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The gauge symmetry inherent in the concept of manifold has been discussed. Within the scope of
this symmetry the linear connection or displacement field can be considered as a natural gauge field
on the manifold. The gauge invariant equations for the displacement field have been derived. It has
been shown that the energy-momentum tensor of this field conserves and hence the displacement field
can be treated as one that transports energy and gravitates. To show the existence of the solutions
of the field equations we have derived the general form of the displacement field in Minkowski space-
time which is invariant under rotation and space and time inversion. With this anzats we found
spherically-symmetric solutions of the equations in question.
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1. INTRODUCTION

According to the modern standpoint, space-time theory is the one that possesses a mathematical representation
whose elements are a smooth four-dimensional manifold M and geometric objects defined on this manifold. The
geometry on the manifold is defined by metric and linear connection. In general, the linear connection is in no way
related to the metric since these concepts define on the manifold M different geometric operations. The metric on the
manifold defines the length of a curve while the linear connection defines parallel transport (displacement) of vectors
along arbitrary path on M. It should be emphasized that soon after the creation of General Relativity A. Eddington
put forward the idea to derive all theory on the basis of parallel displacement only [1]. Here the metric and the linear
connection as a totally independent geometric objects by structure will be considered as fundamental fields. It is our
principal assumption. According to the fundamental idea of Einstein, metric corresponds to gravitational field while
all other fields, being the source of gravitational one, carry energy. Hence and from the above made assumption it
follows that, like the electromagnetic field, the field of parallel displacement carries energy and appears to be the
source of gravitational field, possessing geometric meaning. Thus, our aim is to derive natural equations for the field
of parallel displacement and obtain the relevant conserving energy-momentum tensor, i.e., to show that within the
frame-work of the canonical Einstein theory of gravity the linear connection can be considered on the same level with
electromagnetic one.

2. SYMMETRY GROUP

There are two symmetry groups closely connected with concept of manifold. One of them is a group of transfor-
mations of the manifold M itself, the manifold mapping group, and the other is a group of transformations acting
in tangent vector spaces Tp(M). The latter concept is clearly expounded in the treatise by Misner, Thorne, Wheeler
[2]. The well-known manifold mapping group [3] is often called the group of general transformations of coordinates or
the group of diffeomorphisms. The physical meaning of the manifold mapping group is that it is a group of symmetry
of gravitational interactions in Einstein theory of gravity. A systematic and thorough consideration of the questions
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connected with space-time symmetry of General Relativity may be found in Ref. [3]. We emphasize only that the
diffeomorphism group is evidently the widest group of space-time symmetry.

Let the given vector field V i undergoes infinitesimal parallel displacement, then

dV i + Γ i
jkV kdxj = 0, (2.1)

where Γ i
jk are the components of linear connection. Vector fields form linear vector space L. The isomorphic mappings

of the vector space L onto itself is defined by the tensor fields of type (1, 1). Let Si
j be the components of a tensor

field S of type (1, 1) that satisfies the condition det(Si
j) 6= 0 only. In this case, there exists a tensor field S−1 with

components T i
j such that Si

k T k
j = δi

j . Now a tensor field S can be regarded as an isomorphism of L onto itself

V̄ i(x) = Si
j(x)V j(x). (2.2)

Since there is no objective reasons to distinguish vector fields V̄ i(x) and V j(x), we want to define the law of parallel
displacement for the vector V̄ i induced by (2.1) and (2.2). It can be shown that if the vector V i undergoes parallel
displacement (2.1) then V̄ i, defined by (2.2), undergoes parallel displacement

dV̄ i + Γ̄ i
jkV̄ kdxj = 0, (2.3)

where

Γ̄ i
jk = Si

lΓ
l

jmT m
k + Si

l ∂jT
l
k, (2.4)

and T i
j are components of the field S−1 inverse to S. In what follows we will consider the transformation group

(2.2) as the natural group of gauge transformation inherent in the manifold M. The transformation (2.4) give the
realization of gauge group on the fields of parallel displacement and in that sense Γ i

jk are analogical to the potentials

of electromagnetic fields. Now our aim is to find equation for Γ that is invariant under (2.4). From (2.4) it follows
that if Γ i

jk are the components of linear connection than Γ̄ i
jk are too the components of linear connection, that is,

under coordinate transformation Γ̄ transforms in accordance with the same well-known laws as does it Γ itself [3].

