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Tau-functions on spaces of Abelian differentials and higher genus

generalizations of Ray-Singer formula
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Abstract. Let w be an Abelian differential on compact Riemann surface of genus g ≥ 1. We obtain
an explicit holomorphic factorization formula for ζ-regularized determinant of the Laplacian in flat
conical metrics with trivial holonomy |w|2, generalizing the classical Ray-Singer result in g = 1.
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1 Introduction

The goal of this paper is to give a natural generalization of the Ray-Singer formula for analytic torsion
of flat elliptic curves ([33]) to the case of higher genus.

Let A and B be two complex numbers such that ℑ (B/A) > 0. Taking the quotient of the complex
plane C by the lattice generated by A and B, we obtain an elliptic curve (a Riemann surface of genus
one) L. Moreover, the holomorphic one-differential dz on C gives rise to an Abelian differential w
on L, so we get a pair (Riemann surface of genus one, Abelian differential on this surface) and the
numbers A,B provide the natural local coordinates on the space of such pairs. In what follows we
refer to the numbers A,B as moduli.

The modulus square |w|2 of the Abelian differential w generates a smooth flat metric on L. De-
fine the determinant of the laplacian ∆|w|2 corresponding to this metric via the standard ζ-function
regularization:

det∆|w|2 = exp{−ζ ′
∆|w|2 (0)}, (1.1)

where ζ
∆|w|2 (s) is the operator zeta-function. Now (a slight reformulation of) the Ray-Singer theorem

[33] claims that there holds the equality:

det∆|w|2

ℑ(B/A)Area(L, |w|2) = C|η(B/A)|4, (1.2)

where Area(L, |w|2) = ℑ(AB̄), C is a moduli-independent constant (actually, C = 4) and η is the
Dedekind eta-function

η(σ) = exp

(
πiσ

12

)∏

n∈N

(
1 − exp(2πinσ)

)
.

The main result of this paper is a generalization of formula (1.2) to the case of Riemann surfaces
of genus g > 1. To explain our strategy we first reformulate the Ray-Singer theorem.

For any compact Riemann surface L we introduce the prime-form E(P,Q) (for definition and
properties of this object we refer the reader to Sect.2.3) and the canonical meromorphic bidifferential

w(P,Q) = dP dQ logE(P,Q) (1.3)

(see [9]). The bidifferential w(P,Q) has the following local behavior as P → Q:

w(P,Q) =

(
1

(x(P ) − x(Q))2
+

1

6
SB(x(P )) + o(1)

)
dx(P )dx(Q), (1.4)

where x(P ) is a local parameter. The term SB(x(P )) is a projective connection which is called the
Bergman projective connection. Let w be an Abelian differential on L and, as before, let x(P ) be

some local parameter on L. Denote by Sw(x(P )) the Schwarzian derivative
{∫ P

w, x(P )
}

. Then the

difference of two projective connections SB − Sw is a (meromorphic) quadratic differential on L [38].
Therefore, the ratio (SB − Sw)/w is a (meromorphic) one-differential. In the elliptic case, i. e. when
the Riemann surface L and the Abelian differential w are obtained from the lattice {mA+ nB}, this
one-differential is holomorphic and admits the following explicit expression in the local parameter z
(see [8]):

SB − Sw
w

= −24πi
d log η(σ)

dσ

1

A2
dz, (1.5)
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where σ = B/A.
Let {a, b} be the canonical basis of cycles on the elliptic curve L (the sides of the fundamental

parallelogram), such that the numbers A and B are the corresponding a and b-periods of the Abelian
differential w. Defining

τ(A,B) := η2(B/A), (1.6)

we see from (1.5) that the function τ is subject to the system of equations

∂ log τ

∂A
=

1

12πi

∮

b

SB − Sw
w

,
∂ log τ

∂B
= − 1

12πi

∮

a

SB − Sw
w

. (1.7)

Now the Ray-Singer formula implies that the real-valued expression

Q(A,B) =
det∆|w|2

ℑ(B/A)Area(L, |w|2) (1.8)

satisfies the same system:

∂ logQ

∂A
=

1

12πi

∮

b

SB − Sw
w

,
∂ logQ

∂B
= − 1

12πi

∮

a

SB − Sw
w

. (1.9)

Clearly, if τ(A,B) and Q(A,B) are (respectively) a holomorphic and a real-valued solutions of system
(1.7), then Q(A,B) = C|τ(A,B)|2 with some constant factor C. Thus, the Ray-Singer result can be
reformulated as follows:

Theorem 1 1. The system (1.7) is compatible and has a holomorphic solution τ . This solution
can be found explicitly and is given by (1.6).

2. The variational formulas (1.9) for the determinant of the laplacian ∆|w|2 hold.

3. The expression (1.8) can be represented as the modulus square of a holomorphic function of
moduli A,B; this function coincides with the function τ up to a moduli-independent factor.

In what follows we call the function τ (a holomorphic solution to system (1.7) the Bergman tau-
function, due to its close link with the Bergman projective connection.

Generalizing the statement 1 of Theorem 1 to higher genus, we define and explicitly compute
the Bergman tau-function on different strata of the spaces Hg of Abelian differentials over Riemann
surfaces i.e. the spaces of pairs (L, w), where L is a compact Riemann surface of genus g ≥ 1 and w is a
holomorphic Abelian differential (i.e. a holomorphic 1-form) on L. In global terms, the “tau-function”
is not a function, but a section of a line bundle over the covering of a stratum of Hg (the space of
triples (L, w, {aα, bα}), where w has fixed multiplicities of its zeros; (aα, bα) is a canonical basis of
cycles).

An analog of the Bergman tau-function on spaces of holomorphic differentials was previously
defined on Hurwitz spaces (see [15, 16]), i.e. on the spaces of pairs (L, f), where f is a meromorphic
function on a compact Riemann surface L with fixed multiplicities of poles and zeros of the differential
df . In this case it coincides with the isomonodromic Jimbo-Miwa tau-function for a class of Riemann-
Hilbert problems [20, 7], this explains why we use the term “tau-function” in the context of spaces
Hg.

Generalizing statement 2 of Theorem 1, we introduce the laplacian, ∆|w|2 acting in the trivial line
bundle over L, corresponding to the flat singular metric |w|2. Among other flat metrics with conical
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singularities metrics of this form are distinguished by the property that they have trivial holonomy
along any closed loop on the Riemann surface.

Since Abelian differentials on Riemann surfaces of genus g > 1 do have zeros, the metric |w|2
has conical singularities and the laplacian is not essentially self-adjoint. Thus, one has to choose a
proper self-adjoint extension: here we deal with the Friedrichs extension. It turns out that it is still
possible to define the determinant of this laplacian via the regularization (1.1). We derive formulas
for variations of det∆|w|2 with respect to natural coordinates on the space of Abelian differentials.
These formulas are direct analogs of system (1.9).

Generalizing statement 3 of Theorem 1, we get an explicit formula for the determinant of the
laplacian ∆|w|2:

det∆|w|2 = C Area(L, |w|2) {detℑB} |τ |2 , (1.10)

where B is the matrix of b-periods of a Riemann surface of genus g, and the Bergman tau-function τ
is expressed through theta-functions and prime-forms. This formula can be considered as a natural
generalization of the Ray-Singer formula to the higher genus case.

Remark 1 The determinants of Laplacians in flat conical metrics first appeared in works of string
theorists (see, e. g., [12]). An attempt to compute such determinants was made in [35]. The idea was
to make use of Polyakov’s formula [32] for the ratio of determinants of the Laplacians corresponding
to two smooth conformally equivalent metrics. If one of the metrics in Polyakov’s formula has conical
singularity, this formula does not make sense, so one has to choose some kind of regularization of the
arising divergent integral. This leads to an alternative definition of the determinant of Laplacian in
conical metrics: one may simply take some smooth metric as a reference one and define the determinant
of laplacian in a conical metric through properly regularized Polyakov formula for the pair (the conical
metric, the reference metric). Such a way was chosen in [35] (see also [5]) for metrics given by
the modulus square of an Abelian differential (which is exactly our case) and metrics given by the
modulus square of a meromorphic 1-differential (in this case Laplacians have continuous spectrum
and the spectral theory definition of their determinants, if possible, must use methods other than the
Ray-Singer regularization). In [35] the smooth reference metric is chosen to be the Arakelov metric.
Since the determinant of Laplacian in Arakelov metric is known (it was found in [6] and [2], see also
[9]); such an approach leads to a heuristic formula for det ∆ in a flat conical metric. This result
heavily depends on the choice of the regularization procedure. The naive choice of the regularization
leads to dependence of det∆ in the conical metric on the smooth reference metric which is obviously
unsatisfactory. More sophisticated (and used in [35] and [5]) procedure of regularization eliminates
the dependence on the reference metric but provides an expression which behaves as a tensor with
respect to local coordinates at the zeros of the differential w and, therefore, also can not be considered
as completely satisfactory. In any case it is unclear whether this heuristic formula for det ∆ for
conical metrics has something to do with the determinant of Laplacian defined via the spectrum of
the operator ∆ in conical metrics.

The paper is organized as follows. In Section 2 we derive variational formulas of Rauch type
on the spaces of Abelian differentials for basic holomorphic differentials, matrix of b-periods, prime-
form and other relevant objects. In section 3 we introduce and compute the Bergman tau-function
on the space of Abelian differentials over Riemann surfaces. In Section 4 we give a survey of the
spectral theory of the Laplacian on surfaces with flat conical metrics (polyhedral surfaces) and derive
variational formulas for the determinants of Laplacians in such metrics. The comparison of variational
formulas for the tau-functions with variational formulas for the determinant of Laplacian, together

4



with explicit computation of the tau-functions, leads to the explicit formulas for the determinants.
We use our explicit formulas to derive the formulas of Polyakov type, which show how determinant of
laplacian depends on the choice of the conical metric on a fixed Riemann surface.

2 Variational formulas on spaces of Abelian differentials over Rie-

mann surfaces

2.1 Coordinates on the spaces of Abelian differentials

The space Hg of holomorphic Abelian differentials over Riemann surfaces of genus g is the moduli
space of pairs (L, w), where L is a compact Riemann surface of genus g > 1, and w is a holomorphic
1-differential on L. This space is stratified according to the multiplicities of zeros of w.

The corresponding strata may have several connected components. The classification of these
connected components is given in [18]. In particular, the stratum of the space Hg having the highest
dimension (on this stratum all the zeros of w are simple) is connected.

Denote by Hg(k1, . . . , kM ) the stratum of Hg, consisting of differentials w which have M zeros on
L of multiplicities (k1, . . . , kM ). Denote the zeros of w by P1, . . . , PM ; then the divisor of differential
w is given by (w) =

∑M
m=1 kmPm. Let us choose a canonical basis (aα, bα) in the homology group

H1(L,Z). Cutting the Riemann surface L along these cycles we get the fundamental polygon L̂ (the
fundamental polygon is not simply-connected unless all basic cycles pass through one point). Inside
of L̂ we choose M − 1 paths lm which connect the zero P1 with other zeros Pm of w, m = 2, . . . ,M .
The set of paths aα, bα, lm gives a basis in the relative homology group H1(L; (w),Z). Then the local
coordinates on Hg(k1, . . . , kM ) can be chosen as follows ([19], p.5):

Aα :=

∮

aα

w , Bα :=

∮

bα

w , zm :=

∫

lm

w , α = 1, . . . , g; m = 2, . . . ,M . (2.1)

The area of the surface L in the metric |w|2 can be expressed in terms of these coordinates as follows:

Vol(L) = −ℑ
g∑

α=1

AαB̄α .

If all zeros of w are simple, we have M = 2g − 2; therefore, the dimension of the highest stratum
Hg(1, . . . , 1) equals 4g − 3.

The Abelian integral z(P ) =
∫ P
P1
w provides a local coordinate in a neighborhood of any point

P ∈ L except the zeros P1, . . . , PM . In a neighborhood of Pm the local coordinate can be chosen to
be (z(P ) − zm)1/(km+1). The latter local coordinate is often called the distinguished local parameter.

The following construction helps to visualize these coordinates in the case of the highest stratum
Hg(1, . . . , 1).

Consider g parallelograms Π1, . . . ,Πg in the complex plane with coordinate z having the sides
(A1, B1), . . . , (Ag, Bg). Provide these parallelograms with a system of cuts

[0, z2], [z3, z4], . . . , [z2g−3, z2g−2]

(each cut should be repeated on two different parallelograms). Identifying the opposite sides of the
parallelograms and glueing the obtained g tori along the cuts we get a compact Riemann surface L
of genus g. (See figure 1 for the case g = 3). Moreover, the differential dz on the complex plane
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Figure 1: Representation of a generic point of the stratum H3(1, 1, 1, 1) by gluing three tori along cuts
connecting zeros of w.

gives rise to a holomorphic differential w on L which has 2g − 2 zeros at the ends of the cuts. Thus,
we get a point (L, w) from Hg(1, . . . , 1). It can be shown that any generic point of Hg(1, . . . , 1) can
be obtained via this construction; more sophisticated glueing is required to represent points of other
strata, or non generic points of the stratum Hg(1, . . . , 1).

The assertion about genericity follows from the theorem of Masur and Veech ([21], [39], see also
[19]) stating the ergodicity of the natural SL(2,R)-action on connected components of strata of the
space of (normalized) Abelian differentials. Namely, denote by H′

g(1, . . . , 1) the set of pairs (L, w)
from Hg(1, . . . , 1) such that

∫
L |w|2 = 1. Let a pair (L, w) from H′

g(1, . . . , 1) be obtained via the above
construction. Then under the action of A ∈ SL(2,R) it goes to the pair (L1, w1) which is obtained
by gluing the parallelograms A(Π1), . . . ,A(Πg) along the cuts [0,Az2], . . . , [Az2g−3,Az2g−2], where
the group SL(2,R) acts on z-plane as follows

A :=

(
a b
c d

)
: z 7→ (aℜz + bℑz) + i(cℜz + dℑz) .

Thus, the set of pairs (L, w) from H′
g(1, . . . , 1) which can be glued from tori is invariant w. r. t.

ergodic SL(2,R)-action, and, therefore, has the full measure.
To shorten the notations it is convenient to consider the coordinates {Aα, Bα, zm} altogether.

6



Namely, in the sequel we shall denote them by ζk, k = 1, . . . , 2g +M − 1, where

ζα := Aα , ζg+α := Bα , α = 1, . . . , g , ζ2g+m := zm+1 m = 1, . . . ,M − 1 (2.2)

Let us also introduce corresponding cycles sk, k = 1, . . . , 2g +M − 1, as follows:

sα = −bα , sg+α = aα , α = 1, . . . , g ; (2.3)

the cycle s2g+m, m = 1, . . . ,M − 1 is defined to be the small circle with positive orientation around
the point Pm+1.

Now we are going to prove variational formulas (analogs of classical Rauch’s formulas), which
describe dependence of basic holomorphic objects on Riemann surfaces (the normalized holomorphic
differentials, the matrix of b-periods, the canonical meromorphic bidifferential, the Bergman projective
connection, the prime form, etc. ) on coordinates (2.1) on the spaces Hg(k1, . . . , kM ). We start from
description of the objects we shall need in the sequel.

2.2 Basic holomorphic objects on Riemann surfaces

Denote by vα(P ) the basis of holomorphic 1-forms on L normalized by
∮
aα
vβ = δαβ . For a basepoint

P0 we define the Abel map Aα(P ) =
∫ P
P0
vα from the Riemann surface L to its Jacobian.

The matrix of b-periods of the surface L is given by Bαβ :=
∮
bα
vβ.

Recall also the definition and properties of the prime-form E, canonical meromorphic bidifferential
w and Bergman projective connection SB.

The prime form E(P,Q) (see [8, 9]) is an antisymmetric −1/2-differential with respect to both
P and Q. Let Θ[∗](z) be the genus g theta-function corresponding to the matrix of b-periods
B with some odd half-integer characteristic [∗]. Introduce the holomorphic differential q(P ) =∑g

α=1 Θ[∗]zα(0)vα(P ). All zeros of this differential are double and one can define the prime form
on L by

E(P,Q) =
Θ[∗](A(P ) −A(Q))√

q(P )
√
q(Q)

; (2.4)

this expression is independent of the choice of the odd characteristic [∗].
The prime-form has the following properties (see [9], p.4):

• Under tracing of Q along the cycle aα the prime-form remains invariant; under the tracing along
bα it gains the factor

exp(−πiBαα − 2πi

∫ Q

P
vα) . (2.5)

• On the diagonal Q → P the prime-form has first order zero (and no other zeros or poles) with
the following asymptotics:

E(x(P ), x(Q))
√
dx(P )

√
dx(Q) =

(x(Q) − x(P ))

(
1 − 1

12
SB(x(P ))(x(Q) − x(P ))2 +O((x(Q) − x(P ))3

)
, (2.6)

where the subleading term SB is called Bergman projective connection and x(P ) is an arbitrary
local parameter.

