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Abstract

Lenny Susskind has made many important contributions to theoretical physics

during the past 35 years.

In this talk I will discuss the early history of string theory (1968-72) empha-

sizing Susskind’s contributions.
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1 S-Matrix Theory, Duality, and the Bootstrap

In the late 1960s there were two parallel trends in particle physics. On the one hand, many

hadron resonances were discovered, making it quite clear that hadrons are not elementary

particles. In fact, they were found, to good approximation, to lie on linear parallel Regge

trajectories, which supported the notion that they are composite. Moreover, high energy

scattering data displayed Regge asymptotic behavior that could be explained by the extrap-

olation of the same Regge trajectories, as well as one with vacuum quantum numbers called

the Pomeron. This set of developments was the focus of the S-Matrix Theory community of

theorists. The intellectual leader of this community was Geoffrey Chew at UC Berkeley. One

popular idea espoused by Chew and followers was “nuclear democracy” – that all hadrons

can be regarded as being equally fundamental. A more specific idea was the “bootstrap”,

that the forces arising from hadron exchanges are responsible for binding the hadrons, as

composites of one another, in a more or less unique self-consistent manner.

The second major trend in the late 1960s grew out of the famous SLAC experiments

on deep inelastic electron scattering. These gave clear evidence for point-like constituents

(quarks and gluons) inside the proton. This led to Feynman’s “parton” model, which was also

an active area of research in those days. I would submit that Susskind was philosophically

more in tune with the parton world view than the S matrix one, though he clearly had a

foot in each camp. My Berkeley training put me solidly in the S-matrix camp.

In the early 1970s, it became clear that QCD is the correct theory of strong interactions.

It can be used for explicit computations in large momentum regimes where perturbation

theory can be used, thanks to asymptotic freedom. Modern phenomenological studies in

such regimes are directly descended from the older parton models. In other regimes, such as

diffraction scattering, where perturbation theory is not applicable, S-matrix ideas are still

used. So both major trends from the late 1960s have their descendents 30 years later.

String theory, which is the subject I want to focus on here, grew out of the S-Matrix

approach to hadronic physics. The bootstrap idea got fleshed out in the late 1960s with the

notion of a duality relating s-channel and t-channel processes that went by the name of “finite

energy sum rules” [1] - [7]. Another influential development was the introduction of “duality

diagrams”, which keep track of how quark quantum numbers flow in various processes [8,

9]. Susskind contributed papers on this topic [10, 11]. Later, duality diagrams would be

reinterpreted as string world-sheets, with the quark lines defining boundaries. A related

development that aroused considerable interest was the observation that the bootstrap idea

requires a density of states that increases exponentially with mass, and that this implies

the existence of a critical temperature, called the Hagedorn temperature [12] - [15]. It was
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generally supposed that this it is an ultimate temperature, though a phase transition was

clearly another possibility.

2 The Dual Resonance Model

The duality program got a real shot in the arm in 1968 when Veneziano found a specific

mathematical function that explicitly exhibits the features that people had been discussing

in the abstract [16]. The function, an Euler beta function, was proposed to give a good

phenomenological description of the reaction π + ω → π + π in the narrow resonance ap-

proximation. This was known to be a good approximation, because near linearity of Regge

trajectories implies that the poles should be close to the real axis. A little later Lovelace

and Shapiro proposed a similar formula to describe the reaction π + π → π + π [17, 18].

Chan and Paton explained how to incorporate “isospin” quantum numbers in accord with

the Harari–Rosner rules [19]. Also, within a matter of months Virasoro found an alternative

formula with many of the same duality and Regge properties that required full s-t-u symme-

try [20]. Later it would be understood that whereas Veneziano’s formula describes scattering

of open-string ground states, Virasoro’s describes scattering of closed-string ground states.

In 1969 several groups independently discovered N -particle generalizations of the Veneziano

four-particle amplitude [21] - [25]. The N -point generalization of Virasoro’s four-point am-

plitude was constructed by Shapiro [26]. In short order Fubini and Veneziano, and also

Bardakci and Mandelstam, showed that the Veneziano N -particle amplitudes could be con-

sistently factorized in terms of a spectrum of single-particle states described by an infinite

collection of harmonic oscillators [27] - [30]. This was a striking development, because it sug-

gested that these formulas could be viewed as more than just approximate phenomenological

descriptions of hadronic scattering. Rather, they could be regarded as the tree approxima-

tion to a full-fledged quantum theory. I don’t think that anyone had anticipated such a

possibility one year earlier. It certainly came as a surprise to me.

One problem that was immediately apparent was that since the oscillators transform

as Lorentz vectors, the time components would give rise to negative-norm ghost states.

Everyone knew that such states would violate unitarity and causality. Virasoro came to the

rescue by identifying an infinite set of subsidiary conditions, which plausibly could eliminate

the negative-norm states from the spectrum [31, 32]. These subsidiary conditions are defined

by a set of operators, which form the famous Virasoro algebra [33]. The central term in the

algebra was discovered by Joe Weis (unpublished). One price for eliminating ghosts in the

way suggested by Virasoro was that the leading open-string Regge trajectory had to have

unit intercept, and hence, in addition to a massless vector, it contributes a tachyonic ground
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state to the spectrum [34].