3. GAUGE-INVARIANT EQUATIONS

As it is noted above, the diffeomorphism group is responsible for gravitational interactions, and thus, the gauge
group under consideration is a symmetry group of new interactions. To simplify computations and to write equations
in a symmetrical and manifestly gauge - invariant form, we introduce the notion of the gauge derivative. We will say
that a tensor field T of the type (m, n) is of the gauge type (p, q) if under the transformations of the gauge group
there is the correspondence

T ⇒ T̄ = S · · ·S
︸ ︷︷ ︸

p

TS−1 · · ·S−1
︸ ︷︷ ︸

q

,

where

0 ≤ p≤ m and 0 ≤ q≤ n.

The Einstein potentials gij being a tensor field of the type (0, 2) is to be assigned the gauge type (0, 0) because the
Einstein Equations are not invariant with respect to the transformations ḡij = gklT

k
i T l

j . Let the vector field V i has a
gauge type (1, 0). We define gauge derivative as

DjV
k = ∂jV

k + Γ k
jl V

l

Now, if the equality

D̄j V̄
k = ∂j V̄

k + Γ̄ k
jl V̄

l

holds, then from (2.2) and (2.4) follows that

D̄iV̄
j = Sj

kDiV
k.
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Since

DiDjV
k = ∂i(DjV

k) + Γ k
il

(
DjV

l
)
,

then DiDjV
k is not a tensor field, nevertheless, the commutator of gauge derivatives are tensor fields, as

[Di, Dj ]V
k = B k

ijl V
l, (3.1)

where

B k
ijl = ∂iΓ

k
jl − ∂jΓ

k
il + Γ k

imΓ m
jl − Γ k

jmΓ m
il , (3.2)

is the Riemann tensor of curvature of connection Γ. Note that B k
ijl is a tensor field of type (1, 3) and gauge type

(1, 1). In what follows, for brevity, we use matrix notation, assuming that

Γi =
(
Γ k

ij

)
, Bij =

(
B k

ijl

)
, TrBij = B k

ijk , Γi Γj = Γ k
imΓ m

jl .

In matrix notation

Bij = ∂iΓj − ∂jΓj + [Γi, Γj ], (3.3)

Γ̄i = SΓiS
−1 + S∂iS

−1, (3.4)

B̄ij = SBijS
−1. (3.5)

It is obvious from (3.3) - (3.5) that, like Fij = ∂iAj − ∂jAi, Bij is strength tensor. The generally covariant and
gauge-invariant Lagrangian for gauge field Γ k

ij (displacement field) has the form

L = −1

4
Tr

(
BijBij

)
, (3.6)

where

Bij = gikgjlBkl,

and gij is a tensor field inverse to gij such that gjkgik = δi
j .

Varying (3.6) with respect to Γ, we obtain the following system of second order differential equations for the
displacement field

1√−g
Di

(√−gBij
)

= 0. (3.7)

In fact, if δΓi is variation, then

δBij = DiδΓj − DjδΓi.

Hence it follows that

δL = −Tr
(
BijDiδΓj

)
= −∂iJ i + Tr

(
(DiB

ij)δΓj

)
,

where J i = Tr(BijδΓj). Since

∂iJ i =
1√−g

∂i

(√−gJ i
)
−

(∂i

√−g√−g

)

J i,

then

δL = − 1√−g
∂i

(√−gJ i
)

+ Tr
( 1√−g

Di

(√−gBij
)
δΓj

)

.