7



We recall that an arbitrary projective connection S transforms under change of the local coordinate
y → x as follows:

S(y) = S(x)

(
dx

dy

)2

+ {x, y} (2.7)

where {x, y} = x′′′

x′ − 3
2

(
x′′

x′

)2
is the Schwarzian derivative. It is easy to verify that the term SB in

(2.6) indeed transforms as (2.7) under change of the local coordinate. Difference of two projective
connections is a quadratic differential on L.

The canonical meromorphic bidifferential W (P,Q) is defined by w(P,Q) = ∂P∂Q logE(P,Q) (1.3).
It is symmetric: w(P,Q) = w(Q,P ) and has all vanishing a-periods with respect to both P and Q;
the only singularity of w(P,Q) is the second order pole on the diagonal P = Q with biresidue 1.
The subleading term in expansion of w(P,Q) around diagonal is equal to SB/6 (1.4). The b-periods
of W (P,Q) with respect to any of its arguments are given by the basic holomorphic differentials:∮
bα
W (P, · ) = 2πivα(P ).
The prime-form can be expressed as follows in terms of w(P,Q) ([9], p. 3):

E2(P,Q)dx(P )dy(Q) = lim
P0→P,Q0→Q

(x(P0) − x(P ))(y(Q) − y(Q0)) exp

(
−
∫ Q0

P0

∫ Q

P
w( · , · )

)
, (2.8)

where x and y are any local parameters near P0 and Q0, respectively.

Remark 2 Let us comment on the formula (1.3) for w(P,Q). Since E(P,Q) is a −1/2 differential
with respect to P and Q, this formula should be understood as

w(P,Q) = ∂P∂Q{logE(P,Q)
√
dx(P )

√
dy(Q)} ,

where x and y are arbitrary local parameters. Due to the presence of the operator ∂P∂Q, this expression
is independent of the choice of these local parameters; therefore it can be written in a shorter form
(1.3), see [8, 27].

In the same way we shall understand the formula for the normalized (all a-periods vanish) differ-
ential of the third king with poles at points P and Q and residues 1 and −1, respectively (see [27],
vol. 2, Chapter IIIb, Sect.1, p.212), which is extensively used below:

WP,Q(R) = ∂R log
E(R,P )

E(R,Q)
. (2.9)

This expression should be rigorously understood as

WP,Q(R) = ∂R log
E(R,P )

√
dx(P )

E(R,Q)
√
dy(Q)

, (2.10)

where x and y are arbitrary local coordinates; independence of (2.10) of the choice of these local
coordinates justifies writing it in the short form (2.9).

Denote by Sw(x(P )) the projective connection given by the Schwarzian derivative
{∫ P

w, x(P )
}

,

where x is a local parameter on L.
The next object we shall need is the vector of Riemann constants:

KP
α =

1

2
+

1

2
Bαα −

g∑

β=1,β 6=α

∮

aβ

(
vβ

∫ x

P
vα

)
(2.11)
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where the interior integral is taken along a path which does not intersect ∂L̂.
Consider also the following multi-valued differential of two variables s(P,Q) (P,Q ∈ L̂)

s(P,Q) = exp

{
−

g∑

α=1

∮

aα

vα(R) log
E(R,P )

E(R,Q)

}
, (2.12)

where E(R,P ) is the prime-form (see [9]). The right-hand side of (2.12) is a non-vanishing holomorphic
g/2-differential on L̂ with respect to P and a non-vanishing holomorphic (−g/2)-differential with
respect to Q. Being lifted to the universal covering of L it has along the cycle bα the automorphic factor
exp[(g− 1)πiBαα +2πiKP

α ] with respect to P and the automorphic factor exp[(1− g)πiBαα− 2πiKQ
α ]

with respect to Q.
In what follows the pivotal role is played by the following holomorphic multivalued g(1 − g)/2-

differential on L̂

C(P ) =
1

W[v1, . . . , vg](P )

g∑

α1,...,αg=1

∂gΘ(KP )

∂zα1 . . . ∂zαg
vα1 . . . vαg (P ) , (2.13)

where
W(P ) := det1≤α,β≤g||v(α−1)

β (P )|| (2.14)

is the Wronskian determinant of holomorphic differentials at the point P .
It is easy to see that this differential has multipliers 1 and exp{−πi(g − 1)2Bαα − 2πi(g − 1)KP

α }
along basic cycles aα and bα, respectively.

The differential C is an essential ingredient of the Mumford measure on the moduli space of
Riemann surfaces of given genus [9]. For g > 1 the multiplicative differential s (2.12) is expressed in
terms of C as follows [9]:

s(P,Q) =

(C(P )

C(Q)

)1/(1−g)
. (2.15)

According to Corollary 1.4 from [9], C(P ) does not have any zeros. Moreover, this object admits the
following alternative representation:

C(P ) =
Θ(
∑g−1

α=1 AP (Rα) + AQ(Rg) +KP )
∏
α<β E(Rα, Rβ)

∏g
α=1 s(Rα, P )

∏g
α=1E(Q,Rα) det ||vα(Rβ)||gα,β=1s(Q,P )

, (2.16)

where Q,R1, . . . , Rg ∈ L are arbitrary points of L and AP is the Abel map with the base point P .
For arbitrary points P,Q,Q0 ∈ L we introduce the following multi-valued 1-differential

ΩP (Q) = s2(Q,Q0)E(Q,P )2g−2(w(Q0))
g(w(P ))g−1 (2.17)

(the Q0-dependence of the right-hand side of (2.17) plays no important role and is not indicated).
The differential ΩP (Q) has automorphy factors 1 and exp(4πiKP

α ) along the basic cycles aα and
bα respectively. The only zero of the 1-form ΩP on L̂ is P ; its multiplicity equals 2g − 2.

Definition 1 The projective connection SPFay on L given by the Schwarzian derivative

SPFay(x(Q)) =

{∫ Q

ΩP , x(Q)

}
, (2.18)

where x(Q) is a local coordinate on L, is called the Fay projective connection (more precisely, we have
here a family of projective connections parameterized by point P ∈ L).
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Another projective connection we shall use below is associated to the differential w and given by
the Schwarzian derivative:

Sw(x(Q)) :=

{∫ Q

P1

w, x(Q)

}
, (2.19)

where x(Q) is a local coordinate.
The difference of projective connections SPFay−Sw is a quadratic differential. The following lemma

giving an expression for the 1-form (SPFay − Sw)/w is a simple corollary of above definitions:

Lemma 1 For any Q ∈ L, Q 6= Pm , m = 1, . . . ,M

1

w
(SPFay−Sw)(Q) = 2∂Q

(
1

w(Q)
∂Q log[s(Q,Q0)E(Q,P )g−1]

)
− 2

w(Q)

[
∂Q log[s(Q,Q0)E(Q,P )g−1]

]2
.

(2.20)

Proof. We first notice that if one chooses the local parameter x(Q) to coincide with z(Q), then the
projective connection Sw vanishes: Sw(z(Q)) = 0. Therefore, to find the left-hand side of (2.20)
it is sufficient to compute Fay’s projective connection SPFay in the local parameter z(Q). From the
definition (2.18) of Fay’s projective connection and the definition (2.17) of multi-valued differential
ΩP (Q) we get (2.20) taking into account that d/dz(Q) = w−1(Q)∂Q.

�

Remark 3 In what follows we shall often treat tensor objects like E(P,Q), s(P,Q), etc as scalar
functions of one of the arguments (or both). This makes sense after fixing the local system of coor-

dinates, which is usually taken to be z(Q) =
∫ Q

w. In particular, the expression “the value of the
tensor T at the point Q in local parameter z(Q)” will mean the value of the scalar Tw−α at the point
Q, where α is the tensor weight of T (Q). Very often one of the arguments (or sometimes both) of the
prime form coincide with a point Pm of the divisor (w), in this case we calculate the prime form in
the corresponding distinguished local parameter:

E(P,Pm) := E(P,Q)(dxm(Q))1/2|Q=Pm .

In the sequel we shall need the following theorem expressing the differentials s(P,Q) and ΩP (Q)
in terms of prime-forms. Since on Jacobian of the Riemann surface L the vectors AP ((w)) and −2KP

coincide, there exist two vectors with integer coefficients r and q such that

AP

(
(w)
)

+ 2KP + Br + q = 0 (2.21)

(here (w) :=
∑M

m=1 kmPm is the divisor of the differential w).

Theorem 2 The following expressions for s(P,Q) and ΩP (Q) hold:

s2(P,Q) =
w(P )

w(Q)

M∏

m=1

{
E(Q,Pm)

E(P,Pm)

}km
e2πi〈r,AP (Q)〉 (2.22)

ΩP (Q) = E2g−2(Q,P )w(Q){w(Q0)w(P )}g−1
M∏

m=1

{
E(Q0, Pm)

E(Q,Pm)

}km
e2πi〈r,AP (Q)〉 (2.23)
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Proof. We start from the following lemma:

Lemma 2 The expression

F := [w(P )]
g−1
2 e−πi〈r,K

P 〉
{

M∏

m=1

[E(P,Pm)]
(1−g)km

2

}
C(P ) (2.24)

is independent of P .

Proof. The tensor weight of F with respect to P is the sum of (g − 1)/2 (from w(P )), 1−g
2

∑M
m=1 km

(from the product of the prime-forms) and g(1 − g)/2 (from C(P )), which equals 0 since
∑M

m=1 km =
2g−2. The zeros of w(P ) at {Pm} are canceled against poles arising from the product of prime-forms.

Therefore, to prove that F is constant with respect to P it remains to show that this expression
does not have any monodromies along basic cycles. Because of uncertainty of the sign choice if
(g − 1)/2 is half-integer it is convenient to consider F2. The only ingredient of (3.25) which changes
under analytical continuation along the cycle aα is the vector of Riemann constants; the expression
〈r,KP 〉 transforms to 〈r,KP 〉 + (g − 1)rα, which, since rα is an integer, gives trivial monodromy of
F2 along aα.

Under analytical continuation along the cycle bα the prime-form E(P,Pm) is multiplied with
exp{−πiBαα−2πi(A(P )−A(Pm))}, and C(P ) is multiplied with exp{−πi(g−1)2Bαα−2πi(g−1)KP

α }.
Finally, the expression 〈r,KP 〉 transforms to 〈r,KP 〉 + (g − 1)(Br)α.

Collecting all these terms, we see that F2 gets multiplied with

exp
{
− 2πi(g − 1)[Aα

(
(w)
)

+ 2KP
α + (Br)α]

}

which, due to (3.26), equals exp{−2πi(g − 1)qα} = 1.
Therefore, F2 is a holomorphic function on L with respect to P . Hence, it is a constant, as well

as F itself.
�

Now the expression (2.22) follows from the link (2.15) between s(P,Q) and C(P ) and standard
relation between vectors of Riemann constants computed at different points: KQ−KP = (g−1)AP (Q).
The formula (2.23) follows from (2.22) and definition (2.17) of ΩP (Q).

�

2.3 Variational formulas on spaces of holomorphic differentials

Variation of the coordinates {ζk} ≡ {Aα, Bα, zm} generically changes the conformal structure of the
Riemann surface L. Here we derive an analog of the Ahlfors-Rauch formula for the variation of the
matrix of b-periods of L under variation of the coordinates {ζk}. Besides that, we find formulas for
the variation of the objects depending not only on the moduli of L, but also on a point on L (as well
as the choice of a local coordinate near this point), namely, the basic holomorphic differentials vα(P ),
the canonical bidifferential w(P,Q), the prime-form E(P,Q), the differential C(P ) and other objects
described in the previous section.

We define the derivative of the basic holomorphic differentials with respect to ζk as follows:

∂vα(P )

∂ζk

∣∣∣
z(P )

:= w(P )
∂

∂ζk

∣∣∣
z(P )=const

{
vα(P )

w(P )

}
(2.25)
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where, as before, z(P ) =
∫ P
P1
w; vα(P )/w(P ) is a meromorphic function on L with poles at {Pm}.

Outside of the points Pm this function can be viewed as a function of z(P ) and ζk; the derivative of
this function with respect to ζk in the right-hand side of (2.25) is computed assuming that z(P ) is
independent of ζk.

To introduce this definition in a more formal manner1 consider the local universal family p : X →
Hg(k1, . . . , kM ). Then the set (z :=

∫ P
P1
w, ζ1, . . . , ζ2g+M−1) gives a system of local coordinates on

X \ (w). A vicinity of a point {(L, w), P} in the level set Hz(P ) := {x ∈ X , z(x) = z(P )} is
biholomorphically mapped onto a vicinity of the point (L, w) of Hg(k1, . . . , kM ) via the projection
p : X → Hg(k1, . . . , kM ). Then ((p|Hz(P )

)−1)∗
{
vα
w

} ∣∣
Hz(P )

is a locally holomorphic function on

Hg(k1, . . . , kM ) and we denote

∂

∂ζk

∣∣∣
z(P )=const

{
vα(P )

w(P )

}
:=

∂

∂ζk

[
((p|Hz(P )

)−1)∗
{vα
w

} ∣∣∣
Hz(P )

]
.

The differentiation with respect to {ζk} of other objects below (the bidifferential W , the prime-form
etc) will be understood in the same sense.

This differentiation looks very natural if L can be visualized as a union of glued tori as in Figure 1.
In this picture a function f(P ) (depending also on moduli) on L is considered locally as a function of
z and is differentiated with respect to Aα, Bα and zm assuming that the projection z(P ) of the point
P on the z-plane remains constant.

The derivatives ∂
∂ζk

∣∣∣
z(P )

{
vα(P )
w(P )

}
are meromorphic in the fundamental polygon L̂, since the map

P 7→ z(P ) is globally defined in L̂; these derivatives are not necessarily meromorphic functions globally
defined on L since z(P ) is not single-valued on L. (Notice also that the map P 7→ z(P ) is locally
univalent in L \ {P1, . . . , Pm}.)

The derivatives ∂vα(P )
∂ζk

defined by (2.25) are therefore meromorphic differentials of (1, 0) type

defined within L̂; they do not necessarily correspond to single-valued meromorphic differentials on L
itself.

Similarly, the derivatives of w(P,Q) with respect to the moduli are defined as follows:

∂w(P,Q)

∂ζk

∣∣∣
z(P ),z(Q)

:= w(P )w(Q)
∂

∂ζk

∣∣∣
z(P ),z(Q)

{
w(P,Q)

w(P )w(Q)

}
(2.26)

Derivatives of other tensor objects depending not only on moduli, but also on points of L, are defined
in the obvious analogy to (2.25) and (2.26).

Remark 4 Our definition (2.25) of the variation of vα(P ) with respect to the coordinates on the space
H(k1, . . . , kM ) is different from the variational scheme used by Fay ([9], Chapter 3). In this scheme the
variation of vα(P ) in the direction defined by an arbitrary Beltrami differential is computed assuming
that the pre-image under the Fuchsian uniformization map of the point P on the upper half-plane (for
g ≥ 2) is independent of the moduli. In this scheme the differential of the type (0, 1) is present in the
variational formula for vα, w(P,Q) and other objects ([9], formula (3.21)). This (0, 1) contribution is
absent in our deformation framework by definition (2.25), (2.26). This difference makes it difficult to
directly apply the variational formulas for all interesting holomorphic objects which were derived in
[9] in our present context. However, many technical tools of [9] can be used in our framework, too.

1We thank the referee for mentioning this point.
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Actually, the deformation scheme we develop here is close to the Rauch deformation of a branched
covering via variation of a branch point [34]. In particular, in the Rauch formulas for the basic
holomorphic differentials it is assumed that the projection of the argument of the differential on the
base of the covering is independent of the branch points.

Remark 5 In what follows we very often deal with the derivatives with respect to moduli of var-
ious integrals over a contour Γ on the surface L. In this case calculations simplify under the as-
sumption that the image of the contour Γ under the map L ∋ P 7→ z(P ) =

∫ P
P1
w does not vary

under the variation of moduli. If the contour of integration coincides with one of the cycles, say
a1, chosen to define the fundamental polygon L̂, the map P 7→ z(P ) and the local coordinates
{Aα, Bα, zm}, then one can assume that the image of this contour does not vary under variation
of moduli {A2, . . . , Ag, B1, . . . , Bg, z2, . . . , zm} (and, of course, not A1: in this case such an assump-
tion is no longer possible, in the sequel we shall consider expressions of the type ∂A1

∮
a1

in more
detail).

