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Abstract

In this article we try to explain and extend a statement due to
Maxim Kontsevich back in 1999, that the Holography Principle in
physics should be related to the (higher dimensional) Deligne Con-
jecture in mathematics. This seems to suggest that the little d-discs
operad (or equivalently the notion of a d-algebra) gives a new way to
understand the mathematical aspects of quantum gravity using holog-

raphy. The strategy is as follows: we would like to learn something
about quantum gravity in (d + 1) dimensions: we use holography to
reduce our original problem to a CFT in d-dimensions. The deep origin
of this dimensional reduction lies on the fact that it is the area and
not the volume which appears in the formula giving the entropy of
black holes as described long ago by Hawking. Then we use d-algebras
(i.e. the little d-discs operad) to study our d-dim CFT. The possible
relation between d-dim CFT and d-algebras comes from the lesson we
have learnt from strings (namely the 2-dim CFT case): the space of
physical states in closed string field theory (ie the BRST cohomology)
has a natural Gerstenhaber algebra structure and this by Cohen’s the-
orem is related to the little 2-discs operad. The proposal then is that
the relation might hold in higher than 2 dimensions. This approach
is algebraic although it would have been much more satisfactory if we
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could generalise Segal’s geometric approach to CFT in higher than 2
dimensions. Hopefully the article is mathematically self-contained.

PACS classification: 11.10.-z; 11.15.-q; 11.30.-Ly

Keywords: Holography, String Theory, M-Theory, Quantum Grav-
ity, Conformal Field Theory, Operads, Motives.

1 Introduction

This work was motivated by an attempt to understand an interesting state-
ment by Maxim Kontsevich [7] back in 1999: that the Holography Principle
originally due to G. ’t Hooft [2] in Physics might be related to the Higher
Dimensional Deligne Conjecture in Mathematics due to Kontsevich. In 2000
Kontsevich and Soibelman [8] proved the original Deligne conjecture. A sec-
ong proof was given by Tamarkin (see [9]). Very recently yet another proof
of the Deligne conjecture appeared which is due to A. Kohlhuber using the
arc operad.

Let us roughly explain both these statements here and elaborate more
on them later: Holography is a statement about quantum gravity ; in simple
terms it says that quantum gravity must be a topological quantum field

theory.

On the other hand the original Deligne conjecture (due to Deligne as the
name suggests, see [3]), it is about the Hochschild complex of associative
algebras; as it is well-known the Hochschild complex is very useful when one
wants to study the theory of deformations of algebras.

We organise this article as follows: in section 2 we try to explain the
necessity for holography in physics starting from black hole puzzles; in sec-
tion 3 we give the necessary mathematical definitions about operads and
Gerstenhaber algebras and we also state the two basic theorems: the first
is due to F. Cohen and relates Gerstenhaber algebras with the little 2-discs
operad and the second is D. Tamarkin’s theorem on the formality of the lit-
tle d-discs operad. In the last section we explain the relation between string
theory and the little 2-discs operad. Then as we shall see, one will be able
to interpret Kontsevich’s statement as a higher dimensional analogue of the
above relation.
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We start our discussion with possibly the most mysterious objects in the
universe: Black Holes.

2 Understanding Black Holes from Strings: the

need for a nonlocality mechanism

We have gained some understanding on two important problems in black
hole physics (abreviated to “BH” in the sequel) by using some recent results
from string theory dualities (for more details one can see [1] which is a nice
review article):

1. In general relativity we have the so-called “no hair” theorem which
refers to black holes. This is the statement that the configuration of a black
hole solution given by the Schwarzchild metric is uniquely determined by its
mass (= total energy) (we assume no more conserved quantities like electric
charge or angular momentum for simplicity). In other words we have only
one configuration (for a given mass) associated to the Schwarzchild solution.

Following the usual definition for the classical entropy of a system

S = kBlnΩ

where Ω is the number of microstates compatible with some given values of
the macroscopic parameters (eg temperature, pressure, volume etc) and kB

is Boltzmann’s constant, we immediately deduce that a BH must have zero
entropy classically since ln1 = 0.

But then we encounter the qualitative argument originally due to Beck-
enstein that if this was indeed the case, then any object, e.g. some gas,
falling into a BH would contradict the second law of thermodynamics. To
avoid that one should associate a nonzero entropy (positive of course) to
any BH. The precise value of the entropy S of a BH was then determined by
the Hawking area formula which, ignoring constants, reads (see for example
[16])

S ∼ A

where A is the area of the event horizon. So if we denote by R the radius
of the event horizon of a BH, its entropy is proportional to R2 and not pro-

portional to R3. The origin of BH entropy was understood to be quantum
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mechanical.

At this point we should make a comment: the Hawking formula is quite
surprising, remarkable and counterintuitive since from what we know from
thermodynamics the entropy of a system depends on its volume but in this
case of black holes a dimensional reduction occures and in fact the entropy
is proportional only to the area of its event horizon.