Q.E.D. ✷
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Varying the action

A =

∫

dx4 L
√
−g

with respect to the metric gij we obtain gauge-invariant energy-momentum metric tensor for displacement field Γ

T ij = Tr
(

BikBj
k

)

− 1

4
gij

(

BklB
kl

)

(3.8)

which on the solutions of the equations (3.7) satisfies the local law of energy conservation

T ij
;j = 0. (3.9)

Here semicolon denotes the covariant derivative with respect to the Levi - Civita connection belonging to the metric
gij

{ i
jk} =

1

2
gil(∂jgkl + ∂kgjl − ∂lgjk). (3.10)

In view of its significance, we underline few details of the proof of the relation (3.9). We have

T ij
;j = ∂jT

ij + { j
jk}T ik + { i

jk}T jk =
1√−g

∂j

(√−gT ij
)

+ { i
jk}T jk. (3.11)

Since, according to (3.10)

∂ig
jk = −{ j

il }gkl − { k
il }gjl, (3.12)

then it can be shown that

Tr
(

BjkDjB
i
k

)

= −{ i
jk}Tr

(

BjlBk
l

)

− { l
jk}gikTr

(

BjmBlm

)

+
1

2
gikTr

(

Bjl(DjBkl − DlBkj)
)

(3.13)

Tr
(

BklDjB
kl

)

= Tr
(

BklDjBkl

)

− 4{ k
jl}Tr

(

BkmBlm
)

(3.14)

From (3.11), (3.13) and (3.14) follows

T ij
;j = Tr

( 1√−g
Dj

(√−gBjk
)
Bi

k

)

+
1

2
gikTr

(

Bjl
(
DjBkl + DkBlj + DlBjk)

)

.

Since the equation

DjBkl + DkBlj + DlBjk = 0,

is fulfilled identically, then the local law of energy-momentum conservation (3.9) is also fulfilled for the case in question.
Our conclusion is that the equations (3.7) and the Einstein equations

Rij −
1

2
gijR = κTij, (3.15)

with the right-hand side given by the expression (3.8), form a consistent system of partial differential equations which
is invariant under gauge transformations as well as under the transformations of diffeomorphism group. Now we have
proved that the displacement field Γ is really the origin of gravitational field within the scope of given gauge approach.

4. SPHERICAL-SYMMETRICAL GAUGE POTENTIALS

As the first step to investigate the equations (3.7) it is very important to show that they have non-trivial solutions.
In doing this we show that the equations (3.7) possess spherically symmetric solutions.

The general theory of space-time symmetry within the scope of theory of gauge fields has been developed in [6],
[7]. We apply the results obtained there to our particular case. Note that the spherically symmetric solutions of
SU(2) Yang-Mills equations were first derived by Ikeda and Miyachi [8] and for SU(3) by Loos [9].
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In this section we consider Minkowski space-time with the metric in spherical system of coordinates that is most
convenient under the consideration of SO(3) symmetry:

ds2 = dt2 − dr2 − r2dϑ2 − r2sin2 ϑdϕ2, (4.1)

where c has been taken to be unity.
First of all we would like to find gauge potentials those are invariant under the displacement along the time axis

t → t + a, i.e.,

Γi
jk(x0, x1, x2, x3) = Γi

jk(x0 + a, x1, x2, x3) (4.2)

From (4.2) follows that all Γ’s are independent of t. Now we shall look for S0(3) invariant gauge potentials. Generators
of SO(3) group in spherical coordinates have the form [5]

X1 = sin ϕ
∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ
, (4.3a)

X2 = −cosϕ
∂

∂ϑ
+ cotϑ sinϕ

∂

∂ϕ
, (4.3b)

X3 = − ∂

∂ϕ
, (4.3c)

and hence, the problem is to find solutions of the equations LXΓ = 0 when Lie derivative are taken along the vectors
fields of SO(3) group. The equation LXa

Γ = 0, a = 1, 2, 3 can be written in the following matrix representation

LXa
Γj = V ℓ

(a)∂ℓΓj + [Γj , A(a)] + ΓℓA
ℓ
(a)j + ∂jA(a) = 0, (4.4)

Here, V ℓ
(a) are defined from X(a) = V ℓ

(a)∂ℓ as

V ℓ
(1) = (0, 0, sin ϕ, cotϑ cosϕ),

V ℓ
(2) = (0, 0, −cosϕ, cotϑ sin ϕ),

V ℓ
(3) = (0, 0, 0,−1).