Theorem 3 The following variational formulas hold:

∂vα(P )

∂ζk

∣∣∣
z(P )

=
1

2πi

∮

sk

vα(Q)w(P,Q)

w(Q)
, (2.27)

∂Bαβ

∂ζk
=

∮

sk

vαvβ
w

(2.28)

∂w(P,Q)

∂ζk

∣∣∣
z(P ), z(Q)

=
1

2πi

∮

sk

w(P,R)w(Q,R)

w(R)
(2.29)

∂

∂ζk

∣∣∣
z(P ), z(Q)

log{E(P,Q)w1/2(P )w1/2(Q)} = − 1

4πi

∮

sk

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

(2.30)

∂

∂ζk
(SB(P ) − Sw(P ))

∣∣∣
z(P )

=
3

πi

∮

sk

w2(P,R)

w(R)
, (2.31)

where k = 1, . . . , 2g +M − 1; we assume that the local coordinate z(P ) =
∫ P
P1
w and z(Q) =

∫ Q
P1
w are

kept constant under differentiation.

Proof. Let us prove first the variational formula (2.27) for the normalized holomorphic differential. As

explained in Section 2.1, we use the Abelian integral z(P ) =
∫ P
P1
w as a local coordinate in a neighbor-

hood of any point of L not coinciding with the zeros, Pm, of the differential w. In a neighborhood of
Pm the local coordinate is taken to be xm(P ) = (z(P ) − zm)1/(km+1), where km is the multiplicity of
Pm. Consider now the derivative of vα(P ) with respect to zm (m ≥ 2) assuming that the coordinate
z(P ) is independent of zm. The proof of the corresponding variational formula is completely parallel
to the proof of the standard Rauch formula on the Hurwitz spaces (see for example Section 2.3 of
[15]).

The differential ∂zmvα(P )|z(P ) is holomorphic outside of Pm and has all vanishing a-periods (since
the a-periods of vα are constant). Let us consider the local behavior of ∂zmvα(P )|z(P ) near Pm. We

choose the local parameter near Pm to be xm = (z(P ) − zm)1/(km+1). We have

vα(xm) = (C0 + C1xm + · · · + Ckmx
km
m +O(|xm|km+1)dxm . (2.32)
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Differentiating this expansion with respect to zm for fixed z(P ), we get:

∂

∂zm
{vα(P )}|z(P ) =

{
C0

(
1 − 1

km + 1

)
1

xkm+1
m

+ C1

(
1 − 2

km + 1

)
1

xkmm

+ · · · + Ckm−1

(
1 − km

km + 1

)
1

x2
m

+O(1)

}
dxm (2.33)

Consider the set of standard meromorphic differentials of second kind with vanishing a-periods:
W s+1
Pm

(P ) with the only singularity at the point Pm of the form xm(P )−s−1dxm(P ). Since the differen-
tial (2.33) also has all vanishing a-periods, it can be expressed in terms of these standard differentials
as follows:

∂

∂zm
{vα(P )}|z(P ) = C0

(
1 − 1

km + 1

)
W km+1
Pm

(P ) + C1

(
1 − 2

km + 1

)
W km
Pm

(P ) + . . .

+Ckm−1

(
1 − km

km + 1

)
W 2
Pm(P ) (2.34)

Now, the differentials W s
Pm

(P ) can be expressed in terms of w(P,Q) as follows:

W s
Pm(P ) =

(−1)s

(s− 1)!

ds−2

dxs−2
m (Q)

w(P,Q)
∣∣∣
Q=Pm

(2.35)

Using (2.35) we can rewrite (2.34) in the following compact form:

∂vα(P )

∂zm

∣∣∣
z(P )

=
1

(km + 1)(km − 1)!

(
d

dxm(Q)

)km−1{
w(P,Q)vα(Q)

(dxm(Q))2

} ∣∣∣
Q=Pm

or, equivalently,
∂vα(P )

∂zm

∣∣∣
z(P )

= res
∣∣∣
Q=Pm

vα(Q)w(P,Q)

w(Q)
, (2.36)

which leads to (2.27) for k = 2g + 1, . . . , 2g +M − 1.
Let us now prove formulas (2.27) for k = 1, . . . 2g. For example, consider the derivative of vα with

respect to Bβ.
Denote by U the universal covering of L; let us choose the fundamental cell (the “fundamental

polygon” of L) L̂ such that all the contours lm from the definition (2.1) of coordinates zm lie inside of
L̂. The map z(P ) is a holomorphic function on L̂ with critical points at {Pm}. Consider an arbitrary
point in L̂ which does not coincide with any zero of w; consider a neighborhood D ⊂ L̂ of this point
where z(P ) is univalent; denote by D̃ the image of D under mapping z(P ): D̃ = z[D].

Denote by Tbβ the deck transformation on U which corresponds to the side b+β of the fundamental

polygon. Consider the domain Tbβ [D] lying in the fundamental cell Tbβ [L̂] as well as its image in

the z-plane D̃bβ = {z + Bβ| z ∈ D̃}. We can always take sufficiently small domain D such that

D̃bβ ∩ D̃ = ∅. The holomorphic differential vα can be lifted from L to a holomorphic differential on
U invariant with respect to the deck transformations. Let us write vα(P ) = f(z)dz for P ∈ D ∪Dbβ ,

z := z(P ) ∈ D̃ ∪ D̃bβ . Since vα is invariant under the deck transformations, we have

f(z +Bβ) = f(z) , z ∈ D̃ . (2.37)
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Assuming z to be constant and differentiating this equality with respect to Bβ, and taking into account

that ∂f
∂z (z +Bβ) = ∂f

∂z (z) as a corollary of (2.37), we get:

∂f

∂Bβ
(z +Bβ) =

∂f

∂Bβ
(z) − ∂f

∂z
(z) , z ∈ D̃ . (2.38)

Let us denote

Φ(P ) :=
∂vα(P )

∂Bβ

∣∣∣
z(P )

, P ∈ U ; (2.39)

Since the coordinate z(P ) is single-valued on the universal covering U , the differential Φ is also single-
valued and holomorphic on U . Consider also the quadratic differential ∂[va(P )], which in a local
coordinate x is given by (∂f/∂x)(dx)2 if vα(P ) = f(x)dx. Now we can rewrite (2.38) in a coordinate-
independent form:

Tbβ [Φ(P )] = Φ(P ) − ∂[vα(P )]

w
, P ∈ D . (2.40)

In complete analogy to (2.40) we can show that

Tbγ [Φ(P )] = Φ(P ) , γ 6= β , P ∈ D (2.41)

and
Taγ [Φ(P )] = Φ(P ) , γ = 1, . . . , g , P ∈ D (2.42)

Since the formulas (2.40), (2.41), (2.42) are valid in a neighborhood of any point of L̂ except {Pm},
and the differential Φ is holomorphic in L̂, we conclude that these formulas are valid for any P ∈ L̂.
Therefore, the differential Φ can be viewed as a differential on L itself, which is holomorphic everywhere
except the cycle aβ, where it has the additive jump given by −∂[va(P )]/w. Moreover, it has all
vanishing a-periods (this condition of vanishing of all the a-periods obviously makes sense, since all
the a-periods of the “jump differential” −∂[va(P )]/w also vanish).

To write down an explicit formula for Φ we recall that on the complex plane the contour integral
(1/2πi)

∮
C f(x)(x − y)−2dx taken in positive direction defines the functions f l and f r which are

holomorphic in the interior and the exterior of C, respectively, and on C the boundary values of f r

and f l (indeces l(eft) and r(right) refer to the side of the oriented contour C, where the boundary
value is computed) are related by the Plemelj formula f r(y) − f l(y) = −fy(y).

This observation allows to write immediately the formula for the differential Φ with discontinuity
−∂[va(P )]/w on the cycle aβ and all vanishing a-periods:

Φ(P ) =
1

2πi

∮

aβ

vα(Q)w(P,Q)

w(Q)
; (2.43)

the required discontinuity on the cycle aβ is implied by singularity structure of w(P,Q) and Plemelj
formula; vanishing of all the a-periods follows from vanishing of all the a-periods of bidifferential
w(P,Q). Formula (2.43) implies (2.27) for k = M + g, . . . ,M + 2g − 1.

The formula for differentiation with respect to Aβ has the different sign due to the interchange of
“left” and “right” in that case (due to the asymmetry between the cycles aβ and bβ imposed by their
intersection index aβ ◦ bβ = −bβ ◦ aβ = 1).

Integrating (2.27) over b-cycles and changing the order of integration, one gets (2.28). Formula
(2.29) can be proved in the same manner as (2.27). Formula (2.31) follows from the variational
formulas for the bidifferential w(P,Q) (2.29) in the limit P → Q if we write down these formulas with
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respect to the local coordinate z(P ) (in this local coordinate the projective connection Sw vanishes)
and take into account the definition (1.4) of the Bergman projective connection.

The variational formula for the prime-form (2.30) follows from the variational formula for W (P,Q)
(2.29) and the formula W (P,Q) = dP dQ log{E(P,Q)w1/2(P )w1/2(Q)} defining W (P,Q) in terms of
the prime-form. Namely, applying the second derivative dP dQ to (2.30) we arrive at (2.29) (after
squaring the integrand of (2.30) and taking into account that the functions depending on P or Q only
are annihilated by dP dQ). Since (2.29) is valid, we see that (2.30) holds up to addition of a function of

the form f(P )+ g(Q), where f(P ) and g(Q) are two functions holomorphic in L̂. Since both left- and
right-hand sides of (2.30) vanish at P = Q, we have g(Q) = −f(Q) and the additional term is of the
form f(P )− f(Q). Furthermore, one can verify that the function f(P ) is single-valued on L. Namely,
the left- and right-hand sides of (2.30) have trivial monodromy along any a-cycle. Under analytical
continuation of variable P along a cycle bα the left-hand side of (2.30) gains due to (2.5) an additive
term ∂ζk{−πiBαα − 2πi(Uα(P ) − Uα(Q))}. By making use of variational formulas (2.27), (2.28) it is
easy to verify that this term coincides with the additive term arising (due to transformation law (2.5))
in the right-hand side of (2.30) under analytical continuation along bα with respect to variable P .

Therefore, the function f(P ) is a holomorphic single-valued function of P ; thus f(P ) = const and
f(P ) − f(Q) = 0; therefore, the formula (2.30) holds without any additional constants.

�

In the sequel we shall also need to differentiate the prime-form E(P,Pm) with respect to coordinate
zm (this case is not covered by the variational formula (2.30) since z(Pm) := zm can not be kept
constant under differentiation). Surprisingly enough, such formula still looks the same as (2.30):

Corollary 1 The following variational formula holds for any m = 2, . . . ,M :

∂ log{E(P,Pm)w1/2(P )}
∂zm

∣∣∣
z(P )

= − 1

4πi

∮

s2g+m−1

1

w(R)

[
∂R log

E(P,R)

E(Pm, R)

]2

≡ −1

2
res
∣∣∣
R=Pm

{
1

w(R)

[
∂R log

E(P,R)

E(Pm, R)

]2
}

; (2.44)

E(P,Pm) := E(P,Q)(dxm(Q))1/2
∣∣∣
Q=Pm

,

as before, xm(Q) = (z(Q) − zm)1/(km+1) ≡
(∫ Q

Pm
w
)1/(km+1)

.

Proof. In what follows we shall use the simplified notation r := km + 1 and C := s2g+m−1. Let
Q be a point in a vicinity of Pm whose z-coordinate is kept fixed, for xm coordinate of this point we
shall use the simplified notation xm := xm(Q). One has z(Q) − zm = xrm and ∂

∂zm
xm = − 1

rxr−1
m

.

Calculating E(P,Q) in the local parameter z(Q) and in the local parameter xm, one gets

E(P,Q)w(Q)1/2 =
(
E(P,Q)

√
dxm

)√ dz

dxm
(Q) =

(
E(P,Q)

√
dxm

)√
rxr−1

m

and
∂

∂zm
log(E(P,Q)w(Q)1/2) =

∂

∂zm
log
(
E(P,Q)

√
dxm

)
− r − 1

2rxrm
. (2.45)
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Applying to the left hand side of the last equality the variational formula (2.30) for logE(P,Q)
(an additional factor w(P )1/2 in the left-hand side of (2.30) is inessential, since it is assumed to be
zm-independent) one has

− 1

4πi

∮

C

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

=
∂

∂zm
log
(
E(P,Q)

√
dxm

)
− r − 1

2rxrm
. (2.46)

Notice that the point Q in the left hand side of (2.46) lies outside the contour C. Let C̃ be another
contour encircling Pm such that the point Q and contour C lie inside of C̃. Using the Cauchy theorem
one gets

− 1

4πi

∮

C

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

= − 1

4πi

∮

C̃

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

− 2πi

(
− 1

4πi

)
Res
∣∣∣
R=Q

{
1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2
}

(2.47)

Since the prime-form E(Q,R) behaves as [z(Q)−z(R)+O((z(Q)−z(R))3 ]
√
dz(Q)

√
dz(R) as R→ Q,

the residue in (2.47) is given by

2

w(Q)
∂Q log{E(P,Q)w1/2(Q)} .

Writing down this expression in the local parameter xm we rewrite the right-hand side of (2.47) as
follows:

− 1

4πi

∮

C̃

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

− 1

rxr−1
m

d

dxm

(
log{E(P,Q)

√
dxm} +

r − 1

2
log xm

)
. (2.48)

Since the prime-form is holomorphic at Q = Pm, we have

∂R

{
logE(Q,R)

√
dxm

}
= ∂R logE(Pm, R) +O(xm) ,

and, therefore,

− 1

4πi

∮

C̃

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

= − 1

4πi

∮

C

1

w(R)

[
∂R log

E(P,R)

E(Pm, R)

]2

+O(xm) (2.49)

(the last integral in (2.49) does not change if we integrate over C̃ instead of C). Now introducing the
expansion

log
(
E(P,Q)

√
dxm

√
w(P )

)
= e0 + e1xm + · · · + er(xm)r +O(xr+1

m ) , (2.50)

one rewrites (2.48) as

− 1

4πi

∮

C

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

= − 1

4πi

∮

C

1

w(R)

[
∂R log

E(Pm, R)

E(Q,R)

]2

− r − 1

2r(xm)r

− e1 + 2e2xm + · · · + rerx
r−1
m

rxr−1
m

+O(xm) (2.51)
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On the other hand by virtue of (2.50) the right hand side of (2.46) can be rewritten as

∂

∂zm
log
(
E(P,Q)

√
dxm

)
− r − 1

2rxrm
=

∂e0
∂zm

−e1
1

rxr−1
m

−e2
2xm

rxr−1
m

−· · ·−er
rxr−1

m

rxr−1
m

+O(xm)− r − 1

2rxrm
. (2.52)

Now from (2.46), (2.51) and (2.50) it follows that

− 1

4πi

∮

C

1

w(R)

[
∂R log

E(P,R)

E(Q,R)

]2

=
∂e0
∂zm

which is equivalent to the statement of the corollary.
�

In the sequel we shall use the following Corollary of formulas (2.30) and (2.44):

Corollary 2 The following variational formulas hold:

∂ log{E(P,Pn)}
∂ζk

∣∣∣
z(P )

= − 1

4πi

∮

sk

1

w(R)

[
∂R log

E(R,P )

E(R,Pn)

]2

(2.53)

∂ log{E(Pl, Pn)}
∂ζk

= − 1

4πi

∮

sk

1

w(R)

[
∂R log

E(Pl, R)

E(Pn, R)

]2

, (2.54)

for any k = 1, . . . , 2g +M − 1, l, n = 1, . . . ,M , l 6= n; here E(P,Pn) is defined in Corollary 1;

E(Pl, Pn) := E(P,Q)(dxl(Q) dxn(P ))1/2
∣∣∣
Q=Pl, P=Pn

,

xn(Q) = (z(Q) − zn)
1/(kn+1).

Proof. Notice that in (2.30) one can take P = Pl and Q = Pn with l 6= n for k = 1, . . . , 2g and P = Pl,
P = Pn with l 6= n and l, n 6= k − 2g + 1 for k = 2g + 1, . . . , 2g +M − 1. Namely, consider points P
and Q in vicinities of Pl and Pn and apply to them (2.30). One has

E(P,Q)
√
w(P )

√
w(Q) = E(P,Q)

√
dxl(P )

√
dxn(Q)

√
dz(P )

dxl(P )

√
dz(Q)

dxn(Q)

and
∂

∂ζk
logE(P,Q) =

∂

∂ζk
log
{
E(P,Q)

√
dxl(P )

√
dxn(Q)

}
.

