = 0. Finally we write the solution to the scalar field equation in quadrature

∫

∂ϕ√
P

= 4qΩ(y − y0) (4.6)

In accordance with (4.2) and (4.5) from (2.4) we find the density of field energy and the total energy of the system

T 0
0 =

16q2Ω2P

sinh2(2Ωρ)
(4.7)

Ef = 8πq

∫ √
Pdϕ (4.8)

As in the previous case, to write the scalar (ϕ) and vector (A) functions as well as the energy density (T 0
0 ) and energy

of the material fields (Ef ) explicitly, one has to give P (ϕ) in explicit form. Here again we will thoroughly study the
solutions obtained for different concrete forms of P (ϕ). Choosing P (ϕ) in the form (3.9), i.e.,

P (ϕ) = P0cos2
(λϕ

2

)

(4.9)
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with λ being the interaction parameter, from (4.4) we get the sin-Gordon type equation

∂2ϕ

∂y2
+ 4λq2Ω2P0sin(λϕ) = 0 (4.10)

The solution to this equation can be written in the form

ϕ(ρ) =
4

λ

[

arctan

(

tanhΩρ

Ωρ0

)α

− π

4

]

, α = λq
√

P0 (4.11)

where ρ0 is the constant of integration, giving the size of the system. Without losing the generality we can choose
α > 0. Then one finds lim

ρ→0
ϕ = −π/λ. For ρ > 0 the field ϕ steadily increases up to π/λ. In particular, at spatial

infinity we get lim
ρ→∞

ϕ = 0. In this case P (ϕ∞) = 1 which corresponds to the exclusion of interaction at spatial

infinity. The total energy of the system in this case coincides with that of in FRW Universe, i.e., Ef = −16πq
√

P0/λ.
Choosing P (ϕ) in the form (3.13), i.e.,

P = λ(a2 − ϕ2)2 (4.12)

from (4.4) we as in FRW case again obtain MKdV type equation with the solution

ϕ(ρ) = a
tanhα(Ωρ) − 1

tanhα(Ωρ) + 1
, α = 4aq

√
λ (4.13)

From (4.13) it is clear that lim
ρ→0

ϕ → −a and lim
ρ→∞

ϕ → 0 From (4.8) we find the total energy of the system to be

Ef = −16πq
√

λa3/3 as it was in FRW case. The choice of the interaction term P (ϕ) in the form (3.19), i.e.,

P (ϕ) = J2−4/σ
(

1 − J2/σ
)2

(4.14)

where J = λϕ, σ = 2n + 1, n = 1, 2 · · ·, leads to the following expression for scalar field

ϕ(ρ) =
1

λ

[

1 −
( tanh(Ωρ)

tanh(Ωρ0)

)α
]σ/2

, α = ±4λq

σ
(4.15)

where ρ0 is an arbitrary constant. For α > 0 the solution possesses physical meaning at ρ < ρ0 and becomes
meaningless at ρ > ρ0. Outside the cylinder ρ = ρ0 one can put ϕ ≡ 0. This trivial solution is stitched with the
solution at ρ = ρ0 under condition ϕ′(ρ0) = 0, which fulfills if and only if 4λ|q| > σ. Consequently, at ρ > ρ0 the
Lagrangian becomes physically meaningless, however its limiting value at ρ → ρ0 − 0 is equal to zero. Continuing it
at ρ > ρ0, one can consider the field be totally trivial in this area. Thus we get the droplet-like configuration. The
field ϕ steadily decreases from ϕ(0) = 1/λ to ϕ(ρ0) = 0 with ϕ′(0) = 0 (for σ ≥ 3) and ϕ′(ρ0) = 0. The total energy
of the ”droplet” is defined as

Ef =
4πq

λ(σ − 1)
(4.16)

which remains unaltered even in flat space-time (Ω = 0). It means that the ”droplet” does not feel Gödel gravitational
field. On the other hand, for α < 0 we obtain the configuration (anti-droplet) possessing trivial value at ρ ≤ ρ0.
Starting from ρ = ρ0 it begins to increase and at spatial infinity takes maximum value: ϕ(∞) ≤ 1/λ. Finally we
consider the case providing hat-like configuration. Putting

P (ϕ) =
σ2

4
Q2−4/σ

(

A2 − 4Q2/σ

)

(4.17)

where Q = R/4qΩ, σ = 2n + 1, n = 1, 2 · · ·. Inserting (4.17) into (4.6) one gets

ϕ(y) = 4qΩ
[

(y − a)(b − y)
]σ/2

(4.18)

where we put A = b−a and 2y0 = b+a. As one sees the configuration is completely localized in the interval y ∈ (a, b)
with trivial total energy.
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B. Stability problem