The matrices A(a) here take the forms

A(1) = Ai
(1)j = ∂jV

i
(1) =

(
0 0

0 Ã(1)

)

, Ã(1) =

(
0 cosϕ

−cosϕ/sin2 ϑ −cotϑ sin ϕ

)

,

A(2) = Ai
(2)j = ∂jV

i
(2) =

(
0 0

0 Ã(2)

)

, Ã(2) =

(
0 sin ϕ

−sin ϕ/sin2 ϑ −cotϑ cosϕ

)

,

A(3) = Ai
(3)j = ∂jV

i
3 = 0.

Let us write the equations LX(a)
Γj = 0 explicitly. The equations LX(1)

Γj = 0 can be written as follows

sin ϕ
∂Γ0

∂ϑ
+ cotϑ cosϕ

∂Γ0

∂ϕ
+ [Γ0, A(1)] = 0 (4.5a)

sin ϕ
∂Γ1

∂ϑ
+ cotϑ cosϕ

∂Γ1

∂ϕ
+ [Γ1, A(1)] = 0 (4.5b)

sin ϕ
∂Γ2

∂ϑ
+ cotϑ cosϕ

∂Γ2

∂ϕ
+ [Γ2, A(1)] −

cosϕ

sin2 ϑ
Γ3 +

∂A(1)

∂ϑ
= 0, (4.5c)

sinϕ
∂Γ3

∂ϑ
+ cotϑ cosϕ

∂Γ3

∂ϕ
+ [Γ3, A(1)] + cosϕΓ2 − cotϑ sin ϕΓ3 +

∂A(1)

∂ϕ
= 0, (4.5d)

while the equations LX(2)
Γj = 0 read
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− cosϕ
∂Γ0

∂ϑ
+ cotϑ sin ϕ

∂Γ0

∂ϕ
+ [Γ0, A(2)] = 0, (4.6a)

−cosϕ
∂Γ1

∂ϑ
+ cotϑ sin ϕ

∂Γ1

∂ϕ
+ [Γ1, A(2)] = 0, (4.6b)

−cosϕ
∂Γ2

∂ϑ
+ cotϑ sinϕ

∂Γ2

∂ϕ
+ [Γ2, A(2)] −

sin ϕ

sin2 ϑ
Γ3 +

∂A(2)

∂ϑ
= 0, (4.6c)

−cosϕ
∂Γ3

∂ϑ
+ cotϑ sin ϕ

∂Γ3

∂ϕ
+ [Γ3, A(2)] + sinϕΓ2 + cotϑ cosϕΓ3 +

∂A(2)

∂ϕ
= 0. (4.6d)

Finally for LX(3)
Γj = 0 we obtain

∂Γj

∂ϕ
= 0. (4.7)

Here presuppose that Γj are taken in the form

Γj =









Γ0
j0 Γ0

j1 Γ0
j2 Γ0

j3

Γ1
j0 Γ1

j1 Γ1
j2 Γ1

j3

Γ2
j0 Γ2

j1 Γ2
j2 Γ2

j3

Γ3
j0 Γ3

j1 Γ3
j2 Γ3

j3









, (4.8)

where the upper indices enumerate the rows. From the equation (4.7) it follows that the Γj ’s are independent of ϕ.
Taking into account that the Γj ’s are independent of t and ϕ we finally combine the foregoing equations (4.5) and
(4.6) in the form

[Γ0, C] = 0,
∂Γ0

∂ϑ
+ [Γ0, D] = 0, (4.9)