Sending P → Pl and Q→ Pn one gets the equality

∂

∂ζk
logE(Pl, Pn) = − 1

4πi

∮

sk

1

w(R)

[
∂R log

E(Pl, R)

E(Pn, R)

]2

.

The remaining equations stated in the Corollary can be proved in the same manner.
�

Dependence of the vector of Riemann constants and differential C(P ) on coordinates Aα, Bα and
zm is given by the following theorem:
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Theorem 4 The following variational formulas on the space H(k1, . . . , kM ) hold:

∂KP
α

∂ζk

∣∣∣
z(P )

=
1

2πi

∮

sk

vα(R)

w(R)
∂R log

s(R,Q0)E(R,P )g−1

√
vα(R)

(2.55)

∂

∂ζk
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= − 1

8πi

∮

sk

1

w

(
SB − SPFay

)
(2.56)

where k = 1, . . . , 2g +M − 1; the local parameter z(P ) is kept fixed under differentiation; the value of
the prime form E(R,P ) and the tensor s(R,Q0) with respect to arguments R and Q0 respectively are
calculated in the local parameter z.

(We notice that the product of C by a power of w in the left-hand side of (2.56) is a scalar function
(i.e. it has zero tensor weight) on L̂, as well as the right-hand side.)

Proof. These formulas are similar to Fay’s formulas for variations of KP and C(P ) with respect to
variation of the conformal structure on L defined by an arbitrary Beltrami differential ([9], pp. 57-59).
Unfortunately, Fay’s formulas do not directly imply (2.55), (2.56) due to essentially different fixing of
the argument P which we use here. Nevertheless the general framework of [9] is still applicable and
we adopt it in the following proof.

From (2.11), (2.27) and (2.28) one has

∂KP
α

∂ζk
=

1

2

∮

sk

v2
α

w
−

∑

β 6=α;β=1,...,g

δkβ
vβ(R

β)

w(Rβ)

∫ Rβ

P
vα

− 1

2πi

∑

β 6=α;β=1,...,g

∮

x∈aβ

{∮

Q∈sk

vβ(Q)∂x∂Q logE(x,Q)

w(Q)

}∫ x

P
vα

− 1

2πi

∑

β 6=α;β=1,...,g

∮

x∈aβ
vβ(x)

∫ R=x

R=P

∮

Q∈sk

vα(Q)∂R∂Q logE(R,Q)

w(Q)
, (2.57)

where Rβ = aβ ∩ bβ.
Notice that ∮

x∈aβ

∮

Q∈sk

(
vβ(Q)∂x∂Q logE(x,Q)

w(Q)

∫ x

P
vα

)
=

∮

Q∈sk

∮

x∈aβ

(
vβ(Q)∂x∂Q logE(x,Q)

w(Q)

∫ x

P
vα

)
− 2πiδkβ

vβ(R
β)

w(Rβ)

∫ Rβ

P
vα, (2.58)

due to asymptotic expansion (1.4) of the canonical meromorphic bidifferential.

Remark 6 Let us comment here on the appearance in the right hand sides of the two formulas above
the second terms which at the first sight look strange. To differentiate an integral, say

∮
aβ
Gdz, over

the cycle aβ with respect to the variable Aβ one cuts the surface along the basic cycles and integrates

along the contour aβ which now is a part of the boundary of the fundamental polygon L̂. Choose a
finite cover of the contour aβ by the open intervals Ik such that the map P 7→ z(P ) is univalent inside
each interval and let {χj} be the corresponding partition of unity. Then

∮
aβ
Gw =

∑
j

∫
Ij
χj(z)G(z)dz

and the last integral in the sum is an integral with variable upper limit: when the coordinate Aβ
gets an increment this upper limit gets the same increment. Thus, after differentiation of the integral
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∮
aβ
G an extra term appears: the value of the integrand at the end point of the contour aα (that is

the point Rβ). It should be noted that the third term in (2.57) implicitly depends on the point Rβ:
the iterated integral

∮
aβ

∮
bβ

entering this term is singular at the point of intersection of aβ and bβ and

its value changes when we move the contours inside their homology classes changing the point of their
intersection. On the other hand the sum of the second and the third terms in the right hand side of
(2.57) does not depend on Rβ and the concrete choice of the contours aβ, bβ within their homology
classes.

To explain the appearance of the second term in the right hand side of (2.58) we observe that the
integrand of the iterated integral

∮
αβ

∮
bβ

in the left hand side of (2.58) has the second order singularity

at the point Rβ. Localizing the problem, i. e. making the contours of integration locally coincide with
the subintervals of real and imaginary axis containing the origin and writing the integrand as

i
vβ(R

β)

w(Rβ)

(∫ Rβ

P
vα

1

(x− iy)2
+O

(
1

x− iy

))

dxdy

in a vicinity of Rβ, one sees that after changing of the order of integration the right hand side of (2.58)
gets the extra term

i
vβ(R

β)

w(Rβ)

∫ Rβ

P
vα

{∫ y=a

y=−a
dy

∫ x=a

x=−a

dx

(x− iy)2
−
∫ x=a

x=−a
dx

∫ y=a

y=−a

dy

(x− iy)2

}
= −2πi

vβ(R
β)

w(Rβ)

∫ Rβ

P
vα ,

where we used the fact that the expression in the braces equals −2π. The analytic background of
this fact is that the logarithmic expression arising in the first iterated integral is computed assuming
that the branch cut of the logarithm goes from 0 to +i∞ along the imaginary axis; in the second
integral the branch cut of the logarithm is chosen along the real axis from 0 to +∞. Equivalently,
one calculates the first iterated integral as −2

∫ a
−a

a dy
y2+a2

= −π, while the second iterated integral gives

2
∫ a
−a

a dx
x2+a2

= π.

Thus, after changing the order of integration and integration by parts the right-hand side of (2.57)
reduces to

− 1

2πi

∮

sk

1

w(Q)




−πiv2
α(Q) −

∑

β 6=α

∮

aβ

[
∂Q logE(Q,x)vβ(Q)vα(x) − vβ(x)vα(Q)∂Q log

E(Q,x)

E(Q,P )

]

 .

As it is explained in ([9], p. 58) the quadratic differential in the braces coincides with

−vα(Q)∂Q log
s(Q,Q0)E(Q,P )g−1

√
vα(Q)

which gives (2.55).
To prove (2.56) we need the following lemmas.

Lemma 3 Let the coordinates z(P ) and z(Q) be kept fixed and all the tensor objects with arguments
P,Q and Q0 are calculated in the local parameter z. Then

∂ log s(P,Q)

∂ζk
=

1

4πi

∮

sk

1

w(R)
∂R log

E(R,P )

E(R,Q)
∂R log

[
s2(R,Q0)E(R,P )g−1E(R,Q)g−1

]
, (2.59)

where the values of s and the prime form are calculated in the local parameter z.
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Proof. Assume for simplicity that none of the cycles aα, α = 1, . . . , g has a nonzero intersection
index with sk. (The case with intersections presents no serious difficulty, one should observe that the
arising additional terms disappear after the change of order of integration – cf. (2.57) and (2.58).)
Using (2.12), (2.30) and (2.27), we get

∂ log s(P,Q)

∂ζk
= − 1

2πi

g∑

β=1

∮

x∈aβ

∮

R∈sk

1

w(R)
∂x∂R logE(R,x)vβ(R) log

E(x, P )

E(x,Q)
+

+
1

4πi

g∑

β=1

∮

x∈aβ
vβ(x)

∮

R∈sk

1

w(R)

{(
dR log

E(x,R)

E(P,R)

)2

−
(
dR log

E(x,R)

E(Q,R)

)2
}

=: Σ1 + Σ2. (2.60)

To simplify the first sum in (2.60) we change the order of integration, integrate by parts, rewrite the
interior integral as an integral over the boundary of the fundamental domain and (at the final step)
apply the Cauchy theorem:

Σ1 =
1

2πi

∮

R∈sk

1

w(R)

g∑

β=1

∮

x∈aβ
vβ(R)∂R logE(R,x)∂x log

E(x, P )

E(x,Q)
=

− 1

(2πi)(4πi)

∮

R∈sk

1

w(R)

∮

x∈∂ bL
(∂R logE(R,x))2∂x log

E(x, P )

E(x,Q)
=

− 1

4πi

∮

sk

1

w(R)

[
(∂R logE(P,R))2 − (∂R logE(Q,R))2

]
− 1

4πi

∮

sk

(
d

dz(R)

)2

log
E(R,P )

E(R,Q)
dz(R) =

− 1

4πi

∮

sk

1

w(R)

[
(∂R logE(P,R))2 − (∂R logE(Q,R))2

]
. (2.61)

The second equality in the sequence of equalities above follows from (2.5), the single-valuedness of
the one-form

x 7→ ∂x log
E(x, P )

E(x,Q)

on L and the relation ∮

αβ

∂x log
E(x, P )

E(x,Q)
= 0,

which holds due to single-valuedness of the prime form along the a-cycles. The last equality holds
since ∮

sk

(
d

dz(R)

)2

log
E(R,P )

E(R,Q)
dz(R) ≡

∮

sk

∂R

{
1

w
∂R log

E(R,P )

E(R,Q)

}
= 0 .

The second sum in (2.60) transforms as follows

Σ2 =
1

4πi

∮

R∈sk

1

w(R)

g∑

β=1

∮

x∈αβ
vβ(x)

{
2∂R logE(x,R)∂R log

E(Q,R)

E(P,R)
+

+∂R log(E(P,R)E(Q,R))∂R log
E(P,R)

E(Q,R)

}
=
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1

πi

∮

R∈sk

1

w(R)



−1

2
∂R log

E(P,R)

E(Q,R)

g∑

β=1

∂R

∮

x∈aβ
vβ(x) log

E(x,R)

E(x,Q0)
+

+
g

4
∂R log(E(P,R)E(Q,R))∂R log

E(P,R)

E(Q,R)

]
=

=
1

4πi

∮

sk

1

w(R)

[
∂R log

E(P,R)

E(Q,R)
∂R log(s2(R,Q0)E

g(P,R)Eg(Q,R))

]
. (2.62)

The statement of the lemma follows from (2.60), (2.61) and (2.62).
�

The next lemma describes the variation of the determinant det ||vα(Rβ)|| from the denominator of
expression (2.16).

Lemma 4 Assume that the z-coordinates of the points R1, . . . , Rg, P are moduli-independent. Then

lim
R1,...,Rg→P

∂ log det ||vα(Rβ)||
∂ζk

= − 1

2πi

g∑

α,β=1

∮

sk

1

w(R)
∂2
zαzβ

log Θ(KP −AP (R))vα(R)vβ(R). (2.63)

Proof. Denoting the matrix ||vα(Rβ)|| by V and using (2.27), one has

∂ log det V

∂ζk
= Tr

{
V
−1

∣∣∣∣

∣∣∣∣
1

2πi

∮

sk

vα(R)w(Rβ , R)

w(R)

∣∣∣∣

∣∣∣∣

}
=

1

2πi

∮

sk

1

w(R)

∑

α,β

(V−1)αβw(Rβ , R)vα(R).

Due to equation (35) from [8] this expression can be rewritten as

− 1

2πi

∮

sk

1

w(R)

g∑

α,β=1

∂2
zαzβ

log Θ

(
g∑

α=1

AP (Rα) −AP (R) +KP

)
vα(R)vβ(R) ,

and one gets (2.63) sending R1, . . . , Rg to P , when all AP (Rα) → 0.
�

Similarly to [9], we are to vary the logarithm of the right hand side of expression (2.16) and
pass to the limit R1, . . . , Rg → P , and then Q → Pk. In what follows all the tensor objects with
arguments P,Q,Q0, R1, . . . , Rg are calculated in the local parameter z. Using (2.28) we can represent
the variation of the theta-functional term from the numerator of (2.16) as follows

∂ζk log Θ(

g−1∑

γ=1

AP (Rγ) + AQ(Rg) +KP |B) =

g∑

α=1

[
∂ζk

∫ Pg
γ=1 Rγ

Q+(g−1)P
vα + ∂ζkK

P
α

]
∂ log Θ

∂zα
+

g∑

α,β=1

∂ log Θ

∂Bαβ

∮

sk

va(R)vβ(R)

w(R)
. (2.64)

We have

∂ζk

∫ Pg
γ=1 Rγ

Q+(g−1)P
vα =

1

2πi

∮

sk

1

w(R)

∫ Pg
γ=1 Rγ

Q+(g−1)P
∂R∂x logE(x,R)vα(R) =
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=
1

2πi

∮

sk

1

w(R)
{∂R logE(P,R)vα(R) − ∂R logE(Q,R)vα(R)} + o(1) (2.65)

as R1, . . . , Rg → P .
Now from (2.64), (2.65), (2.11), the heat equation for the theta-function and the obvious relation

∂R log Θ(KP −AP (R)) = −
g∑

α=1

(log Θ)zαvα(R)

it follows that

lim
R1,...,Rg→P

∂ζk log Θ(

g−1∑

γ=1

AP (Rγ) + AQ(Rg) +KP |B) =

= − 1

2πi

∮

sk

1

w(R)

{
∂R log Θ(KP −A(R))∂R log[s(R,Q0)E

g(R,P )] +
(w(R)∂R)([w(R)]−1∂R)Θ(KP −A(R))

4Θ(KP −AP (R))

+

g∑

α=1

∂zα log Θ(KP −AP (Q))∂R logE(Q,R)vα(R)

}

+ o(1) (2.66)

as Q→ R.
The variation of remaining terms in the right hand side of (2.16) is much easier. One has

lim
R1,...,Rg→P

∂ζk
∑

α<β

logE(Rα, Rβ) = 0 , (2.67)

lim
R1,...,Rg→P

∂ζk

g∑

γ=1

log s(Rγ , P ) = 0 (2.68)

lim
R1,...,Rg→P

∂ζk

g∑

γ=1

logE(Q,Rγ) = − g

4πi

∮

sk

1

w(R)

(
∂R log

E(Q,R)

E(P,R)

)2

(2.69)

due to (2.30) and Lemma 3.
Now using (2.16), summing up (2.59), (2.66 - 2.69) and (2.63), cleverly rearranging the terms (as

Fay does on p. 59 of [9]) and sending Q→ R, we get

∂ζk log C(P ) =

1

πi

∮

sk

1

w(R)

{
1

4

(w(R)∂R)([w(R)]−1∂R)Θ(KP −AP (R))

Θ(KP −AP (R))
− 1

2
∂R log Θ(KP −AP (R))∂R log[s(R,Q0)E

g(R,P )]

−1

4
(w(R)∂R)([w(R)]−1∂R) logE(R,P ) +

1

2
∂R log s(R,Q0)∂R logE(R,P ) +

2g − 1

4
(∂R logE(R,P ))2

−1

2

[
∂R logE(R,Q)

(
g∑

α=1

∂zα log Θ(KP −AP (Q))vα(R) + ∂R log[s(R,Q0)E
g(R,P )]

)

−1

2

(w(R)∂R)([w(R)]−1∂R)E(R,Q)

E(R,Q)
−

g∑

α,β=1

∂2
zαzβ

log Θ(KP −AP (R))vα(R)vβ(R)





Q=R

}
. (2.70)
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Due to (2.6), one has

lim
Q→R

∂R logE(R,Q)

(
g∑

α=1

∂zα log Θ(KP −AP (Q))vα(R) + ∂R log[s(R,Q0)E
g(R,P )]

)

= lim
z(Q)→z(R)

1

z(Q) − z(R)

(
∂R log

s(R,Q0)E
g(R,P )

Θ(KP −A(R))
+

+

g∑

α,β=1

∂2
zαzβ

log Θ(KP −AP (R))vα(R)vβ(R)(z(Q) − z(R)) +O((z(Q) − z(R))2)



 =

=

g∑

α,β=1

∂2
zαzβ

log Θ(KP −AP (R))vα(R)vβ(R).