Nonetheless we know that statistical physics gives a more fundamental
explanation of the laws of thermodynamics and moreover a correct “would-
be” quantum theory of gravity should explain the origin of the quantum
states associated to a BH. So the challenge was to find a statistical explana-
tion for the quantum states associated to a BH which give rise to its entropy
described by the Hawking formula.

Superstring theory can indeed, in some cases, provide an explanation for
the origin of quantum states associated to multicharged extremal black holes.
And anyway string theory is arguably the best known candidate for a quan-
tum theory of gravity. The argument which explains the microscopic origin
of BH entropy starting from string theory was originally due to Strominger,
Vafa, Horowitz and Maldacena and it is based on S-duality. The later is a
statement about an isomorphism between strong and weak coupling regions
of superstring theory; equivalently it interchanges monopoles with charges
in the theory (or equivalently it interchanges topology and dynamics) and
gives us the ability to identify BPS superstring states which will either be
perturbative states if they carry NS charges or D-branes if they carry R
charges in “weak coupling” region with extremal black holes carrying the
analogous type of charge in “strong coupling” region. We restrict our at-
tention to BPS states (these are states whose mass does not receive any
quantum corrections) because for simplicity we assume no backcreation for
the black hole (namely its mass which is equal to its energy remains con-
stant). Briefly then the main idea behind this string theoretic explanation
of the quantum states associated to a black hole is that since superstrings
live in 10-dim and BH in 4-dim, the remaining 6 compactified dimensions
essentially provide a “phase space” which we quantize and thus we obtain
the states of the BH. (This picture is not utterly correct but we think cap-
tures the spirit of the argument and gives a clear picture conceptually). For
a possible noncommutative generalisation of the Beckenstein-Hawking area-
entropy formula for BHs see [12].
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2. The second problem we would like to consider in BH physics is the
so-called “information paradox”. Classically, nothing can escape the event

horizon of a BH (since that would require a velocity which is grater than
the velocity of light; one can use that as a definition of the “event horizon”).
Yet quantum mechanically, since a BH has a positive entropy as we just
argued above, assuming a thermodynamical behaviour, it should also have a
corresponding temperature from the well-known relation in thermodynamics

(dM =)dE = TdS.

This is the Hawking temperature

TH =
~κ

2kBπ

where κ is surface gravity (the acceleration felt by a static object at the
horizon as measured from the asymptotic region), and hence BH’s should
also radiate.

This is the Hawking radiation. Then the problem with radiation carry-
ing out the information of formation, assuming no quantum xeroxing, is to
maintain unitarity of the process as ordinary quantum mechanics requires.
More precisely, the way one computes Hawking radiation is by assuming a
codim-1 foliation of spacetime where the normal direction is time and this
radiation process appears to be nonunitary. (For a more general discussion
about foliations and the relation between physical and topological entropy
one can see [11] and [12]).

Thus trying to avoid a classical contradiction with the 2nd law of ther-
modynamics we assumed that BH’s have positive entropy (whose origin is
quantum mechanical); yet this almost immediately created another contra-
diction with quantum mechanics: loss of unitarity in BH radiation. Unitarity
is absolutely crucial in any quantum theory since it reflects the conservation
of probabilities. So it seems that we didn’t actually achieve very much: we
simply “pushed” the contradiction from the classical to the quantum realm.

It appears that the most economical (i.e. requiring the fewest changes to
things we already know in physics) way out is to assume that there is some
physical principle which does not allow this to happen. We enforce unitarity
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throughout by imposing a non-locality mechanism. One such mechanism is
the holography principle due to G. ’t Hooft (see [2]). The original statement
is the following:

“A quantum theory of gravity on a (d+1)-manifold with boundary should
be equivalent to a conformal field theory (CFT for short) on the boundary
(which is a d-manifold) and this conformal field theory on the boundary must
have one degree of freedom per Planck area”.

Let us elaborate more on this: since for BH we seem to lose any infor-
mation passing the event horizon, it is reasonable to assume that in order
to avoid this problem (along with its quantum mechanical incarnation of
nonunitary radiation), everything that happens inside the black hole should
be described from data on its event horizon. It is clear we think that the
motivation for this dimensional reduction of quantum gravity in holography
came from the formula for the black hole entropy: the entropy of a black
hole is proportional to the area and not the volume of the event horizon.

Another very useful way of thinking about the holography principle is
that it simply says that for a given 3-volume V in space the state of maximal
entropy in nature is given by the largest BH that fits inside V , (silently we
are making use of the Hawking formula which says that the entropy of a BH
is proportional to the area of its event horizon).

This principle has a deep consequence on perturbative quantum field the-
ory: BH’s provide a natural cut-off limit since the above statement says
that for fermions for example one cannot have a huge amount of energy
concentrated in a tiny region of space because that would collapse into a
BH.