Let us now study the stability of the configuration obtained. In doing so we consider the perturbed scalar field
δϕ = χ(ρ, t) that leaves the cylindrical-symmetry of the system unbroken. The linearized equation for the perturbed
scalar field looks

1√−g

∂

∂xµ

(√−ggµνχ,ν

)

+
q2

2(−g)
Pϕϕχ = 0 (4.19)

Since, for the case considered, g00 = (1 − sinh2Ωρ)/cosh2Ωρ, it is clear that the type of equation (4.19) changes on
the surface where sinhΩρ = 1. The Cauchi problem for (4.19) is incorrect by Hadamard in the region, where g00 < 0.
In connection with this only the droplet-like and hat-like solutions can be stable by Lyapunov, if they are located in
the region where g00 > 0 [12]. Assuming that

χ(ρ, t) = v(ρ)exp(−iεt) (4.20)

from (4.19) we get

v′′ + 2Ωcoth(2Ωρ)v′ +
[1 − sinh2Ωρ

cosh2Ωρ
ε2 − 2Ω2q2

sinh2(2Ωρ)
Pϕϕ

]

v = 0 (4.21)

The substitution

η(ζ) = ξ(ρ) · v(ρ) (4.22)

where

ζ =

∫

√

1 − sinh2 Ωρ

coshΩρ
dρ, ξ =

[

4sinh2 Ωρ
(

1 − sinh2 Ωρ
)]1/4

leads the equation for perturbed field to the Liouville one

∂2η

∂ζ2
+

[

ε2 − V ] η = 0 (4.23)

Here the effective potential V (ϕ) takes the form

V (ϕ) =
Ω2

(1 − sinh2Ωρ)

{ q2Pϕϕ

2sinh2Ωρ
+

(4sinh6Ωρ − 16sinh4Ωρ + 3sinh2Ωρ − 1) cosh2Ωρ

4sinh2Ωρ (1 − sinh2Ωρ)

}

For the interaction function, chosen in the form (3.19), one finds

Pϕϕ = λ2
(2σ2 − 12σ + 16

σ2J4/σ
− 4σ2 − 12σ + 8

σ2J2/σ
+ 2

)

Taking into account that lim
ρ→0

J → 1 and lim
ρ→ρ0

J → 0, it can be shown that

lim
ρ→0

V (ϕ) → +∞ for σ < 4qλ

lim
ρ→ρ0

V (ϕ) → +∞ for σ ≥ 5

Here we used the fact that g00 > 0, i.e., sinhΩρ < |1|. Thus, as in the previous case we find that the droplet like
configurations are stable for 5 ≤ σ < 4|q|λ. Analogically, we can conclude that the hat-like configurations are also
stable beginning with σ ≥ 5. Here it should be emphasized that, contrary to the droplets (anti-droplets) where σ may
be big enough, in case of hat-like solutions σ should be small. Otherwise ϕ itself may be large. Nevertheless, one can
always choose P in such a way, e.g.,

P = (1/4)(σQ)2−4/σ
[

A2 − 4(σQ)2/σ
]

that ϕ takes reasonable value.
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5. CONCLUSION

We obtained the regular particle-like solutions to the scalar field equations with induced nonlinearity in external
gravitational fields described by Freedman-Robertson-Walker and Gödel Universes respectively. Beside the usual
solitons, a special type of regular localized configurations, known as droplets, have been obtained. It has been shown
that the droplet-like configurations possess limited energy density and finite total energy and the droplets of different
linear sizes up to the soliton share one and the same total energy. It is noteworthy to notice that in the spherically
symmetrical case (i.e., in the FRW Universe) at rc → ∞ for k = 0 droplet transfers to usual solitonian solution,
while for k = ±1 this is not the case. It has also been shown that in FRW space-time equations with different type
of nonlinearities may contain stable solutions, whereas in case of Gödel Universe only the droplet-like and hat-like
configurations may be stable. It is noteworthy to remark that in FRW space-time with k = +1 the field function is
confined in the region 0 ≤ r ≤ 1 independent to the choice of interaction function P (ϕ). Acknowledgements The
author thanks Prof. G.N. Shikin for useful consultations.
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FIG. 1. Perspective view of interaction function P (ϕ) providing (anti-)droplet like configurations for different values of σ.
Here (and later on) the thick-line, dash-line, dash-dot-line and thin-line correspond to the value of σ = 3, 5, 7, 9 respectively.
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FIG. 2. Perspective view of droplet-like configurations
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FIG. 3. Perspective view of the hat-like configurations