Here we made use of the fact that the function

R 7→ s(R,Q0)E
g(R,P )

Θ(KP −AP (R))
(2.71)

for fixed P is holomorphic (since the zero of multiplicity g at R = P is canceled by the zero of the
same multiplicity of Eg(R,P ) while s(R,Q0) is non-singular in L̂) and single-valued on L (using (2.5)
and information about the twists of s given after formula (2.12), one sees that all the monodromies of
this function along the basic cycles are trivial) and, therefore, a constant. Using (2.6), we see that

lim
Q→R

w(R)∂R([w(R)]−1∂R)E(R,Q)

E(R,Q)
= −1

2
[SB − Sw](R)

Thus, the last two lines of (2.70) simplify to − (SB−Sw)(R)
8w(R) . Using the R-independence of expression

(2.71) once again, we may rewrite the remaining part of (2.70) as

1

4
w(R)∂R

1

w(R)
∂R log[s(R,Q0)E(R,P )g−1] − 1

4
(∂R log[s(R,Q0)E(R,P )g−1])2,

which coincides with 1
8w (SFay − Sw) due to relation (2.20). Formula (2.56) is proved. �

Corollary 3 The variational formula (2.55) can be equivalently rewritten as follows:

∂KP
α

∂ζk

∣∣∣
z(P )

=
1

2πi

∮

sk

vα(R)

w(R)
∂R log

s(R,Q0)E(R,P )g−1

√
w(R)

(2.72)

or

∂KP
α

∂ζk

∣∣∣
z(P )

=
1

4πi

∮

sk

vα(R)

{
1

w(R)
∂R log

M∏

m=1

(
E(R,P )

E(R,Pm)

)km
− 2πi

〈r, v(R)〉
w(R)

}

(2.73)

where integer vector r is defined by (2.21)

Proof. The difference between (2.55) and (2.72) is, up to a constant factor, given by the integral
∮

sk

vα(R)

w(R)
∂R log

vα(R)

w(R)
=

∮

sk

∂R
vα(R)

w(R)
.

Since vα(R)/w(R) is a single-valued meromorphic function on L, this integral vanishes.
The expression (2.73) follows from representation (2.22) of the differential s(P,Q) in terms of

prime-forms.
�
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2.4 Relation to Teichmüller deformation

Here we point out a close link of our deformation framework on the moduli spaces of holomorphic
differentials with Teichmüller deformation. The existence and uniqueness theorems of Teichmüller
state that any two points in Teichmüller space of Riemann surfaces of given genus are related by so-
called Teichmüller deformation (see for example [1]) defined by a holomorphic quadratic differential
W and a real positive number k. For our present purposes we assume that W = w2, where w is
a holomorphic differential on L (for and arbitrary W its “square root” w is a holomorphic 1-form

on two-sheeted “canonical covering” of L). The form w defines local coordinate z(P ) =
∫ P
P0
w in a

neighborhood of any point P0 ∈ L. Introduce real coordinates (x, y): z = x + iy. Then Teichmüller
deformation corresponds to stretching in horizontal direction with some constant coefficient: x →
1+k
1−kx, y → y; such stretching is defined globally on L. The finite Beltrami differential corresponding
to such finite variation of conformal structure is given by k w̄w ([1], p.32). Infinitesimally, when k → 0,
the stretching is given by x → (1 + 2k)x and Beltrami differential defining infinitesimal deformation
d/dk at k = 0 is

µw =
w̄

w
(2.74)

Under infinitesimal deformation of the complex structure by an arbitrary Beltrami differential µ the
variation of the matrix of b-periods is given by the Ahlfors-Rauch formula ([26], p. 263):

δµBαβ :=
d

dt

∣∣∣
t=0

Bαβ =

∫

L
vα ∧ (µwvβ) (2.75)

Therefore, according to (2.75), variation of the matrix of b-periods under infinitesimal Teichmüller
deformation is given by

∂Bαβ

∂k

∣∣∣
k=0

=

∫

L

w̄vα
w

∧ vβ = −
∫

L

vαvβ
w

∧ w̄ (2.76)

Applying Stokes theorem to the fundamental polygon L̂ with deleted neighborhoods of zeros of dif-
ferential w, we further rewrite (2.76) as an integral over boundary:

{∮

∂ bL
−2πi

M∑

m=1

res|Pm

}
vαvβ
w

(P )

∫ P

P0

w̄ (2.77)

where P0 is an arbitrary basepoint. Since both forms
vαvβ
w and w̄ are closed outside of zeros of w, in

analogy to the standard proof of Riemann bilinear relations (see, e. g., [26], p. 257), choosing P0 to
coincide with P1, we rewrite this using the coordinates (2.1) as follows:

∂Bαβ

∂k

∣∣∣
k=0

=

g∑

γ=1

{
B̄γ

∮

aγ

vαvβ
w

− Āγ

∮

bγ

vαvβ
w

}
+ 2πi

M∑

m=2

z̄mres|Pm
vαvβ
w

(2.78)

On the other hand, we have
∫
L
vαvβ
w ∧w = 0, which, repeating the same computation, implies,

0 =

g∑

γ=1

{

Bγ

∮

aγ

vαvβ
w

−Aγ

∮

bγ

vαvβ
w

}

+ 2πi

M∑

m=2

zmres|Pm
vαvβ
w

(2.79)

Adding up (2.78) and (2.79), we get:

∂Bαβ

∂k

∣∣∣
k=0

= 2

g∑

γ=1

{

(ℜBγ)
∮

aγ

vαvβ
w

− (ℜAγ)
∮

bγ

vαvβ
w

}

+ 4πi

M∑

m=2

(ℜzm)res|Pm
vαvβ
w

(2.80)
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Let us now verify that our variational formulas (2.28) for the matrix of b-periods lead to the same
result. Under Teichmüller deformation ℑAα, ℑBα and ℑzm remain unchanged, and corresponding
real parts infinitesimally multiply with 1 + 2k. Therefore,

∂Bαβ

∂k

∣∣∣
k=0

= 2
∑

γ

(ℜAγ)
∂Bαβ

∂(ℜAγ)
+ 2

∑

γ

(ℜBγ)
∂Bαβ

∂(ℜBγ)
+ 2

M∑

m=2

(ℜzm)
∂Bαβ

∂(ℜzm)
(2.81)

in complete agreement with (2.80) if we take into account that Bαβ is independent of Āα, B̄α and z̄m

(i.e. for example
∂Bαβ

∂(ℜAγ) =
∂Bαβ

∂Aγ
etc) and substitute here our variational formulas (2.28).

3 Bergman tau-function

Definition 2 The Bergman tau-function τ(L, w) on the stratum Hg(k1, . . . , kM ) of the space of Abelian
differentials is locally defined by the following system of equations:

∂ log τ(L, w)

∂ζk
= − 1

12πi

∮

sk

SB − Sw
w

, (3.1)

where k = 1, . . . , 2g + M − 1; SB is the Bergman projective connection; Sw(x) :=
{∫ P

w, x
}
; the

difference between two projective connections SB and Sw is a meromorphic quadratic differential with
poles at the zeros of w.

To justify this definition one needs to prove that the system of equations (3.1) is compatible. This
follows in principle from the fact that in the sequel we find an explicit expression for τ(L, w). However,
the computation of τ(L, w) is rather lengthy and technical, while the straightforward verification of
compatibility of equations (3.1) is simple, and we present it here.

Denote the right-hand sides of equations (3.1) by Hζk . In analogy with the construction of the
Bergman tau-function on Hurwitz spaces ([15]) we call these quantities Hamiltonians. Here it will be
necessary to distinguish three groups of the coordinates on H(k1, . . . , kM ), so we shall also use the
self-explanatory notation HAα , HBα and Hzm for these Hamiltonians.

We have to show that ∂HAα

∂Bβ
= ∂H

Bβ

∂Aα
, ∂Hzm

∂Aα
= ∂HAα

∂zm
, etc. Most of these equations immediately

follow from Theorem 3 and the symmetry of the bidifferential w(P,Q).
For example, to prove that

∂HAα

∂Aβ
=
∂HAβ

∂Aα
(3.2)

for α 6= β we write down the left-hand side as

∂HAα

∂Aβ
= − 1

4π2

∮

aα

∮

aβ

w2(P,Q)

w(P )w(Q)
(3.3)

which is obviously symmetric with respect to interchange of Aα and Aβ since the cycles aα and aβ
always can be chosen non-intersecting. Similarly, one can prove all other symmetry relations where
the integration contours don’t intersect (interpreting the residue at Pm in terms of the integral over a
small contour encircling Pm).
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The only equations which require interchange of the order of integration over intersecting cycles
are

∂HAα

∂Bα
=
∂HBα

∂Aα
. (3.4)

To prove (3.4) we denote the intersection point of aα and bα by Qα; then we have:

∂HAα

∂Bα
≡ 1

12πi

∂

∂Bα

{∮

bα

SB − Sw
w

}
=

1

12πi

SB − Sw
w

(Qa) −
1

4π2

∮

bα

∮

aα

w2(P,Q)

w(P )w(Q)
(3.5)

where the value of 1-form 1
w (SB − Sw) at the point Qα is computed in coordinate the z(P ). The

additional term in (3.5) arises from dependence of the cycle bα in the z-plane on Bα (the difference
between the initial and endpoints of the cycle bα in z-plane is exactly Bα), which has to be taken into
account in the process of differentiation (cf. the arguments given in Remark 6).

In the same way we find that

∂HBα

∂Aα
≡ − 1

12πi

∂

∂Aα

{∮

aα

SB − Sw
w

}
= − 1

12πi

SB − Sw
w

(Qa) −
1

4π2

∮

aα

∮

bα

w2(P,Q)

w(P )w(Q)
(3.6)

(note the change of the sign in front of the term 1
w (SB − Sw)(Qα) in (3.6) comparing with (3.5)).

Interchanging the order of integration in, say, (3.5) we come to (3.6) after elementary analysis of the
behavior of the integrals in a neighborhood of the singular point Qα. (Notice that near the diagonal
P = Q one has

w2(z(P ), z(Q)) =
1

(z(P ) − z(Q)4
+
SB(z(P ))

3

1

(z(P ) − z(Q))2
+O

(
1

z(P ) − z(Q)

)

and only the second term gives a nontrivial input into the difference

(∮

aα

∮

bα

−
∮

bα

∮

aα

)
w2(P,Q)

w(P )w(Q)
;

cf. Remark 6.)
This completes the proof of existence of the Bergman tau-function defined by (3.1).

3.1 Global definition of the Bergman tau-function

The right-hand side of formulas (3.1) depends not only on the choice of the canonical basis of absolute
homologies on the surface L, but also on mutual positions of the basic cycles and the points of the
divisor (w), i.e. it depends on the choice of the basis (aα, ba, lm) in H1(L, {P1, . . . , PM}; Z).

However, it turns out that dependence on the choice of contours {lm} is in fact absent, and one
possible global definition of the tau-function could be as a horizontal section of some (flat) line bundle
T over the covering Ĥg(k1, . . . , kM ) of the space Hg(k1, . . . , kM ). Here Ĥg(k1, . . . , kM ) is the space
of triples (L, w, {aα, bα}), where {aα, bα} is a canonical basis in the first homologies H1(L,Z). In the
trivial line bundle Ĥg(k1, . . . , kM ) × C introduce the connection

dB = d−
2g+M−1∑

k=1

Hζkdζk. (3.7)
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(Here d is the external differentiation having both “holomorphic” and “antiholomorphic” components.)
The Lemma 5 below shows that this connection is well-defined on Ĥg(k1, . . . , kM ) i. e. expression
(3.7) is independent of the choice of contours lm connecting the zeros P1 and Pm.

Let two systems of cuts on L: {aα, bα} and {a′α, b′α} define the same canonical basis in H1(L,Z).
Notice that the cycles aα and a′α (as well as bα and b′α) are not necessarily equivalent as elements
of H1(L, {P1, . . . , PM}; Z). Let L̂ and L̂′ be the corresponding fundamental polygons and let {ζk} =
{Aα, Bα, zm}, {ζ ′k} = {A′

α, B
′
α, z

′
m} be the corresponding systems of local coordinates on Hg(k1, . . . , kM ).

We recall that when defining the coordinate zm (or z′m) we integrate the differential w over a contour
lm (or l′m) connecting the zeros P1 and Pm and lying inside the fundamental polygon L̂ (or L̂′). Let
also Hζk and Hζ′k be the corresponding Hamiltonians.

Lemma 5 The following equality holds

2g+M−1∑

k=1

Hζkdζk =

2g+M−1∑

k=1

Hζ′kdζ ′k . (3.8)

Proof. We may deform one system of cuts (keeping it defining the same canonical basis in H1(L,Z))
into another through a sequence of elementary moves: each elementary move corresponds to passing
of a chosen zero Pk of w from one shore of some cut to another. It is sufficient to show that (3.8) holds
if the system of cuts {a′α, b′α} can be obtained from the system {aα, bα} via one elementary move.

Let the zero Pk pass from the right shore of the (oriented) cut aγ to its left shore. Due to the
Cauchy theorem we have

HB′
γ = HBγ +Hzk (3.9)

and all other Hamiltonians do not change. The coordinate zk transforms to

z′k = zk −Bγ (3.10)

and all other coordinates do not change. Equation (3.8) immediately follows from (3.9) and (3.10).
Let the zero Pk pass from the right shore of the (oriented) cut bγ to its left shore. Then

HA′
γ = HAγ −Hzk (3.11)

and all other Hamiltonians do not change. The coordinate zk transforms to

z′k = zk +Aγ (3.12)

and all other coordinates do not change. Equation (3.8) again holds. �

The compatibility of equations (3.1) provides flatness of connection (3.7).
The flat connection dB determines a character of the fundamental group of Ĥg(k1, . . . , kM ) i.e. the

representation
ρ : π1

(
Ĥg(k1, . . . , kM )

)
→ C

∗ . (3.13)

Denote by U the universal covering of Ĥg(k1, . . . , kM ); then the group π1

(
Ĥg(k1, . . . , kM )

)
acts on

the direct product U × C as follows:

g(u, z) = (gu, ρ(g)z) ,

where u ∈ U , z ∈ C, g ∈ π1

(
Ĥg(k1, . . . , kM ))

)
. The factor space

(
U × C

)
/π1

(
Ĥg(k1, . . . , kM )

)
has

the structure of a holomorphic line bundle over Ĥg(k1, . . . , kM ); we denote this bundle by T . Now the
local definition 3.1 of the Bergman tau-function can be reformulated as follows:
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Definition 3 The flat holomorphic line bundle T equipped with the flat connection dB is called the
Bergman line bundle over the space Ĥg(k1, . . . , kM ). The (unique up to a multiplicative constant)
horizontal holomorphic section of the bundle T is called the Bergman τ -function.

3.2 Explicit formula for the Bergman tau-function

Here we are going to give an explicit formula for the Bergman tau-function. As the first step we
rewrite the definition of the tau-function (3.1) can be rewritten as follows:

∂ log τ(L, w)

∂ζk
= − 1

12πi

∮

sk

SB − SPFay
w

− 1

12πi

∮

sk

SPFay − Sw

w
, (3.14)

where SPFay is Fay’s projective connection (2.18). The first term in (3.14) can be integrated in terms
of differential C(P ) (2.13) using the variational formula (2.56).

To formulate the theorem giving the antiderivative of the second term in (3.14) we introduce two
vectors r and q with integer coefficients such that for a given choice of the fundamental cell L̂

AP

(
(w)
)

+ 2KP + Br + q = 0 . (3.15)

Theorem 5 For any point P ∈ L not coinciding with any Pm introduce the following function G(P )
on L̂:

G(P ) = e8πi〈r,K
P 〉+2πi〈r,Br〉[w(P )](2g−2)2

{
M∏

m=1

Ekm(P,Pm)

}4g−4 M∏

m,n=1m<n

E−2kmkn(Pm, Pn) (3.16)

Then the following variational formulas hold:

∂ log G(P )

∂ζk

∣∣∣
z(P )

=
1

πi

∮

sk

SPFay − Sw

w
(3.17)

Proof. To simplify our computation in this proof for any Q ∈ L we introduce the 1-forms fQ (these

forms are meromorphic on L̂, but their combinations arising below are all meromorphic one-forms on
L itself). If Q does not coincide with any Pm, fQ(R) ≡ ∂R log{E(R,Q)w1/2(R)w1/2(Q)}. For Q = Pm
we define fPm(R) = ∂R log{E(R,Pm)w1/2(R)}.

To compute the left-hand side of (3.17) we use variational formulas ,(2.53), (2.54) (2.28) and (2.55)
for the prime-form, KP and B. Using (2.53) and (2.54) we get:

∂ log G(P )

∂ζk

∣∣∣
z(P )

= − 1

4πi

∮

sk

1

w

{

(4g − 4)

M∑

m=1

km(fP − fPm)2 − 2
∑

m<n

kmkn(fPn − fPm)2

}

+8πi

〈
r,
∂KP

∂ζk

〉
+ 2πi

〈
r,
∂B

∂ζk
r

〉

For ∂B/∂ζk we shall use the variational formula (2.28); for ∂KP
α /∂ζk we shall use the formula (2.73).