There is also a superstring theoretic version of the holography principle
using string theory language, the so-called “Maldacena conjecture” which
states that string theory on the smooth manifold AdS5 × S5 is dual to
N = 4 SYM SU(N) gauge theory on the boundary of AdS5. In this talk we
shall primarily build our understanding of Kontsevich’s statement based on
this string theoretic version of holography. However let us for the moment
go back to the original ’t Hooft version of holography and ask:

(Key Question:) What is a D = d CFT?
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In order to answer the above question and eventually understand Kont-
sevich’s statement, we should start by trying to understand the D = 2 case
first. We know from G. Segal what a D = 2 CFT is, so it seems that some-
how we have to generalise his work.

A good motivation to study D = 2 CFT comes from string theory itself,
one can say in fact that D = 2 CFT is intimately related to string theory:
strings are 1-dim objects which in time sweep out 2-manifolds called world-
sheets; this is the higher dimensional analogue of the paths (1-dim geometric
objects) swept out in time by point particles. However now we are talking
about M-Theory in physics which generalises string theory and M-Theory
contains the M2 and M5 branes; these are 2 and 5-dim objects respectively
whose worldsheets are 3 and 6-dim manifolds. So apart from holography,
there is additional motivation coming from M-Theory to understand higher
dimensional CFT’s: a D = d CFT is the theory describing (d− 1)-branes.

Now we would like to describe briefly what string theory is classically :
basically it is a σ-model, namely it describes harmonic maps φ : Σg → X10

where Σg is a Riemann surface of genus g representing the worldsheets of
strings and X is a 26-dim Riemannian manifold with a B-field. The di-
mensionality of X is fixed from consistency arguments (compatibility with
special relativity and cancellation of the conformal anomaly). The B-field
is a real valued 2-form which is used as a potential to gauge the worldsheets
of the strings in order to get our Dirac phase factors; in fact one can think
of it as the Poincare Dual (a 2-form) of the worldsheet which is a 2-manifold
(it is the analogue of the gauge potentials in Yang-Mills theory, connection
1-forms, although now it has to be a 2-form instead of a 1-form since we
are talking about strings whose worlsheets are 2-manifolds whereas for point
particles we needed 1-forms because their “worlsheets” were 1-dim objects).
This picture needs to include fermions as well in order to be complete but
we shall not elaborate more on this. The introduction of fermions along
with supersymmetry reduces the dimensionality of X from 26 down to 10.

The quantum theory of strings is essentially a D = 2 CFT (plus a little
bit more structure as we shall see later). In order to describe D = 2 CFT
one may use the original geometric approach due to G. Segal. This approach
however does not lead to the statement of Kontsevich in a straightforward
way. Moreover it is not easy to see how it can be generalised to higher

7



dimensions which is what we are after. Instead we shall adopt an algebraic
approach using the language of operads; in fact we shall see the little 2-discs
operad C2(n) arising naturally in our discussion. This is the crucial step
in order to understand Kontsevich’s statement which is the higher dimen-
sional version of this beautiful fact. The appearence of the operad C2(n) in
string theory is not at all obvious and at least for us quite surprising. The
link between string theory and the little 2-discs operad C2(n) comes from
a deep theorem due to Fred Cohen as we shall try to exhibit shortly. For
simplicity we shall restrict our discussion to closed strings. But we shall do
that in the last section because we need some mathematical definitions first.
The final remark here is that we would still like to generalise Segal’s work
and get a geometric definition of D = d CFT. Currently this seems out of
reach since there are two reasons which make Segal’s approach particularly
nice for the D = 2 case (but at the same time act as barriers when trying
to generalise into higher dimensions): the conformal group in this case is
infinite dimensional and hence contains a lot more information whereas in
higher dimensions the conformal group is only finite dimensional. The sec-
ond reason is that the classification of (compact say) 2-manifolds is simple:
compact 2-manifolds are classified by their genus (ie the number of holes)
whereas for D = 3 it is not known if 3-manifolds can be classified and in
dimensions D ≥ 4 we can only classify simply connected manifolds (in per-
turbative quantum field theory that means we can only talk about tree level).

3 A Mathematical Interlude

In this section now we shall give formal definitions.

Definition 1:
A Gerstenhaber algebra (or aG-algebra) is a graded vector space V = ⊕i∈ZVi

with a dot product x · y defining the structure of a graded commutative

associative algebra along with a bracket operation [x, y] of degree -1 defining
the structure of a graded Lie algebra such that the bracket is a derivation
with respect to the dot product, i.e. it satisfies the Leibniz rule

[x, y · z] = [x, y] · z + (−1)(deg(x)−1)deg(y)y · [x, z]

Examples:
i. Let A be an associative algebra and let C∗(A,A) be its Hochschild com-
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plex where Ci(A,A) := Hom(A⊗i, A) and the differential d is defined as
(x ∈ Cn):

(dx)(a1⊗...⊗an+1) := a1x(a2⊗...⊗an+1)+

n∑
i=1

x(a1⊗...⊗aiai+1⊗...⊗an+1)+...