[Γ1, C] = 0,
∂Γ1

∂ϑ
+ [Γ1, D] = 0, (4.10)

[Γ2, C] − 1

sin2 ϑ
Γ3 +

∂C

∂ϑ
= 0,

∂Γ2

∂ϑ
+ [Γ2, D] +

∂D

∂ϑ
= 0, (4.11)

[Γ3, C] + Γ2 + D = 0,
∂Γ3

∂ϑ
+ [Γ3, D] − cotϑΓ3 − C = 0, (4.12)

where we define

C = cosϕA(1) + sin ϕA(2) =

(
0 0

0 C̃

)

, C̃ =

(
0 1

−1/sin2 ϑ 0

)

,

D = sinϕA(1) − cosϕA(2) =

(
0 0

0 D̃

)

, D̃ =

(
0 0
0 −cotϑ

)

.

Solving the equations (4.9 – 4.12), we find Γj ’s which are independent of t and ϕ

Γ0 =








a α 0 0

β b 0 0

0 0 c −d sinϑ

0 0 d/sin ϑ c








, Γ1 =








γ h 0 0

k δ 0 0

0 0 µ −ν sin ϑ

0 0 ν/sinϑ µ








,

(4.13)

Γ2 =








0 0 p q sinϑ

0 0 σ τ sinϑ

m λ 0 0

n/sinϑ ε/sinϑ 0 cotϑ








, Γ3 =








0 0 −q sin ϑ p sin2 ϑ

0 0 −τsin ϑ σ sin2 ϑ

−n sinϑ −εsinϑ 0 −sinϑ cosϑ

m λ cotϑ 0








.
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Thus we found the general spherically symmetric anzats for displacement field Γ. All the unknown functions in
(4.13) are the arbitrary functions of r only.

Now the problem is to find these functions as the solutions of the equations (3.7). Taking into account that ∂tΓj = 0
and ∂ϕΓj = 0, from (3.2) and (3.3) for the non-trivial components of the Riemann tensor we find

B10 =
∂Γ0

∂r
+ [Γ1, Γ0], (4.14a)

B20 =
∂Γ0

∂ϑ
+ [Γ2, Γ0], (4.14b)

B30 = [Γ3, Γ0], (4.14c)

B12 =
∂Γ2

∂r
− ∂Γ1

∂ϑ
+ [Γ1, Γ2], (4.14d)

B13 =
∂Γ3

∂r
+ [Γ1, Γ3], (4.14e)

B23 =
∂Γ3

∂ϑ
+ [Γ2, Γ3]. (4.14f)

Putting (4.13) into (4.14) one can find the non-trivial components of the Riemann tensor Bij . But we shall not do
that since, for further simplification of our problem we demand the Γj ’s to be invariant under time inversion, i.e.,
under

t → t′ = −t, r → r′ = r, ϑ → ϑ′ = ϑ, ϕ → ϕ′ = ϕ

the Γj ’s should remain unaltered. Let us explain from general point of view what does it mean. Let the transformation
φ on the manifold M maps coordinate patch U onto itself. The transformation φ can be represented by smooth
functions in U

φ : xi =⇒ φi(x); φ−1 : xi =⇒ f i(x); φi
(
f(x)

)
= xi.

Under φ Γ transforms as follows:

Γ̃ s
jk(x) = φs

l

(
f(x)

)
Γ l

mn

(
f(x)

)
fm

j (x)fn
k (x) + φs

l

(
f(x)

)
∂jf

l
k(x), (4.15)

where fs
l = ∂lf

s(x), φs
l = ∂lφ

s(x). It is said the field with components Γ i
jk is invariant with respect to the

transformation φ if

Γ̃ s
jk(x) = φs

l

(
f(x)

)
Γ l

mn

(
f(x)

)
fm

j (x)fn
k (x) + φs

l

(
f(x)

)
∂jf

l
k(x) = Γ s

jk, (4.16)

At infinitesimal φ, when f i(x) = xi + viǫ, from (4.16) it follows that LXΓ i
jl = 0 where X = vi ∂

∂xi .