From (2.73) we have:

∂〈KP , r〉
∂ζk

=
1

4πi

∮

sk

〈r, v(R)〉
w(R)

{

(2g − 2)fP −
M∑

m=1

kmfPm − 2πi〈r, v(R)〉
}

(3.18)
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Taking into account (2.28), we get

∂〈r, Br〉
∂ζk

=

∮

sk

〈r, v(R)〉2
w

(3.19)

Let us observe now that the first term in (2.73) can be rewritten as

− 1

2πi

∮

sk

1

w(R)

{
(2g − 2)fP −

M∑

m=1

kmfPm

}2

Now (2.73) can be rewritten as follows:

∂ log G(P )

∂ζk

∣∣∣
z(P )

= − 1

2πi

∮

sk

1

w(R)

{
(2g − 2)fP −

M∑

m=1

kmfPm

}2

+2

∮

sk

〈r, v(R)〉
w(R)

{

(2g − 2)fP −
M∑

m=1

kmfPm

}

− 2πi

∮

sk

〈r, v(R)〉2
w(R)

= − 1

2πi

∮

sk

1

w(R)

{
(2g − 2)fP −

M∑

m=1

kmfPm − 2πi〈r, v(R)〉
}2

(3.20)

Consider now the right-hand side of (3.17). Using formula (2.22) for the differential s we have:

1

w(R)
∂R log

{
s2(R,Q0)E

2g−2(R,P )
}

=
1

w(R)
∂R log

M∏

m=1

{
E(R,P )

E(R,Pm)

}km
− 2πi

〈r, v〉
w

(3.21)

Substituting this expression into representation (2.20) of the 1-form (SPFay − Sw)/w, we get

1

πi

∮

sk

SPFay − Sw

w
= − 1

2πi

∮

sk

1

w(R)

{
∂R log

M∏

m=1

{
E(R,P )

E(R,Pm)

}km
− 2πi〈r, v〉

}2

+
1

πi

∮

sk

∂R

{
1

w(R)
∂R log

M∏

m=1

[
E(R,P )

E(R,Pm)

]km
− 2πi

〈r, v(R)〉
w(R)

}
(3.22)

The first integral in the right-hand side of (3.22) coincides with the right-hand side of (3.20). The
second integral in the right-hand side of (3.22) vanishes, since it is an integral of the derivative of the
meromorphic function in the braces over a closed contour. The theorem is proved.

�

Now from variational formula for differential C (2.56) and Theorem 5 we get the formula for
Bergman tau-function:

τ(L, w) = (G(P ))−1/12
(
C(P ){w(P )}g(g−1)/2

)2/3
(3.23)

We notice that the expression if the right-hand side of (3.23) is in fact independent of the choice of
point P . Taking into account expression for G(P ) (3.16), we come to the following theorem:
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Theorem 6 The Bergman tau-function on the space Hg(k1, . . . , kM ) is given by the following formula:

τ(L, w) = F2/3e−
πi
6
〈r,Br〉 ∏

m,n,m<n

{E(Pm, Pn)}kmkn/6 (3.24)

where the function F defined by (2.24):

F = [w(P )]
g−1

2 e−πi〈r,K
P 〉
{

M∏

m=1

[E(P,Pm)]
(1−g)km

2

}

C(P ) (3.25)

is independent of P ; the integer vector r is defined by the equality

A
(
(w)
)

+ 2KP + Br + q = 0 ; (3.26)

q is another integer vector, (w) is the divisor of the differential w, the initial point of the Abel map A
coincides with P and all the paths are chosen inside the same fundamental polygon L̂.

The expression (3.24), (3.25) for the Bergman tau-function can be slightly simplified for the case
of the highest stratum Hg(1, . . . , 1).

Lemma 6 Let all the zeros of the Abelian differential w be simple. Then the fundamental cell L̂ can
always be chosen such that A((w)) + 2KP = 0.

Proof. For an arbitrary choice of the fundamental cell we can claim that the vector A((w)) + 2KP

coincides with 0 on the Jacobian of the surface L, i.e. there exist two integer vectors r and q such that
A((w)) + 2KP + Br + q = 0. Fix some zero Pk of w; according to our assumption this zero is simple.
By a smooth deformation of a cycle aα within a given homological class we can stretch this cycle in
such a way that the point Pk crosses this cycle; two possible directions of the crossing correspond to
the jump of component rα of the vector r to +1 or −1. Similarly, if we deform a cycle bα in such a
way that it is crossed by the point Pk, the component qα of the vector q also jumps by ±1. Repeating
such procedure, we come to fundamental domain where r = q = 0.

�

From the proof it is clear that even a stronger statement is true: the choice of the fundamental
domain such that A((w)) + 2KP = 0 is always possible if the differential w has at least one simple
zero.

Corollary 4 Consider the highest stratum H(1, . . . , 1) of the space Hg containing Abelian differentials

w with simple zeros. Let us choose the fundamental cell L̂ such that A((w)) + 2KP = 0. Then the
Bergman tau-function on H(1, . . . , 1) can be written as follows:

τ(L, w) = F2/3
2g−2∏

m,l=1 m<l

[E(Pm, Pl)]
1/6 (3.27)

where expression

F := [w(P )]
g−1
2 C(P )

2g−2∏

m=1

[E(P,Pm)]
(1−g)

2 (3.28)

does not depend on P ; all prime-forms are evaluated at the points Pm in the distinguished local pa-

rameters xm(P ) =
(∫ P

Pm
w
)1/2

.
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The following corollary describes the dependence of the Bergman tau-function on the choice of
holomorphic differential assuming that he Riemann surface remains the same. For simplicity we
assume that all zeros of both holomorphic differentials are simple, and none of the zeros of the first
differential coincides with a zero of the second differential. This corollary will be used below in
deriving formulas of Polyakov type, which describe the dependence of the determinant of Laplacian
on the choice of flat conical metric on a fixed Riemann surface.

Corollary 5 Let w and w̃ be two holomorphic 1-forms with simple zeros on the same Riemann surface
L; assume that all of these zeros are different. Introduce their divisors (w) :=

∑2g−2
m=1 Pm and (w̃) :=∑2g−2

m=1 P̃m. Then

τ(L, w)

τ(L, w̃)
=

2g−2∏

m=1

{
res|P̃m{w

2/w̃}
res|Pm{w̃2/w}

}1/24

. (3.29)

Proof. The distinguished local parameter in a neighborhood of Pm is xm(P ) :=
[∫ P
Pm

w
]1/2

; in a

neighborhood of P̃m the distinguished local parameter is x̃m(P ) :=
[∫ P
P̃m

w
]1/2

. Then the formula

(3.29) can be alternatively rewritten as follows:

τ(L, w)

2g−2∏

m=1

w̃1/12(Pm) = τ(L, w̃)

2g−2∏

m=1

w1/12(P̃m) ,

where we use the standard convention for evaluation of the differentials w and w̃ at their zeros:

w̃(Pm) :=
w̃(P )

dxm(P )

∣∣∣
P=Pm

, w(P̃m) :=
w(P )

dx̃m(P )

∣∣∣
P=P̃m

. (3.30)

Let us assume that the fundamental cell L̂ is chosen in such a way that the Abel maps of divisors (w)
and (w̃) equal 2KP ; this choice is always possible (see Lemma 6) in our present case, when all points
of these divisors have multiplicity 1. Then we get, according to the formulas (3.27) (all products below
are taken from 1 to 2g − 2):

τ12(L, w)
∏
m w̃(Pm)

τ12(L, w̃)
∏
mw(P̃m)

=
∏

m

w̃(Pm)

w(P̃m)

∏

m<n

E2(Pm, Pn)

E2(P̃m, P̃n)

{
w(P )

∏
mE(P, P̃m)

w̃(P )
∏
mE(P,Pm)

}4g−4

. (3.31)

Since this expression is independent of P , we can split the power 4g − 4 of the expression in the
braces into product over arbitrary 4g − 4 points, in particular, into product over P1, . . . , P2g−2 and
P̃1, . . . , P̃2g−2. Then most of the terms in (3.31) cancel each other. The only terms left are due to the
fact that the prime-forms vanish at coinciding arguments; this compensates vanishing of w and w̃ at
their zeros. As a result we can rewrite (3.31) as follows:

∏

m

{
lim

P→Pm

w(P )

E(P,Pm)(dxm(P )3/2
lim

P→P̃m

E(P, P̃m)(dx̃m(P ))3/2

w̃(P )

}
, (3.32)

which equals 1, since, say, in a neighborhood of Pm we have w(P ) = 2xm(P )dxm(P ) and E(P,Pm) =
xm(P )/

√
dxm(P ).

�
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Remark 7 In the early version of this paper Theorem 5 (which is the key point of the proof of the
explicit expression for the tau-function) was proved in an indirect way, parallel to the proof of the
formula for Bergman tau-function on Hurwitz spaces [16]. Namely, it was shown that the modulus
square |G(P )|2 of the function G from (3.16) up to a moduli independent constant coincides with the
properly regularized Dirichlet integral

D =
1

π

∫∫

L
|∂φ|2,

where φ = log
∣∣ΩP
w

∣∣2 and the one-form ΩP is defined in (2.17). This explains how one can guess
expression (3.16): this guess is based on general idea (coming from string theory) that Dirichlet and
Liouville integrals arise in integrating projective connections. After that via a rather complicated
calculation it was shown that the Dirichlet integral D satisfies the same system of equations (3.17) as
the function G.

4 Determinants of Laplacians in the metrics |w|2

4.1 Laplacians on polyhedral surfaces. Basic facts

Any holomorphic Abelian differential w defines a natural flat metric on the Riemann surface L given
by |w|2. This metric has conical singularities at the zeroes of w. The cone angle of the metric |w|2
equals 2(k+1)π at the zero of w of multiplicity k. The surface L provided with metric |w|2 is a special
case of a compact polyhedral surface, i. e. a two dimensional compact Riemannian manifold provided
with flat metric with conical singularities (any such surface can be glued from Euclidean triangles, see
[37]).

Here we give a short self-contained survey of some basic facts from the spectral theory of Laplacian
on compact polyhedral surfaces. We start with recalling the (slightly modified) Carslaw construction
(1909) of the heat kernel on a cone. Then we describe all self-adjoint extensions of conical Laplacian
(these results are complementary to Kondratjev’s study [17] of elliptic equations on conical manifolds
and are well-known, being in the folklore since sixties; their generalization to the case of Laplacians
acting on p-forms can be found in [25]). Finally, we establish the precise heat asymptotics for the
Friedrichs extension of the Laplacian on a compact polyhedral surface. More general results on the
heat asymptotics for Laplacians acting on p-forms on piecewise flat pseudomanifolds can be found in
[4].

4.1.1 The heat kernel on infinite cone

We start from the standard heat kernel

H2π(x,y; t) =
1

4πt
exp

{−(x− y) · (x− y)

4t

}
x, y ∈ R

2 (4.1)

in R
2 which we consider as the cone with conical angle 2π. Introducing the polar coordinates (r, θ)

and (ρ, ψ) in the x and y-planes respectively, one can rewrite (4.1) as the contour integral

H2π(x,y; t) =
1

16π2it
exp

{−(r2 + ρ2)

4t

}∫

Cθ,ψ

exp

{
rρ cos(α− θ)

2t

}
cot

α− ψ

2
dα , (4.2)
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where Cθ,ψ denotes the union of a small positively oriented circle centered at α = ψ and the two
vertical lines, l1 = (θ−π− i∞, θ−π+ i∞) and l2 = (θ+π+ i∞, θ+π− i∞), having mutually opposite
orientations.

To prove (4.2) one has to notice that
1) ℜ cos(α− θ) < 0 in vicinities of the lines l1 and l2 and, therefore, the integrals over these lines

converge.
2) The integrals over the lines cancel due to 2π-periodicity of the integrand and the remaining

integral over the circle coincides with (4.1) due to the Cauchy Theorem.
Observe that one can deform the contour Cθ,ψ into the union, Aθ, of two contours lying in the

open domains {θ − π < ℜα < θ + π , ℑα > 0} and {θ − π < ℜα < θ + π , ℑα < 0} respectively. The
first contour goes from θ+ π+ i∞ to θ− π+ i∞, the second one goes from θ−π− i∞ to θ+ π− i∞.
This leads to the following alternative integral representation for the heat kernel H2π:

H2π(x,y; t) =
1

16π2it
exp

{−(r2 + ρ2)

4t

}∫

Aθ

exp

{
rρ cos(α− θ)

2t

}
cot

α− ψ

2
dα . (4.3)

The latter representation admits natural generalization to the case of the cone Cβ with conical
angle β, 0 < β < +∞:

Cβ = {(r, θ) : r ∈ [0,∞), θ ∈ R/βZ}/(0, θ1) ∼ (0, θ2)

equipped with the metric (dr)2 + r2(dθ)2; notice here that in case 0 < β ≤ 2π the cone Cβ is isometric

to the surface z3 =
√

(4π2

β2 − 1)(z2
1 + z2

2).

Namely, introducing the polar coordinates on Cβ, we see that the following expression represents
the heat kernel on Cβ:

Hβ(r, θ, ρ, ψ; t) =
1

8πβit
exp

{
−r

2 + ρ2

4t

}∫

Aθ

exp

{
rρ cos(α− θ)

2t

}
cot

π(α− ψ)

β
dα . (4.4)

Clearly, expression (4.4) is symmetric with respect to (r, θ) and (ρ, ψ) and is β-periodic with respect
to the angle variables θ, ψ. Moreover, it satisfies the heat equation on Cβ. Therefore, to verify that Hβ

is in fact the heat kernel on Cβ it remains to show that Hβ(·, y, t) −→ δ(· − y) as t→ 0+. To this end
deform the contour Aψ into the union of the lines l1 and l2 and (possibly several) small circles centered

at the poles of cot π(·−ψ)
β in the strip θ − π < ℜα < θ + π. The integrals over all the components of

this union except the circle centered at α = ψ vanish in the limit as t→ 0+, whereas the integral over
the latter circle coincides with H2π.

4.1.2 The heat asymptotics near the vertex

Proposition 1 Let R > 0 and Cβ(R) = {x ∈ Cβ : dist(x,O) < R}, where O is the conical point. Let
also dx denote the area element on Cβ. Then for some ǫ > 0

∫

Cβ(R)
Hβ(x,x; t) dx =

1

4πt
Area(Cβ(R)) +

1

12

(
2π

β
− β

2π

)
+O(e−ǫ/t) (4.5)

as t→ 0+.
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Proof (cf. [10], p. 1433). Make in (4.4) the change of variable γ = α − ψ and deform the contour
Aθ−ψ into the contour Γ−

θ−ψ∪Γ+
θ−ψ∪{|γ| = δ}, where the oriented curve Γ−

θ−ψ goes from θ−ψ−π−i∞
to θ−ψ−π+i∞ and intersects the real axis at γ = −δ, the oriented curve Γ+

θ−ψ goes from θ−ψ+π+i∞
to θ−ψ+π− i∞ and intersects the real axis at γ = δ, the circle {|γ| = δ} is positively oriented and δ
is a small positive number. Calculating the integral over the circle {|γ| = δ} via the Cauchy Theorem,
we get

Hβ(x,y; t)−H2π(x,y; t) =
1

8πβit
exp

{−(r2 + ρ2)

4t

}∫

Γ−
θ−ψ∪Γ+

θ−ψ

exp

{
rρ cos(γ + ψ − θ)

2t

}
cot

(
πγ

β

)
dγ

(4.6)
and

∫

Cβ(R)

(
Hβ(x,x; t) − 1

4πt

)
dx =

1

8πit

∫ R

0
dr r

∫

Γ−
0 ∪Γ+

0

exp

{
−r

2 sin2(γ/2)

t

}
cot

(
πγ

β

)
dγ . (4.7)

The integration over r can be done explicitly and the right hand side of (4.7) reduces to

1

16πi

∫

Γ−
0 ∪Γ+

0

cot(πγ/β)

sin2(γ/2)
dγ +O(e−ǫ/t) (4.8)

(one can assume that ℜ sin2(γ/2) is positive and separated from zero when γ ∈ Γ−
0 ∪ Γ+

0 ). The
contour of integration in (4.8) can be changed for a negatively oriented circle centered at γ = 0. Since

Res
∣∣∣
γ=0

cot(πγ
β

)

sin2(γ/2)
= 2

3( β2π − 2π
β ), we arrive at (4.5).

Remark 8 The Laplacian ∆ corresponding to the flat conical metric (dr)2 + r2(dθ)2, 0 ≤ θ ≤ β on
Cβ with domain C∞

0 (Cβ \ O) has infinitely many self-adjoint extensions. Analyzing the asymptotics
of (4.4) near the vertex O, one can show that for any y ∈ Cβ and t > 0 the function Hβ(·,y; t) belongs
to the domain of the Friedrichs extension ∆F of ∆ and does not belong to the domain of any other
extension. Moreover, using Hankel transform, it is possible to get an explicit spectral representation
of ∆F (this operator has absolutely continuous spectrum of infinite multiplicity) and to show that the
Schwartz kernel of the operator et∆F coincides with Hβ(·, ·; t) (see, e. g., [36] formula (8.8.30) together
with [3], p. 370).