+(−1)n+1x(a1 ⊗ ...⊗ an)an+1

On the Hochschild complex we can define the usual cup product

∪ : Ck ⊗ C l → Ck+l

as follows (x ∈ Ck, y ∈ C l and ai ∈ A):

(x ∪ y)(a1 ⊗ ...⊗ ak+l) := (−1)klx(a1 ⊗ ...⊗ ak)y(ak+1 ⊗ ...⊗ ak+l)

Moreover we can also define the Gerstenhaber bracket [, ] : Ck⊗C l → Ck+l−1

as:
[x, y] := x ◦ y − (−1)(k−1)(l−1)y ◦ x

where

(x◦y)(a1⊗...⊗ak+l−1) :=
k−1∑
i=1

(−1)i(l−1)x(a1⊗...⊗ai⊗y(ai+1⊗...⊗ai+l)⊗...⊗ak+l−1)

The G-bracket gives after a shift of the Z-grading by -1 the structure of a
(differentiable graded lie algebra) DGLA on the Hochschild complex. The
cup product is not graded commutative (it is only associative) but the in-
duced operation on cohomology is graded commutative. Moreover the G-
bracket induces an operation on cohomology which satisfies the Leibniz rule
with respect to the cup product, hence the Hochschild cohomology of any
associative algebra is in fact a G-algebra.

We shall briefly mention three more examples of G-algebras:

ii. Polyvector fields on smooth manifolds with wedge product and Schouten-

Nijenhuis bracket.

iii. Exterior algebra of a Lie algebra with wedge product and extension

of the Lie bracket.
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iv. (Rational) homology of double loop space with Pontrjagin product

and Samelson bracket.

Definition 2:
An operad P (of vector spaces) consists of the following data:
a. a collection of vector spaces P (n), n ≥ 0,
b. an action of the symmetric group Sn on P (n) for every n,
c. an identity element idP ∈ P (1),
d. compositions m(n1,...,nk)

P (k) ⊗ (P (n1) ⊗ ...⊗ P (nk)) → P (n1 + ...+ nk)

for every k ≥ 0 and n1, ..., nk ≥ 0. These compositions have to be associative,
equivariant with respect to the symmetric group actions and the identity
element idP has to satisfy the following naturality property with respect to
the composition:

m(n)(idP , p) = p

and
m(n,1,...,1)(p, idP , ..., idP ) = p

for all p ∈ P (n) (one can have a look at [4] for more details).

Example: The “endomorphism operad” of a vector space V is given by
P (n) := Hom(V ⊗n, V ) where the action of the symmetric group and the
identity element are the obvious ones and the compositions are defined by
the substitutions

(m(n1,...,nk)(φ⊗ (ψ1 ⊗ ...⊗ ψk)))(v1 ⊗ ...⊗ vn1+...+nk
)

:= φ(ψ1(v1 ⊗ ...⊗ vn1
) ⊗ ...⊗ ψk(vn1+...+nk−1+1 ⊗ ...

⊗vn1+...+nk
))

where φ ∈ P (k) := Hom(V ⊗k, V ), ψi ∈ P (ni) := Hom(V ⊗ni , V ) and
i = 1, 2, ..., k.

Definition 3:
An algebra over an operad P (of vector spaces), or a P-algebra, (or equiv-

alently a representation of the operad P ), consists of a vector space A and a
collection of multilinear maps fn : P (n) ⊗A⊗n → A for all n ≥ 0 satisfying
the following axioms:
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a. for any n ≥ 0 the map fn is Sn-equivariant,
b. for any a ∈ A we have f1(idP ⊗ a) = a,
c. all compositions in P map to compositions of multilinear operations in A.

In other words the structure of an algebra over P on a vector space A is
given by a homomorphism from P to the endomorphism operad of A.
One can also define modules over algebras over operads.

One can construct operads denoted Assoc(n), Lie(n), Poisson(n), G(n),
A∞(n), L∞(n), G∞(n) such that algebras over these operads are associative
algebras, Lie algebras, Poisson algebras, Gerstenhaber algebras and their
homotopic versions respectively but there is no operad for Hopf algebras
(for more details see [4]).

In the definition of operads we can replace our vector space V by a com-
pact topological space X and hence define operads over topological spaces
replacing tensor product with Cartesian product.

The analogue of the endomorphism operad will in this case be P (n) :=
{ContinuousMaps : Xn → X}. Then one can define algebras over topolog-
ical operads accordingly.

More generally one can define operads and algebras over operads over
objects of any symmetric monoidal category C, namely a category endowed
with the functor ⊗ : C × C → C, the identity element 1C ∈ Obj(C) and the
appropriate coherence isomorphisms for associativity and commutativity of
⊗-product.

Operads themselves can be seen as algebras over the coloured operad.
(see [8] p.12 Remark 1.)

In particular we would like to consider operads in the symmetric monoidal
category Complexeswhose objects are Z-graded complexes of abelian groups
and arrows morphisms of complexes. These are called differential graded
operads or dg-operads for short. So each component P (n) of an operad of
complexes will be a complex, namely a vector space decomposed into a direct
sum P (n) = ⊕i∈ZP (n)i and endowed with a differential d : P (n)i → P (n)i+1

of degree +1 such that d2 = 0. Then every dg-operad P has a corresponding
homology operad denoted H∗(P ).