In case of time inversion f0(x) = −t, f1(x) = r, f2(x) = ϑ and f3(x) = ϕ, hence

F = f l
k(x) =

∂f l(x)

∂xk
=








−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








.

Taking into account that ∂jf
l
k(x) = 0, multiplying (4.15) by f i

s(x) from the left after a little manipulation we find the
transformation law for Γj ’s

FΓj(x) =
[
fm

j Γm(f(x))
]
F, (4.17)

or more explicitly

FΓ0(x) = −Γ0(f(x))F, FΓµ(x) = Γµ(f(x))F, µ = 1, 2, 3 (4.18)

From (4.18) we find

Γµ
0ν = 0, Γ0

00 = 0, Γ0
µ1 = Γ0

µ2 = Γ0
µ3 = 0, Γ1

µ0 = Γ2
µ0 = Γ3

µ0 = 0, µ, ν = 1, 2, 3. (4.19)
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Thus the Γj ’s those are spherically symmetric and invariant under time inversion:

Γ0 =








0 α 0 0

β 0 0 0

0 0 0 0

0 0 0 0








, Γ1 =








γ 0 0 0

0 δ 0 0

0 0 µ −ν sinϑ

0 0 ν/sin ϑ µ








,

(4.20)

Γ2 =








0 0 0 0

0 0 σ τ sin ϑ

0 λ 0 0

0 ε/sinϑ 0 cotϑ








, Γ3 =








0 0 0 0

0 0 −τsin ϑ σ sin2 ϑ

0 −εsinϑ 0 −sinϑ cosϑ

0 λ cotϑ 0








.

Now putting (4.20) into (4.14) we obtain the following non-trivial components of the Riemann tensor

B10 =






0 ᾱ 0 0
β̄ 0 0 0
0 0 0 0
0 0 0 0




 , B20 =






0 0 −α σ −α τsin ϑ
0 0 0 0

λβ 0 0 0
ε β/sinϑ 0 0 0




 ,

B30 =







0 0 −α τsin ϑ −α σsin2 ϑ
0 0 0 0

−ε βsinϑ 0 0 0
λβ 0 0 0







, B12 =






0 0 0 0
0 0 σ̄ τ̄sin ϑ
0 λ̄ 0 0
0 ε̄/sinϑ 0 0




 , (4.21)

B31 =







0 0 0 0
0 0 τ̄sin ϑ −σ̄sin2 ϑ
0 σ̄sin ϑ 0 0
0 −λ̄ 0 0







, B23 =







0 0 0 0
0 −2Asinϑ 0 0
0 0 Asin ϑ Bsin2 ϑ
0 0 −B Asin ϑ







,

where we define

ᾱ := α′ − α(δ − γ), β̄ := β′ + β(δ − γ),

σ̄ := σ′ + σ(δ − µ) − τ ν, τ̄ := τ ′ + τ(δ − µ) + σ ν,

λ̄ := λ′ − λ(δ − µ) − ε ν, ε̄ := ε′ − ε(δ − µ) + λ ν,

A := ε σ − τ λ, B := ε τ + σ λ + 1.

From (3.8) we obtain energy-density for the displacement field Γ i
jk

T00 = −ᾱ β̄ +
2

r2
α β(σ λ + τ ε) − 2

r2
(σ̄ λ̄ + τ̄ ε̄)

− 2

r4
(λ τ − ε σ)2 − 1

r4

[
(ε σ − τ λ)2 − (ε τ + σ λ + 1)2

]
(4.22)

Once the Riemann tensor is defined, we immediately undertake to write the equations for the functions under
consideration. To this end we invoke the equation (3.7) that can be rewritten in the form

1√−g
∂i(

√−gBij) + [Γi, B
ij ] = 0. (4.23)