4.1.3 Heat asymptotics for compact polyhedral surfaces

Self-adjoint extensions of conical Laplacian. Let L be a compact polyhedral surface with vertices
(conical points) P1, . . . , PN . The Laplacian ∆ corresponding to the natural flat conical metric on L
with domain C∞

0 (L\{P1, . . . , PN}) (we remind the reader that the Riemannian manifold L is smooth
everywhere except the vertices) is not essentially self-adjoint and one has to fix one of its self-adjoint
extensions. We are to discuss now the choice of the self-adjoint extension.

This choice is defined by the prescription of some particular asymptotical behavior near the conical
points to functions from the domain of the Laplacian; it is sufficient to consider a surface with only
one conical point P of the conical angle β. More precisely, assume that L is smooth everywhere except
the point P and that some vicinity of P is isometric to a vicinity of the vertex O of the standard cone
Cβ (of course, now the metric on L can no more be flat everywhere in L \ P unless the genus g of L
is greater than one and β = 2π(2g − 1)).
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For k ∈ N0 introduce the functions V k
± on Cβ by

V k
±(r, θ) = r±

2πk
β exp

{
i
2πkθ

β

}
; k > 0 ,

V 0
+ = 1, V 0

− = log r .

Clearly, these functions are formal solutions to the homogeneous problem ∆u = 0 on Cβ. Notice that

the functions V k
− grow near the vertex but are still square integrable in its vicinity if k < β

2π .
Let Dmin denote the graph closure of C∞

0 (L \ P ), i. e.

U ∈ Dmin ⇔ ∃um ∈ C∞
0 (L \ P ), W ∈ L2(L) : um → U and ∆um →W in L2(L).

Define the space H2
δ (Cβ) as the closure of C∞

0 (Cβ \ O) with respect to the norm

||u;H2
δ (Cβ)||2 =

∑

|−→α |≤2

∫

Cβ

r2(δ−2+|−→α |)|D−→α
x u(x)|2dx .

(Here −→α stands for the multi-index.)
Then for any δ ∈ R such that δ − 1 6= 2πk

β , k ∈ Z one has the a priori estimate

||u;H2
δ (Cβ)|| ≤ c||∆u;H0

δ (Cβ)|| (4.9)

for any u ∈ C∞
0 (Cβ \ O) and some constant c being independent of u (see, e. g., [28], Chapter 2,

Proposition 2.5; here ||u;H0
δ (Cβ)||2 =

∫∫
Cβ

|u|2|r|2δdx).
It follows from Sobolev’s imbedding theorem (see, e. g., [22] or [23], eq. (2.30)) that for functions

from u ∈ H2
δ (Cβ) one has the point-wise estimate

rδ−1|u(r, θ)| ≤ c||v;H2
δ (Cβ)|| . (4.10)

Applying estimates (4.9) and (4.10), we see that functions u from Dmin must obey the asymptotics
u(r, θ) = O(r1−δ) as r → 0 with any δ > 0.

Now the description of the set of all self-adjoint extensions of ∆ looks as follows. Let χ be a smooth
function on L which is equal to 1 near the vertex P and such that in a vicinity of the support of χ
the Riemann surface L is isometric to Cβ. Denote by M the linear subspace of L2(L) spanned by the
functions χV k

± with 0 ≤ k < β/2π. The dimension, 2d, of M is even. To get a self-adjoint extension
of ∆ one chooses a subspace N of M of dimension d such that

(∆u, v)L2(L) − (u,∆v)L2(L) = lim
ǫ→0+

∮

r=ǫ

(
u
∂v

∂r
− v

∂u

∂r

)
= 0

for any u, v ∈ N. To any such subspace N there corresponds a self-adjoint extension ∆N of ∆ with
domain N + Dmin.

The extension corresponding to the subspace N spanned by the functions χV k
+ , 0 ≤ k < β

2π
coincides with the Friedrichs extension of ∆. The functions from the domain of the Friedrichs extension
are bounded near the vertex.

¿From now on we denote by ∆ the Friedrichs extension of the Laplacian on the polyhedral surface
L; other extensions will not be considered here.

Heat asymptotics. The following theorem is the main result of this section. Its first two
statements open a way to define the determinant of the Laplacian in an arbitrary polyhedral metric
on a compact Riemann surface.
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Theorem 7 Let L be a compact polyhedral surface with vertices P1, . . . , PN of conical angles β1, . . . , βN .
Let ∆ be the Friedrichs extension of the Laplacian defined on functions from C∞

0 (L \ {P1, . . . , PN}).
Then

1. The spectrum of the operator ∆ is discrete, all the eigenvalues of ∆ have finite multiplicity.

2. Let H(x,y; t) be the heat kernel for ∆. Then for some ǫ > 0

Tr et∆ =

∫

L
H(x,x; t) dx =

Area(L)

4πt
+

1

12

N∑

k=1

{
2π

βk
− βk

2π

}
+O(e−ǫ/t), (4.11)

as t→ 0+.

3. The counting function, N(λ), of the spectrum of ∆ obeys the asymptotics N(λ) = O(λ) as
λ→ +∞.

Proof. 1) The proof of the first statement is a standard exercise (cf. [11]). We indicate only the
main idea. Introduce the closure, H

1(L), of the C∞
0 (L \ {P1, . . . , PN}) with respect to the norm

|||u||| = ||u;L2|| + ||∇u;L2||. It is sufficient to prove that any bounded set S in H
1(L) is precompact

in L2-topology (this will imply the compactness of the self-adjoint operator (I−∆)−1). Moreover, one
can assume that the supports of functions from S belong to a small ball B centered at a conical point
P . Now to prove the precompactness of S it is sufficient to make use of the expansion with respect to
eigenfunctions of the Dirichlet problem in B and the diagonal process.

2) Let L = ∪Nj=0Kj , where Kj , j = 1, . . . , N is a neighborhood of the conical point Pj which is

isometric to Cβj(R) with some R > 0, and K0 = L \ ∪Nj=1Kj .
Consider also extended neighborhoods Kǫ1

j ⊃ Kj such that Kǫ1
j is isometric to Cβj(R + ǫ1) with

some ǫ1 > 0 and j = 1, . . . , N .
Fixing t > 0 and x,y ∈ Kj with j > 0, one has (cf. [4], p. 578-579)

∫ t

0
ds

∫

K
ǫ1
j

(ψ{∆z − ∂s}φ− φ{∆z + ∂s}ψ) dz (4.12)

=

∫ t

0
ds

∫

∂K
ǫ1
j

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dl(z) −

∫

K
ǫ1
j

(φ(z, t)ψ(z, t) − φ(z, 0)ψ(z, 0)) dz

with φ(z, t) = H(z,y; t) −Hβj(z,y; t) and ψ(z, t) = Hβj(z,x; t − s) (here it is important that we are
working with the heat kernel of the Friedrichs extension of the Laplacian, for other extensions the
heat kernel has growing terms in the asymptotics near the vertex and the right hand side of (4.12)
gets extra terms). Therefore,

Hβj(x,y; t)−H(x,y; t) =

∫ t

0
ds

∫

∂K
ǫ1
j

(
H(y, z; s)

∂Hβj (x, z; t − s)

∂n(z)
−Hβj(z,x; t − s)

∂H(z,y; s)

∂n(z)

)
dl(z)

= O(e−ǫ2/t)

with some ǫ2 > 0 as t→ 0+ uniformly with respect to x,y ∈ Kj . This implies the asymptotics

∫

Kj

H(x,x; t)dx =

∫

Kj

Hβj(x,x; t)dx +O(e−ǫ2/t) , as t→ 0+ (4.13)
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Since the metric on L is flat in a vicinity of K0, one has the asymptotics

∫

K0

H(x,x; t)dx =
Area(K0)

4πt
+O(e−ǫ3/t)

with some ǫ3 > 0 (cf. [24]). Now (4.11) follows from (4.5).
3) The third statement of the theorem follows from the second one due to the standard Tauberian

arguments.

4.2 Determinant of Laplacian

According to Theorem 7 one can define the determinant, det∆, of the Laplacian on a compact poly-
hedral surface via the standard Ray-Singer regularization. Namely, introduce the operator ζ-function

ζ∆(s) =
∑

λk>0

1

λsk
, (4.14)

where the summation goes over all strictly positive eigenvalues λk of the operator −∆ (counting
multiplicities). Due to the third statement of Theorem 7, the function ζ∆ is holomorphic in the
half-plane {ℜs > 1}. Moreover, due to the equality

ζ∆(s) =
1

Γ(s)

∫ ∞

0

{
Tr et∆ − 1

}
ts−1 dt (4.15)

and asymptotics (4.11), one has the equality

ζ∆(s) =
1

Γ(s)

{
Area (L)

4π(s − 1)
+

[
1

12

N∑

k=1

{
2π

βk
− βk

2π

}
− 1

]
1

s
+ e(s)

}
, (4.16)

where e(s) is an entire function. Thus, ζ∆ is regular at s = 0 and one can define the ζ-regularized
determinant of the Laplacian (cf. [33]) by

det∆ := exp{−ζ ′∆(0)} . (4.17)

Moreover, (4.16) and the relation
∑N

k=1 bk = 2g − 2; bk = βk
2π − 1 yield

ζ∆(0) =
1

12

N∑

k=1

{
2π

βk
− βk

2π

}
− 1 =

(
χ(L)

6
− 1

)
+

1

12

N∑

k=1

{
2π

βk
+
βk
2π

− 2

}
, (4.18)

where χ(L) = 2 − 2g is the Euler characteristics of L.

It should be noted that the term χ(L)
6 − 1 at the right hand side of (4.18) coincides with the value

at zero of the operator ζ-function of the Laplacian corresponding to an arbitrary smooth metric on L
(see, e. g., [31], p. 155).

Let g and κg, κ > 0 be two homothetic flat metrics with the same conical points with conical
angles β1, . . . , βN . Then (4.14), (4.17) and (4.18) imply the following rescaling property of the conical
Laplacian:

log
det∆κg

det∆g
=

{

−
(
χ(L)

6
− 1

)
− 1

12

N∑

k=1

(
2π

βk
+
βk
2π

− 2

)}

logκ . (4.19)
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4.3 Variation of the resolvent kernel

For a pair (L, w) from Hg(k1, . . . , kM ) introduce the Laplacian ∆ := ∆|w|2 in flat conical metric |w|2
on L (recall that we always deal with the Friedrichs extensions). The corresponding resolvent kernel
G(P,Q;λ), λ ∈ C \ sp (∆)

• satisfies (∆P − λ)G(P,Q;λ) = (∆Q − λ)G(P,Q;λ) = 0 outside the diagonal {P = Q},

• is bounded near the conical points i. e. for any P ∈ L \ {P1, . . . , PM}

G(P,Q;λ) = O(1)

as Q→ Pk, k = 1, . . . ,M ,

• obeys the asymptotics

G(P,Q;λ) =
1

2π
log |x(P ) − x(Q)| +O(1)

as P → Q, where x(·) is an arbitrary (holomorphic) local parameter near P .

The following proposition is an analog of the classical Hadamard formula for the variation of the Green
function of the Dirichlet problem in a plane domain.

Proposition 2 There are the following variational formulas for the resolvent kernel G(P,Q;λ):

∂G(P,Q;λ)

∂Aα

∣∣∣
z(P ), z(Q)

= 2i

∮

bα

ω(P,Q;λ) , (4.20)

∂G(P,Q;λ)

∂Bα

∣∣∣
z(P ), z(Q)

= −2i

∮

aα

ω(P,Q;λ) , (4.21)

where
ω(P,Q;λ) = G(P, z, z̄;λ)Gzz̄(Q, z, z̄;λ)dz̄ +Gz(P, z, z̄;λ)Gz(Q, z, z̄;λ)dz (4.22)

is a closed 1-form and α = 1, . . . , g;

∂G(P,Q;λ)

∂zm

∣∣∣
z(P ), z(Q)

= −2i lim
ǫ→0

∮

|z−zm|=ǫ
Gz(z, z̄, P ;λ)Gz(z, z̄, Q;λ)dz , (4.23)

where m = 2, . . . ,M and the circle of integration is positively oriented. It is assumed that the coordi-
nates z(P ) and z(Q) are kept constant under variation of the moduli Aα, Bα, zm.

Remark 9 One can unite the formulas (4.20-4.23) in a single formula:

∂G(P,Q;λ)

∂ζk

∣∣∣
z(P ), z(Q)

= −2i

{∮

sk

G(R,P ;λ)∂R∂R̄G(R,Q;λ) + ∂RG(R,P ;λ)∂RG(R,Q;λ)

w(R)

}
, (4.24)

where k = 1, . . . , 2g +M − 1.
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Proof of Proposition 2. We start with the following integral representation of a solution u to the
homogeneous equation ∆u− λu = 0 inside the fundamental polygon L̂:

u(ξ, ξ̄) = −2i

∫

∂ bL
G(z, z̄, ξ, ξ̄;λ)uz̄(z, z̄)dz̄ +Gz(z, z̄, ξ, ξ̄;λ)u(z, z̄)dz . (4.25)

(We remind the reader that to get (4.25) on has to rewrite the left hand side of the equality
∫∫

L̂\Bǫ(P )
(∆Q − λ)G(P,Q;λ)u(Q)|dz(Q)|2 −

∫∫

L̂\Bǫ(P )
G(P,Q;λ)(∆Q − λ)u(Q)|dz(Q)|2 = 0

as an integral over the boundary ∂L̂ ∪ ∂(Bǫ(P )) via the Stokes theorem (here Bǫ(P ) is the disk of
radius ǫ centered at P ) and then send ǫ to 0.)

Let us first prove (4.21). Cutting the surface L along the basic cycles, we notice that the function
∂BαG(P, · ;λ) is a solution to the homogeneous equation ∆u− λu = 0 inside the fundamental poly-
gon (the singularity of G(P,Q;λ) at Q = P disappears after differentiation) and that the functions
∂BαG(P, · ;λ) and ∂BαGz̄(P, · ;λ) have the jumpsGz(P, · ;λ) andGzz̄(P, · ;λ) on the cycle aα, respec-
tively. (This follows from differentiation of the periodicity relation G(z+Bα; z̄+B̄α;λ; {Aα, Bα, zm}) =
G(z, z̄;λ; {Aα, Bα, zm}) with respect to Bα and z̄; cf. the proof of Theorem 3, eq. (2.37).)

Applying the formula (4.25) with u = ∂BαG(P, · ;λ), we get the variational formula (4.21).
Formula (4.20) can be proved in the same manner.

The closedness of the form (4.22), dω(P,Q;λ) = 0, immediately follows from the equation for the
resolvent kernel Gzz̄(z, z̄, P ;λ) = λ

4G(z, z̄, P ;λ).
Let us prove (4.23). From now on we assume for simplicity that km = 1, where km is the multiplicity

of the zero Pm of the holomorphic differential w (the case km > 1 differs only by a few details).
Applying Green formula (4.25) to the domain L̂ \ {|z − zm| < ǫ} and u = ∂G/∂zm, one gets

∂zmG(P,Q;λ) = 2i lim
ǫ→0

∮

|z−zm|=ǫ
∂zm{Gz̄(z, z̄, Q;λ)}G(z, z̄, P ;λ)dz̄+∂zm{G(z, z̄, Q;λ)}Gz(z, z̄, P ;λ)dz .

(4.26)
(Here the circle of integration is positively oriented.) Observe that the function xm 7→ G(xm, x̄m, P ;λ)
(defined in a small neighborhood of the point xm = 0) is a bounded solution to the elliptic equation

∂2G(xm, x̄m, P ;λ)

∂xm∂x̄m
− λ|xm|2G(xm, x̄m, P ;λ) = 0

with real analytic coefficients and, therefore, is real analytic near xm = 0.
Recall that xm =

√
z − zm. Differentiating the expansion

G(xm, x̄m, P ;λ) = a0(P, λ) + a1(P, λ)xm + a2(P, λ)x̄m + a3(P, λ)xmx̄m + . . . (4.27)

with respect to zm, z and z̄, one gets the asymptotics

∂zmG(z, z̄, Q;λ) = −a1(Q,λ)

2xm
+O(1) , (4.28)

∂zmGz̄(z, z̄, Q;λ) =
{∂zma2}(Q,λ)

2x̄m
− a3(Q,λ)

4xmx̄m
+O(1) , (4.29)

Gz(z, z̄, P ;λ) =
a1(P, λ)

2xm
+O(1) , (4.30)
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Substituting (4.28), (4.29) and (4.30) into (4.26), we get the relation

∂zmG(P,Q, λ) = 2πa1(P, λ)a1(Q,λ) .