11



Key idea:
There is a natural way to construct an operad of complexes from a topo-

logical operad by using essentially the singular chain complex of topological
spaces.

Let d ≥ 1 be an integer. Denote by Gd the (d+1)-dimensional Lie group
of affine transformations acting on Rd via u 7→ λu + v where λ > 0 is a
real number and v ∈ Rd is a vector. This group acts simply transitively on
the space of closed discs in Rd and the disc with centre v and radius λ is
obtained from the standard disc

D0 := {(x1, ..., xd) ∈ Rd|x2
1 + ...+ x2

d ≤ 1}

by a transformation from Gd with parameters (v, λ).

Definition 4:
The little d-discs operad Cd(n) is a topological operad with the following

structure:
a. Cd(0) := ∅,
b. Cd(1) := ∗,
c. for n ≥ 2 the space Cd(n) is the space of configurations of n disjoint
d-discs (Di)1≤i≤n inside the standard d-disc D0.

The composition

Cd(k) × Cd(n1) × ...×Cd(nk) → Cd(n1 + ...+ nk)

is obtained by applying elements from Gd associated with discs (Di)1≤i≤n in
the configuration in Cd(k) to configurations in all Cd(ni), i = 1, 2, ..., k and
putting the resulting configurations together. The action of the symmetric
group Sn on Cd(n) is given by renumerations of indices of discs (Di)1≤i≤n.

Remark: The little d-discs operad Cd(n) was introduced by Peter May
(see [13]) and Boardmann-Vogt (see [14]), in the late 70’s in order to describe
homotopy types of d-fold loop spaces, namely spaces of continuous maps

Maps(Sd
+,X+)

where “+” denotes base point, X is a topological space, Sd is the d-dim
sphere. The little d-discs operad is the most important operad in homotopy
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theory.

The key result relating the little d-discs operad Cd(n) with d-fold loop
spaces is that (with field coefficients) chains of d-fold loop spaces become
naturally d-algebras i.e. algebras over the operad ChainsCd(n). (In fact
the above statement is true even without taking “chains” in both sides).

We have the following well-known
Fact: The space Cd(n) is homotopy equivalent to the configuration space of
n pairwise distinct points in Rd:

F(n,Rd) := (Rd)n −Diag = {(v1, ..., vn) ∈ (Rd)n

|vi 6= vj for i 6= j}

Definition 5:
Let ˜Cd(n) := F(n,Rd)/Gd which is also the Fulton-MacPherson operad

FMd(n).

For n = 2, FMd(2) is homotopy equivalent to the (d − 1)-sphere Sd−1.
For all n ≥ 3, FMd(n) is a manifold with corners which can be identified
explicitly.

Definition 6:
For d ≥ 0, a d-algebra is an algebra over the operad Chains(Cd) in the

category of complexes.

One then has:

Theorem 1. (F. Cohen, see [6]).
There is a natural homotopy equivalence

G(n) ≃ H∗[ChainsC2(n)]

Recall the fact that the Hochschild cohomology of any associative alge-
bra has a natural G-algebra structure. The original Deligne conjecture
(see [3]), was that the Hochschild complex of an associative algebra (or
more generally the Hochschild complex of an A∞-algebra as mentioned in
[8]) itself carries a natural 2-algebra structure, i.e. it has an action of the

13



operad ChainsC2(n). Its higher dimensional version due to Kontsevich says:

“For any d− algebra there is a natural action of a universal (in an ap-
propriate sense defined up to homotopy) (d+ 1) − algebra”.

Useful facts:
Assoc(n) ≃ H∗[ChainsC1(n)]

Lie(n) ≃ Hn−1[ChainsC2(n)]

Since in general homotopic versions of various algebras appear when the
product is originally defined on the cohomology and one wants to “lift”
the structure to the cochain level, one has the following general relations
between algebras and their “homotopic versions”:

Assoc(n) ≃ H∗[A∞(n)]

Lie(n) ≃ H∗[L∞(n)]

G(n) ≃ H∗[G∞(n)]

Aside: The above discussion was about the little discs operad and based
loop spaces. One also has a variation of the above, the so called framed lit-
tle d-discs operad denoted Cf

d (n) which is related to free loop spaces. The

framed little 2-discs operad Cf
2 (n) is homotopic to the cactus operad and

the (rational) homology of the framed little 2-discs operad is homotopic to
the BV-operad. The main result is then that the (rational) homology of the
free loop space H∗(LX) where X is a compact oriented manifold (after an
apropriate shift) has a BV-algebra structure, namely it is an algebra over
the Batalin-Vilkovisky operad. At this point we would like to remind the
reader of the fact that BV-algebras appear in the Lagrangian formalism of
field theories whereas Gerstenhaber algebras appear in BRST cohomology
which is Hamiltoniam formalism of a field theory. For more details on the
cactus operad, free loops and BV algebras we refer to [10].