Here Bij = Bpqg
ipgjq,

√−g = r2sin ϑ and gij = diag(1,−1,−r2,−r2sin ϑ). Inserting (4.20) and (4.21) into (4.23) we
obtain

ᾱ′ +
2

r
ᾱ +

2

r2
(B − 1)α = 0, (4.24a)

β̄′ +
2

r
β̄ +

2

r2
(B − 1)β = 0, (4.24b)

αβ̄ − βᾱ = 0, (4.24c)
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σ̄λ − λ̄σ + τ̄ ε − ε̄τ = 0, (4.24d)

λ̄τ − τ̄λ + σ̄ε − ε̄σ = 0, (4.24e)

σ̄′ − (µ − δ)σ̄ − αβσ − τ̄ν +
1

r2
(Bσ + 3Aτ) = 0, (4.24f)

τ̄ ′ − (µ − δ)τ̄ − αβτ + σ̄ν +
1

r2
(Bτ − 3Aσ) = 0, (4.24g)

λ̄′ + (µ − γ)λ̄ − αβλ − ε̄ν +
1

r2
(Bλ − 3Aε) = 0, (4.24h)

ε̄′ + (µ − γ)ε̄ − αβε + λ̄ν +
1

r2
(Bε + 3Aλ) = 0. (4.24i)

The system (4.24) contains ten unknown functions, but there is no equation for γ, δ, µ, ν those determine Γ1. Let us
demand the Γj’s be invariant under space inversion, i.e., under

t → t′ = t, r → r′ = r, ϑ → ϑ′ = π − ϑ, ϕ → ϕ′ = ϕ

the Γj ’s should remain unaltered. In this case F in (4.17) reads

F = f l
k(x) =

∂f l(x)

∂xk
=








1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1








.

Hence (4.17) explicitly reads

FΓ2(x) = −Γ2(f(x))F, FΓi(x) = Γi(f(x))F, i = 0, 1, 3 (4.25)

From (4.25) we find ν = 0, τ = 0, ε = 0. Thus the Γj’s those are spherically symmetric and invariant under time and
space inversion take the form

Γ0 =








0 α 0 0

β 0 0 0

0 0 0 0

0 0 0 0








, Γ1 =








γ 0 0 0

0 δ 0 0

0 0 µ 0

0 0 0 µ








,

(4.26)

Γ2 =








0 0 0 0

0 0 σ 0

0 λ 0 0

0 0 0 cotϑ








, Γ3 =








0 0 0 0

0 0 0 σ sin2 ϑ

0 0 0 −sin ϑ cosϑ

0 λ cotϑ 0








.

We again see that Γ1 6= 0. In view of this let us consider gauge transformations which leave the equation LXΓ = 0
invariant, i.e., find transformations S such that LXΓ = 0 implies LXΓ̄ = 0, where Γ̄ is given by (3.4)

Γ̄i = SΓiS
−1 + S∂iS

−1.

The natural choice for the LXΓ = 0 to be gauge invariant is to put

LXS = 0 (4.27)

or explicitly

sin ϕ
∂S

∂ϑ
+ cotϑ cosϕ

∂S

∂ϕ
+ [S, A(1)] = 0 (4.28a)

−cosϕ
∂S

∂ϑ
+ cotϑ sin ϕ

∂S

∂ϕ
+ [S, A(2)] = 0 (4.28b)

∂S

∂ϕ
= 0. (4.28c)
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In account of (4.28c) we combine (4.28a) and (4.28b) together to get the equations for determining S:

∂S

∂ϑ
− [S, D] = 0 (4.29a)

[S, C] = 0. (4.29b)

General solution of (4.29) takes the form

S =









ã b̃ 0 0

c̃ d̃ 0 0

0 0 ẽ −f̃sinϑ

0 0 f̃/sin ϑ ẽ









, (4.30)

with ã, b̃, c̃, d̃, ẽ, f̃ being the functions of r only. Now, our assumption of invariance under space and time inversion
leads to the functions b̃, c̃, f̃ to be trivial. Hence we obtain the following expression for S:

S =








ã 0 0 0

0 d̃ 0 0

0 0 ẽ 0

0 0 0 ẽ








. (4.31)

Let us now use the gauge arbitrariness. In doing so we demand Γ̄1 to be zero. Then from (3.4) , i.e.,

Γ̄i = SΓiS
−1 + S∂iS

−1

we obtain equation for fixing gauge

∂S

∂r
= SΓ1. (4.32)

that yields the following results

ã = exp
[
∫

γdr
]
, d̃ = exp

[
∫

δdr
]
ẽ = exp

[
∫

µdr
]
. (4.33)

Thus, without loss of generality we can put Γ1 = 0. Now the system (4.24) reduces to be

α′′ +
2

r
α′ +

2

r2
σλα = 0, (4.34a)

β′′ +
2

r
β′ +

2

r2
σλβ = 0, (4.34b)

αβ′ − βα′ = 0, (4.34c)

σ′′ − αβσ +
1

r2
(σλ + 1)σ = 0, (4.34d)

λ′′ − αβλ +
1

r2
(σλ + 1)λ = 0, (4.34e)

λσ′ − σλ′ = 0. (4.34f)

From (4.34c) and (4.34f) follow β = c0α and λ = d0σ, where c0 and d0 are some arbitrary constants. In this case
from (4.22) we find

T00 = −c0α
pr2 +

2

r2
c0 d0 α2 σ2 − 2

r2
d0 σ′2 +

1

r4
(d0σ

2 + 1)2. (4.35)

It is obvious from (4.35) that for the energy to be positive definite one should simply imply the constants c0 and d0

to be negative, i.e., c0 < 0 and d0 < 0.
In spherical coordinates the functions α, β, σ, λ and the constant d0 have the following dimensions: [α] = L−1, [β] =

L−1, [σ] = L−1, [λ] = L, [d0] = L2. The constant c0 is dimensionless.
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It is obvious that if the system (4.34) possesses non-trivial solutions, so does the system (3.7). One of the special
solution is α = α0/r, β = β0/r, λ = 0 and σ = 0.

Since the constant d0 is not dimensionless, let us consider the case when d0 = 0. In other words we assume the
function λ to be zero. Under this condition from (4.34) we find α = α0/r and β = β0/r. For σ we obtain the equation

r2σ′′ + (1 − α0β0)σ = 0 (4.36)

Introducing a dimensionless parameter ̺ = r/l, where l is a constant such that [l] = L, we rewrite the equation (4.36)

̺2 ∂2σ

∂̺2
+ (1 − α0β0)σ = 0 (4.37)

Defining b2 = (1 − α0β0)
2 − 1/4, we find the following expressions for σ:

σ√
̺

=







C1cos (b ln ̺) + C2sin (b ln ̺), b2 > 0
C1 ̺b + C2 ̺−b, b2 < 0

C1 + C2 ln ̺ b2 = 0
(4.38)

where the constants C1 and C2 have the dimension of length. Thus the system (4.34) possesses solution and so does
the system (3.7).

5. CONCLUSION

Summarizing the results obtained we once again underline that within the framework of gauge symmetry inherent
in the concept of manifold it is natural to consider the linear connection as a gauge field. Under the gauge symmetry
condition it is impossible to demand the condition Γk

ij = Γk
ji to be fulfilled, since it is not gauge invariant. It is shown

that the conserving energy-momentum tensor exists for the displacement field and hence, this field can be treated
within the scope of GR as a material one with deep geometrical meaning.

To show the similarity of the classical displacement field with the electromagnetic one and to prove the existence
of non-trivial solutions we have found the static spherically-symmetric anzats. We have also shown that its insertion
into the equation (3.7) allows one to obtain the corresponding solutions.

Our conclusion is that together with known long-range interactions there can exist new type of long-range interac-
tions defined by displacement field that was the subject of our investigation.
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