3 The String Idea

Once it was clear that we were dealing with a system with a rich spectrum of internal

excitations, and not just a bunch of phenomenological formulas, it was natural to ask for

a physical interpretation. The history of who did what and when is a little tricky to sort

out. As best I can tell, the right answer – a one-dimensional extended object (or “string”)

– was discovered independently by three people: Nambu, Susskind, and Nielsen. Nambu’s

contribution to the 1969 conference held at Wayne State University apparently was first,

but the conference was rather obscure [35], and the paper was not widely circulated. His

subsequent paper, submitted to a symposium in Copenhagen, proposed that the string action

is the area of the world-sheet in analogy with the proper length of the world-line of a point

particle [36]. These difficult to find papers have been reprinted in [37].

The string idea also appears quite clearly in Susskind papers, which were published in a

refereed journal [38, 39, 40]. Nielsen’s first paper on the subject was submitted to a 1970

conference in Kiev, though it was not published in the proceedings [41]. However, shortly

thereafter, he and Fairlie described their approach in a refereed journal [42]. The Nielsen

papers emphasize an analog electrostatic model in which one solves Laplace’s equation on a

disk with sources on the boundary. This is just the string wave equation on a Euclideanized

world sheet. The electrostatic analogy was also discussed by Shapiro for the Virasoro–Shapiro

model taking the domain to be a sphere rather than a disk and with the sources attached to

the interior of the surface [26]. We recognize this to be the proper description of tree-level

closed-string amplitudes.

A somewhat different approach treated the string world-sheet as some kind of sum or

limit of complicated planar Feynman diagrams, sometimes referred to as fishnet diagrams.

This approach, along with various related parton ideas, was pursued by Sakita and Virasoro

[43] as well as by Susskind and Nielsen [44] - [50]. Note that these works are several years

prior to ‘t Hooft’s famous paper on large-N gauge theory [51]. They were not very specific,

however, about which field theory should be used to form the fishnet diagrams or what limit

was required to make contact with a string world sheet.

Though there was some progress in the intervening years [52, 53], the string interpretation

of the dual resonance model was not very influential in the development of the subject until

the appearance of the 1973 paper by Goddard, Goldstone, Rebbi, and Thorn [54]. It ex-

plained in detail how the string action could be quantized in light-cone gauge. Subsequently

Mandelstam extended this approach to the interacting theory [55].
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4 Loop Amplitudes

From the factorization of N -particle amplitudes one had learned the tree approximation

spectrum and couplings. With this information in hand, it became possible to construct

one-loop amplitudes. The first such attempt was made by Kikkawa, Sakita, and Virasoro

[56]. They did not have enough information in hand to do it completely right, but they

pioneered many of the key ideas and pointed the way for their successors [57] - [66].

Those who worked on this problem included a group at Princeton consisting of David

Gross, André Neveu, Joël Scherk, and myself. Another group consisted of Lenny Susskind

and various collaborators. Neveu and Scherk studied the divergence of the one-loop planar

amplitude. They realized that by performing a Jacobi transformation of the theta functions

in the integrand they could isolate the divergent piece and propose a fairly natural countert-

erm [63]. Essentially the same thing was done independently by Susskind and Frye [64]. The

modern interpretation of these results is that viewed in a dual channel there is a closed string

going into the vacuum. The divergence can be attributed to the tachyon in that channel.

Its contribution is the piece they subtracted. This also explains why in a model without

tachyons such divergences would not occur. The cancellation of the milder divergences due

to dilaton tadpoles also became an important consideration in later years.

One of the important things discovered by the Princeton group [59], which was discovered

independently by Frye and Susskind at about the same time [65], was that the nonplanar

loop amplitude gives new and unexpected singularities. In both of these works the dimension

of spacetime was assumed to be four, and the Virasoro subsidiary constraints were not

implemented on the internal states circulating in the loop. As a result the singularities were

found to be unitarity-violating branch points.

Lovelace observed that if one allows the spacetime dimension to be 26 and supposes

that the subsidiary conditions imply that only transverse oscillators contribute, then instead

of branch points the singularities would be poles [67]. As we now know, these are are the

closed-string poles in the nonplanar open-string loop. This calculation showed that unitarity

requires that one choose the critical dimension and the intercept value for which the Virasoro

conditions are satisfied. In those days these states were referred to as Pomeron-states rather

than closed string states, since they necessarily carried vacuum quantum numbers. It was

supposed that the unphysical Regge intercept value of two – implying the existence of a

massless spin two particle as well as a tachyon – would somehow be lowered to the desired

value of one in a more realistic model.

Shapiro carried out the first closed-string loop calculation [69]. Specifically, he computed

the one-loop (torus) amplitude.
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5 Conclusion

The younger generation of theoretical physicists is aware of the wide range of important

contributions that Lenny Susskind has made to our field in recent years. What they may

be less aware of is his important role in the early history of string theory. I hope this

presentation will help to publicize that work.
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