Then the second important result is the following

Theorem 2: (D. Tamarkin 1998, see [9]).
In characteristic zero, the operad Chains(Cd) ⊗ R is formal, i.e. it is

homotopy equivalent to its corresponding homology operad.
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4 The appearence of the operad C2(n) in string

theory

After giving all these mathematical definitions we now return back to physics.
G. Segal (see [15]), defined a D = 2 CFT as roughly a topological vec-
tor space HS1 and to each cobordism (which physically represents a Feyn-
man diagram for strings which are 1-dim objects with 2-dim worldsheets)
Σg : S1

 S1 we associate an operator UΣg where Σg is a Riemann surface
of genus g with a conformal class on it. We can replace the boundary of Σg

with more copies of S1 representing more than one incoming and outgoing
closed strings. The case g = 0 corresponds to tree-level in physics.

The space of maps UΣg is parametrised byA := Conf(Σg)/Diff(Σg, ∂Σg)
and A acts on HS1 where the denominator denotes diffeomorphisms which
become the identity on the boundary. A is only a semigroup under con-
catenation but it has a Lie algebra V ect(S1)C and its fundamental group is
Z. We have a composition law on HS1 for every conformal structure on Σg

which is associative up to the action of A.

More concretely we use Lagrangian formalism and write

UΣg =

∫
φ:Σg→R

e−S(φ)Dφ

where

S(φ) :=
1

2

∫
Σg

dφ ∧ ∗dφ

If we change the conformal class on Σg by f , then UΣg is multiplied

by the factor ecL(f) where c is the central charge and L(f) is given by the
Liouville formula

L(f) =

∫
Σg

[
1

2
df ∧ ∗df + fKG+

1

2
(e2f − 1)ωG]

where G is the metric with Gauss curvature K and volume form ωG.
Moreover HS1 carries a projective representation of the cobordism category,
thus each cobordism Σg has associated to it a complex line bundle (in its
most general form these are tensor products of determinant line bundles
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which generalise the usual basis Ln = eihθ d
dθ

of V ect(S1)C).

This geometric picture of G. Segal is very nice but when trying to gen-
eralise it in higher dimensions one faces problems.

Now we shall modify Segal’s definition using the more convenient lan-
guage of operads, we follow [4]. We shall swich to Hamiltonian formalism
and point out that our formalism below is less satisfactory than G. Segal’s
because it works only for genus 0 Riemannian surfaces but it is easier to
generalise in higher dimensions. We shal explain in detail the structures
appearing in the D = 2 case and then we shall try to see how much can be
immediately generalised to higher dimensions.

Before doing that we would like to make a comment: there are two ways
to construct operads related to Riemann surfaces: the first one is by using
moduli spaces of punctured Riemann surfaces and compactify them, such
operads are roughly denoted M(n); the second is by decorating the puctures
with local coordinates. One can sew two Riemann surfaces together unam-
biguously (up to modular equivalence) by using suitable local coordinates.

Let R(n) be the moduli space of nondegenerate Riemann spheres Σ with
n labelled punctures and non-overlapping holomorphic discs at each punc-
ture (holomorphic embeddings of the standard disc |z| < 1 to Σ centered
at the puncture). The spaces R(n), n ∈ N∗ form an operad under sewing
Riemann spheres at punctures (cutting out the discs |z| ≤ r and |w| ≤ r for
some r = 1 − ǫ at sewn punctures and identifying the annuli r < |z| < 1/r
and r < |w| < 1/r via w = 1/z). The symmetric group interchanges punc-
tures along with the holomorphic discs.

Consider the complexification V of the Virasoro algebra of complex val-
ued vector fields on the circle, generated by elements Lm = zm+1∂/∂z,
m ∈ Z, with the commutators [Lm, Ln] = (n −m)Lm+n. Then one has:

Definition 7:
A D = 2 conformal field theory at tree level consists of the following data:
1. A topological vector space H called state space.
2. An action T : V ⊗H → H of the Virasoro algebra V on H.
3. A vector |Σ > ∈ Hom(H⊗n,H) for each Σ ∈ R(n) depending smoothly
on Σ. These data must satisfy the following relations:
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4. T (v)|Σ >= |δ(v)Σ >, where v = (v1, ..., vn) ∈ V and δ is the natural
action of V n on R(n) by infinitesimal reparametrisations at punctures. In
particular T (v)|Σ >= 0 whenever v can be extended to a holomorphic vec-
tor field on Σ outside of the discs.
5. The correspondence Σ 7→ |Σ > defines the structure of an algebra over
the operad R(n) on the space of states H.

So briefly, the slogan is that a D = 2 CFT is an algebra over the operad
R(n).

Definition 8:
A string background (at the tree level) is a D = 2 CFT based on the vector
space H with the following additional data:
1. A Z-grading H = ⊕i∈ZHi on the state space.
2. An action of the Clifford algebra C(V ⊕V ∗) which is denoted b : V ⊗H →
H and c : V ∗ ⊗H → H for generators of the Clifford algebra, the degree of
b is -1 and the degree of c is +1.
3. A differential Q : H → H, Q2 = 0, of degree +1 called BRST operator
satisfying Qb+ bQ = T .

The differential graded complex (H,Q) is called the BRST complex and
the degree is called the ghost number.

One of the nicest implications of a string background is the construc-
tion of a morphism of complexes ωn : Hom(H,H⊗n) → Ω∗(R(n)), from the
complex of linear mappings between tensor powers of the BRST complex H
to the de Rham complex of the space R(n).

Taking the cohomology of the BRST complex gives the space of physi-
cal states. In physics this amounts to mod out gauge invariance (this is a
cohomological approach to symplectic reduction in the case of a symplectic
manifold carrying a Lie group action which is more convenient in infinite
dimensions, i.e. field theory).

Then a closed string field theory is a string background together with
a morphism of operads ψ : M(n) → R(n). This however does not read-
ily generalise to higher dimensions since both operads M(n) and R(n) are
related to moduli spaces of Riemann surfaces. The aspect of closed string
field theory which will be useful for higher dimensional generalisations is the
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following:

Key fact in physics: The space of physical states in closed string field
theory (namely BRST cohomology) has the structure of a Gerstenhaber al-
gebra.

Let us explain this a little bit more: from the work of G. Segal we knew
that in general D = 2 topological quantum field theories (and in particular
closed string field theory) are Z-graded commutative associative Frobenious
algebras, hence they are graded associative algebras. Yet it was observed by
Witten and Zwiebach that closed string field theory also carries the struc-
ture of a Differential Graded Lie Algebra relative to another grading which
is “the associative grading - 1”. In fact these 2 structures can be combined
together to give a G-algebra structure.

Now we make use of Cohen’s theorem saying that G-algebras correspond
exactly to the homology of the chains of the little 2-discs operad and of
Tamarkin’s result to deduce that the space of physical states of closed string
field theory (which is a special case of D = 2 CFT) has a natural (defined
up to homotopy) 2-algebra structure.

So this is the important relation between strings and the operad C2(n)
that plays the fundamental role to understand Kontsevich’s statement which
is then simply the higher dimensional version of the above fact which orig-
inally holds for strings (D = 2 case).

5 Discussion

Let us start with some

Remarks:

1. The original Deligne conjecture, namely the case d = 1, was proved
by Kontsevich and Soibelman in 2000 using ideas and techniques from Dan
Quillen’s homotopical algebra (see [5]), which roughly is a non-linear gener-
alisation of homological algebra.
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2. As Kontsevich explains in his article, from Deligne’s conjecture and
from Tamarkin’s theorem (namely the formality of the operad ChainsCd(n)),
follows almost immediately his earlier result on deformation quantization of
symplectic (Poisson) manifolds for the case where the associative algebra of
interest is just the polynomial algebra in n variables

A := R[x1, ..., xn].

Let us recall that Kontsevich’s result was that for the associative algebra A
above one has that its Hochschild complex C∗(A,A) is homotopic as a Lie
algebra to its Hochschild cohomology H∗(A,A). An equivalent statement is
that for the Euclidean space X = Rn, the Hochschild complex of the asso-
ciative algebra of functions on X equipped with the Gerstenhaber bracket
is homotopic as DGLA to the Z-graded superalgebra of polyvector fields on
X equipped with the Schouten-Nijenhuis bracket.

3. The structure of an A∞-algebra has appeared recently in open strings.
Moreover let us mention that one of the main examples of homotopy asso-
ciative algebras (or A∞-algebras) is singular chains of based loops.

Perhaps here we should mention another important result: the BRST
complex of closed string field theory has also the structure of a G∞-algebra
(see [4]). That makes someone to speculate on a relation between the op-
erads G∞(n) and ChainsC2(n). For example it is unknown if double loop
spaces (which are the primary examples of 2-algebras) also carry a homo-
topy Gerstenhaber algebra structure.

Now let us try to answer the following question: Why should physics care
about the Deligne conjecture? We think for 2 reasons:

i. The fact that the Hochschild complex of an associative algebra is a
2-algebra (original conjecture) is related to the action of the Grothendieck-
Teichmuller (G-T) group. The fact that the Hochschild complex plays the
fundamental role in the theory of deformations of associative algebras ex-
plains why its study is important in quantum field theory if one adopts the
deformation quantization approach.

In other words the goal is to understand the action of the G-T group
on the space of all deformation quantizations on the associative algebra of
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functions (in fact one needs a little more structure, i.e. a Poisson algebra
structure) on a given (spacetime or phase space respectively) manifold and
this is believed to be related to gauge symmetry. Yet all these are far from
being clear at the moment. Let us briefly recall that the Grothendieck-
Teichmuller group can be defined as the automorphism group of the tower
of the pro-nilpotent completions of the pure braid groups; the pure braid
group of n strings is the fundamental group of the configuration space of n
points in the plane F(n,R2).

ii. Let us forget deformation quantization now and let’s focus on holog-
raphy: If one wants to understand (d+1)-dim quantum gravity, one approach
is to follow holography. This means that equivalently one should understand
D = d CFT. From the string theory example we have learnt that D = 2
CFT is related to 2-algebras. It is then reasonable to expect that D = d
CFT should be related to d-algebras. So the hope is that this higher dimen-
sional Deligne conjecture will tell us something about the “BRST complex”
whose cohomology would describe the D = d CFT. So the D = d CFT is
a d-algebra and following the Hamiltonian formalism the space of physical
states will be expresseed as a cohomology; then the Deligne conjecture will
contain information about the cochain level of the cohomology. This infor-
mation at the cochain level has a nice geometric interpretation as follows (if
one adopts the Lagrangian formalism of the theory):

Holography tells us that (d + 1)-quantum gravity is reduced to some
(conformal) field theory on the boundary. Obviously there are many (d+1)-
quantum gravity theories which will have the same boundary theory, sim-
ply because there are many (d + 1)-manifolds with the same d-manifold as
boundary. Consider all (d + 1)-bulk theories then with the same bound-
ary d-theory as some sort of an extra “gauge freedom”, ie that they de-
fine a “fibre” over the fixed boundary d-theory. Equivalently, we have a
whole cobordismm class of a boundary theory consisting of bulk theories
which, because of holography, are physically the same theory. Assuming
that the boundary theory is described by a d-algebra, we know that the
Grothendieck-Teichmuller group acts in an analogous way that the gauge
group acts in ordinary gauge theories (the fibres are essentially the gauge
orbits). The higher dimensional Deligne conjecture is another way to express
this action of the Grothendieck-Teichmuller group which takes care of this
extra gauge freedom arising from the fact that many (d + 1)-bulk theories
have the same resulting boundary d-theory. This is roughly the statement
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that the Hochschild complex of a d-algerba has a natural (appropriately de-
fined up to homotopy) (d+ 1)-algebra structure.

Yet this is not still the end of the story: the action of the G-T group is
closely related to the action of the motivic group: since the little d-discs op-
erad is formal, we can form a torsor ; in general given any pair of equivalent
objects A and B in a category, we can form the space of all isomorphisms
between the objects A and B denoted Iso(A,B). The groups of automor-
phisms of both A and B denoted Aut(A) and Aut(B) respectively act nat-
urally on Iso(A,B) and their actions commute. A torsor is a structure that
encodes this information. If we think of the formality of the operad Cd(n) as
defining a pair of equivalent objects in the category of Z-graded complexes,
we can indeed define a torsor and then the action of the G-T group will
play the role of say Aut(A) whereas the motivic group wil play the role of
Aut(B). Further evidence that our proposal to use d-algebras to describe
D = d CFT is not at all unreasonable comes from the fact that Tamarkin in
order to prove his formality theorem he made use of the Drinfeld-Kazhdan
associator whose origin is the Knizhnik-Zamolodchikov equations, namely it
comes directly from D = 2 CFT! (For the precise definitions of the motivic
group and the Drinfeld-Kazhdan associator we refer to [7]).

Going back to physics a pessimist might argue that the holography prin-
ciple does not really “resolve” the BH paradoxe; it simply pushes it even
further to the realm of quantum gravity which is terra incognita for today’s
physics. We however would like to adopt a more positive point of view: by
accepting the validity of holography we can actually use it in order to learn
something about quantum gravity and at the same time we try to under-
stand its wider implications for physics. Finally we would like to mention
that there have been already some positive tests for the validity of holog-
raphy mainly in the framework of some calculations related to its string
theoretic version (Maldacena conjecture).

Operads (and the little discs operad in particular) currently should be
seen more as an algebraic framework to conceptually understand higher di-
mensional CFT’s. As a computational device in D = 2 CFT people use
Topologiacl Vertex Operator Algebras (TVOA) as a tool to construct topo-
logical CFT but again their higher dimensional generalisation is not obvious.

The final comment we would like to make is the following: the structure
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of a Gerstenhaber algebra which was observed in D = 2 CFT ment that the
dot product (which gives the OPE) and the Lie bracket (which gives the
conformal symmetry) are combined in a “nice way” in the space of physi-
cal states (ie that the bracket is a derivation with respect to the product).
Our proposal that higher dimensional CFT’s are described by d-algebras
means that roughly we still have this nice combination in higher dimensions
between the dot product and the Lie bracket. However in general a Ger-
stenhaber algebra “does not care” whether the Lie bracket comes specifically
from conformal symmetry. Thus our proposal looks more like an algebraic
framework to understand higher dimensional CFT and holography for the
moment; however if we want to make its relation with physics—with confor-
mal symmetry in particular—more concrete and if we want to properly and
fully justify the proposal that a d-algebra should describe D = d CFT, we
would have to add more specific information about conformal symmetry (Lie
bracket) and dot product (OPE) in higher dimensions. So it seems that the
problem is not whether our proposal is valid but rather that it may be far
too general to be of any practical use. In any case it helps conceptually we
believe. For example one desired property would be to consider representa-
tions of the operad Cd(n) on the endomorphism operad of a Clifford algebra

(and not just a vector space) in order to make the theory chiral. However
for the moment we do not know how to incorporate the Cardy condition in
our formalism.
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