On the other hand, calculation of the right hand side of formula (4.23) via (4.30) leads to the same
result. �

4.4 Variation of the determinant of the Laplacian

Introduce the notation

Q(L, |w|2) :=
{ det ∆|w|2

Vol(L, |w|2) detℑB

}
, (4.31)

where Area(L, |w|2) the area of the Riemann surface L in the metric |w|2 (Q depends also on the
choice of canonical basis of cycles on L).

The rest of this section is devoted to the proof of the following theorem.

Theorem 8 The following variational formulas hold

∂ logQ(L, |w|2)
∂ζk

= − 1

12πi

∮

sk

SB − Sw
w

, (4.32)

where k = 1, . . . , 2g+M −1; SB is the Bergman projective connection, Sw is the projective connection

given by the Schwarzian derivative
{∫ P

w, x(P )
}
; SB − Sw is the meromorphic quadratic differential

with poles of the second order at the zeroes Pm of w.

Proof. The following proof is based on the ideas of J. Fay applied in the context of flat metrics
with conical singularities (cf. the proof of Theorem 3.7 in [9]). In this case the calculations get shorter
and more elementary (in particular, the Ahlfors-Teichmüller theory is not used here).

Due to Theorem 7 one has
Tr et∆ =

c0
t

+ c1 +O(tN ) (4.33)

as t→ 0+, where N is an arbitrary positive real number, c0 = A
4π , and

A := Area(L, |w|2) = − 1

2i

g∑

α=1

(AαB̄α − ĀαBα)

is the area of the surface L. The coefficient c1 is independent of all moduli (we notice also that the
coefficient c0 is independent of the moduli z2, . . . , zM ).

Following [9], consider the expression

J(λ, s) =
1

sΓ(s)

∫ +∞

0
e−λtts−1h(t) dt,

where

h(t) = Tr et∆ − (1 − e−t
2
) − e−t

t
[(1 + t)c0 + tc1] .

Notice that h(t) = O(t−N ) as t→ +∞ with any N > 0 and (4.33) implies that h(t) = O(t) as t→ 0+.
Thus,

d

dλ
J(λ, s)|s=0 = −

∫ +∞

0
e−λth(t) dt = O(

1

λ2
)
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as λ→ +∞. From the calculations on p. 42 of [9] it follows that

J(λ, s) =
d

ds
ζ∆(s;λ)|s=0 +

γ

2
−
∫ λ

0

∫ +∞

0
e−t

2−λtdt dλ+ c0(1 + λ− λ log(λ+ 1)) + c1 log(1 + λ) +O(s),

as s→ 0, where γ is the Euler constant and

ζ∆(s;λ) =
∑

λn∈ sp ∆\{0}

1

(λ− λn)s
.

This implies the relation

−
∫ +∞

0

d

dλ
J(λ, s)|s=0 dλ = J(0, 0) = ζ ′∆(0) +

γ

2
+ c0

and, therefore, one has

− ζ ′∆(0) =
γ

2
+ c0 −

∫ +∞

0
dλ

∫ +∞

0
e−λt

[
Tr et∆ − (1 − e−t

2
) − e−t

t
((1 + t)c0 + tc1)

]
dt . (4.34)

Consider the variation of (4.34) with respect to Aα.
We need the following Lemma.

Lemma 7 The following relation holds

∂Aα

[∫∫

L
F (P )dA(P )

]
=

∫∫

L
∂Aα{F}(P )dA(P ) +

i

2

∮

bα

F (z, z̄)dz̄, (4.35)

where dA(P ) is the area element defined by the metric |w|2. The formula for differentiation with
respect to Bα looks similar; the only change is the sign in front of the contour integral over aα in the
second term of the right-hand side.

Proof. The function L ∈ P 7→ z =
∫ P
P1
w is univalent in a small vicinity U(Q) of any point Q of L

except the zeroes, P1, . . . , PM , of the differential w. Take a cover of L by small disks, Bm, centered
at the points Pm and the vicinities U(Q), Q ∈ L, Q 6= Pm. Let {Uj} be a finite subcover and let {χj}
be the corresponding (smooth) partition of unity. Cutting L along the basic cycles and giving to, say,
A1-coordinate a complex increment δA, one gets

δ

∫∫
χjFdA =

{∫∫
χj(z, z̄)δF (z, z̄)|dz|2, if (w) ∩ suppχj = ∅

4
∫∫

χj(xm, x̄m)δF (xm, x̄m)|xm|2|dxm|2, if suppχj ∋ Pm
(4.36)

for those j for which the support of χj has no intersection with the cycle b1.
Let suppχj ∩ b1 6= ∅ and let [0, 1] ∋ t 7→ γ(t) be the parameterization of the part of contour

z(b1) ⊂ C inside the support of the function z 7→ χj(z, z̄). After variation of the coordinate A1 this
contour shifts to t 7→ γ(t) + δA1. Setting

y = ℜz = ℜγ(t) + s
δA1 + δA1

2
; x = ℑz = ℑγ(t) + s

δA1 − δA1

2i
,
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with 0 ≤ s ≤ 1, for z = x+ iy in a vicinity of the contour z(b1) and using the relation

∂(x, y)

∂(s, t)
= ℑγ′(t)δA1 + δA1

2
−ℜγ′(t)δA1 − δA1

2i
(> 0!) ,

one finds that

δ

∫∫
χjFdA =

∫∫
χj(z, z̄)δF (z, z̄)|dz|2

+

∫ 1

0
ds

∫ 1

0
dt χj(γ(t))F (γ(t))

(
1

2
ℑγ′(t) − 1

2i
ℜγ′(t)

)
δA1

+

(
1

2
ℑγ′(t) +

1

2i
ℜγ′(t)

)
δA1 . (4.37)

where the second term coincides with
(
i

2

∫

b1

χjF dz

)
δA1

and summing (4.36),(4.37) over all j one gets the lemma.
�

Using the formulas ∂Aαc1 = 0, ∂Aαc0 = −Bα/8πi and Lemma 7, we get

∂Aα [−ζ ′∆(0)] = −Bα

8πi
−
∫ +∞

0
dλ

∫ +∞

0
dt e−λt

{∫∫

L
(∂AαH(P,P, t) +

∂AαA

A2
(1 − e−t

2
))dA(P )+

(4.38)
i

2

∮

bα

[
H(z, z, t) − 1

A
(1 − e−t

2
) − e−t

4πt
(1 + t)

]
dz̄

}
.

(For brevity from now on we suppress the antiholomorphic part z̄ of the argument (z, z̄).)
Using the standard relation

G(x, y;λ) = −
∫ +∞

0
e−λtH(x, y, t)dt

between the resolvent and the heat kernels, we rewrite the right hand side of (4.38) as

− Bα

8πi
+

∫ +∞

0
dλ

{∫∫

L
{∂AαG}(P,P ;λ)dA(P ) − ∂AαA

A
I(λ) − i

2

∮

bα

Ĝ(z, z;λ)dz̄

}
, (4.39)

where the derivative ∂AαG(P,Q;λ) is nonsingular at the diagonal P = Q due to (4.20);

I(λ) =
1

λ
− eλ

2/4

∫ +∞

λ/2
e−t

2
dt

as in ([9], (2.34)) and Ĝ(z, z;λ) is Fay’s modified resolvent

Ĝ(z, z;λ) =

∫ +∞

0
e−λt

{
H(z, z, t) − 1

A
(1 − e−t

2
) − e−t

4πt
(1 + t)

}
dt (4.40)
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(see [9]: the last formula on page 42, formulas (2.34),(2.35) on page 38 and the first two lines on page
39; to get (4.40) one has to make use of the fact that the metric |w|2 is Euclidean in a vicinity of the
cycle bα and, therefore, the coefficients H0 and H1 in Fay’s formulas are 1 and 0, respectively.) For
future reference notice that according to ([9], p.38) one has the relation

Ĝ(z1, z2;λ) = G(z1, z2;λ) +
1

A
I(λ) − 1

2π

[
log |z1 − z2| + γ + log

√
λ+ 1

2
− 1

2(λ+ 1)

]
, (4.41)

where the right hand side of (4.41) is nonsingular at the diagonal z1 = z2. Now (4.20) implies

∫∫

L
{∂AαG}(P,P ;λ)dA(P ) =

i

2

∮

bα

dz̄

∫∫

L
λG(z, P ;λ)G(z, P ;λ)dA(P )

+2i

∫∫

L
dA(P )

∮

bα

Gz(z, P ;λ)Gz(z, P ;λ)dz .

The interior contour integral in the last term has δ-type singularity as P approaches to the contour bα
and using Stokes formula and the (logarithmic) asymptotics of the resolvent kernel at the diagonal, it
is easy to show that

∫∫

L
dA(P )

∮

bα

Gz(z, P ;λ)Gz(z, P ;λ)dz = − 1

16π

∮

bα

dz̄+

∮

bα

dz p. v.

∫∫

L
Gz(z, P ;λ)Gz(z, P ;λ) dA(P ) .

(4.42)
Indeed, choosing the same partition of unity as in Lemma 7, one rewrites the left hand side of

(4.42) as
i

2

∑

k

∑

l

∫∫

L
χk(z1, z̄1)

(∮

bα

χl(z, z̄) (Gz(z, z1;λ))2 dz

)
dz1 ∧ dz̄1 (4.43)

For a pair (k, l) such that the suppχk ∩ bα 6= ∅ and suppχk ∩ suppχl 6= ∅ the corresponding term
in (4.43) is

i

2

∫∫

L
χk(z1, z̄1)

(∮

bk

χl(z, z̄)

(
1

16π2

1

(z − z1)2
+H(z, z̄, z1, z̄1)

)
dz

)
dz1 ∧ dz̄1, (4.44)

where function H has only the first order singularity at the diagonal. The iterated integral with χkχlH
as integrand admits the change of order of integration, whereas the remaining part of the right hand
side of (4.44) can be rewritten as

i

32π2

∫∫

L
χk(z1, z̄1)∂z1

∮

bα

χl(z, z̄) dz

z − z1
dz1 ∧ dz̄1 =

i

32π2

∫

∂L̂
χk(z1, z̄1)

∮

bα

χl(z, z̄) dz

z − z1
dz̄1−

i

32π2

∫∫

L
(∂z1χk(z1, z̄1))

∮

bα

χl(z, z̄) dz

z − z1
dz1 ∧ dz̄1 (4.45)

Due to Plemelj theorem on the jump of the Cauchy type integral the first integral in (4.45) is equal to

− 1

16π

∫

bα

χkχldz̄ .
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Changing the order of integration in (4.43) for the remaining pairs (k, l) (since for these pairs the
integrand in (4.43) is nonsingular, one can apply Fubini’s theorem) and summing over all k and l we
arrive at (4.42) (the second term in (4.45) after summation cancels out:

∑
k ∂z1χk = ∂z11 = 0).

Now from the resolvent identity

G(Q,P ;λ) −G(Q,P ;µ)

λ− µ
=

∫∫

L
G(P,R;λ)G(Q,R;µ) dA(R) (4.46)

it follows that the derivative ∂λG(P,Q;λ) is nonsingular at the diagonal P = Q and
∫∫

L
G(z, P ;λ)G(z, P ;λ) dA(P ) = {∂λG}(z, z;λ) . (4.47)

Moreover, according to Lemma 3.3 from [9] one has
∫∫

L
Gz′(z

′, P ;λ)Gz(z, P ;λ) dA(P ) = − 1

16π

z̄′ − z̄

z′ − z
+p. v.

∫∫

L
Gz(z, P ;λ)Gz(z, P ;λ)dA(P )+O(z′−z) ,

as z → z′ and the resolvent identity (4.46) implies the relation

p.v.

∫∫
Gz(z, P ;λ)Gz(z, P ;λ) dA(P ) =

∂

∂λ

{
Gz′z(z

′, z;λ) − 1

4π

1

(z′ − z)2
+

λ

16π

z̄′ − z̄

z′ − z

} ∣∣∣
z′=z

.

(4.48)
Thus, (4.39) can be rewritten as

− Bα

8πi
+
i

2

∫ +∞

0
dλ

∮

bα

dz̄

[
λ{∂λG}(z, z;λ) − 1

4π
+ Ĝ(z, z;λ) − 1

A
I(λ)

]
+ (4.49)

2i

∫ +∞

0

∮

bα

dz
∂

∂λ

{
Gz′z(z

′, z;λ) − 1

4π

1

(z′ − z)2
+

λ

16π

z̄′ − z̄

z′ − z

} ∣∣∣
z′=z

.

Using (4.41), rewrite the expression in the square brackets as

∂

∂λ

(
λĜ− 1

4π

λ

λ+ 1
− 1

A
λI(λ)

)
.

To finish our calculation we need several lemmas.
The first one is an analog of Corollary 2.8 from [9].

Lemma 8 In a vicinity of the cycle bα the following relation holds

4πGz′z(z
′, z;λ) =

1

(z′ − z)2
− λ

4

z̄′ − z̄

z′ − z
+ α(z′, z), (4.50)

where α(z, z′) is O(|z′ − z|) as z′ → z and λ belongs to any closed subinterval of (0,+∞).

To prove the lemma we notice that the metric |w|2 is flat in a vicinity of a point P ∈ bα and the
geodesic local coordinates in this vicinity are given by the local parameter z. Therefore, as it is
explained on pp. 38-39 of [9] the asymptotical behavior of 4πGz′z(z

′, z;λ) coincides with that of the
second derivative with respect to z′ and z of the function

F (z′, z̄′, z, z̄) = log |z′ − z|2 +
1

4
λ|z − z′|2 log |z′ − z|2 (4.51)

(one has to put H0 = 1 and H1 = 0 in Fay’s calculations on p.38 of [9]). This immediately leads to
(4.50).

The next two lemmas are classical (see [9], p.25 and example 2.4 and the formula (2.18) on p.30).
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Lemma 9 There is the following Laurent expansion near the pole λ = 0 of the resolvent G(P,Q;λ):

G(P,Q;λ) = − 1

λArea (L)
+G(P,Q) +O(λ) , (4.52)

as λ→ 0, where G(z′, z) is the Green function.

Lemma 10 The following relation holds

4πGζ′ζ(ζ
′, ζ) =

1

(ζ ′ − ζ)2
+

1

6
SB(ζ) − π

g∑

α,β=1

(ℑB)−1
αβvα(ζ)vβ(ζ) +O(ζ ′ − ζ), (4.53)

as ζ ′ → ζ, where G(·, ·) is the Green function from (4.52), SB is the Bergman projective connection,
{vα}gα=1 is the basis of normalized holomorphic differentials on L and B is the matrix of b-periods
of L; ζ is an arbitrary holomorphic local parameter and the functions ζ 7→ vα(ζ) are defined via
vα = vα(ζ)dζ.

It should be noted that the Green functions depends on the metric on L whereas its second derivative
(4.53) is independent of the (conformal) metric.

The last lemma immediately follows from Rauch variational formula (2.28) and the obvious relation
2i∂ζk [log detℑB] = Tr{(ℑB)−1∂ζkB} .

Lemma 11 The following relation holds

∂Aα [log detℑB] =
1

2i

g∑

γ,β=1

(ℑB)−1
γβ

∮

bα

vβvγ
w

. (4.54)

Now using the asymptotics I(λ) = O(λ−3) as λ→ +∞ and the Lemmas (8)-(11), one can perform
the integration with respect to λ in (4.39). This leads to the relation

∂Aα [−ζ ′∆(0)] =
1

12πi

∮

bα

SB − Sw
w

+ ∂Aα [log detℑB] + ∂Aα [logA] .

The latter relation is equivalent to (4.32) for k = 1, ..., g. The proof of (4.32) in the case k =
g + 1, . . . , 2g is similar.

Consider now the variation of (4.34) with respect to zm. Using the equality ∂zmc0 = ∂zmc1 = 0
and (4.23), we get

∂zm [−ζ ′∆(0)] = −2i lim
ǫ→0

∫ +∞

0
dλ

∫∫

L
dA(P )

∮

|z−zm|=ǫ
Gz(z, P ;λ)Gz(z, P ;λ) dz . (4.55)

After passing to local parameter xm =
√
z − zm, the latter expression can be rewritten as

− 2i lim
ǫ→0

∮

|xm|=√
ǫ

dxm
2xm

∫ +∞

0
dλ

∫∫

L
Gxm(xm, P ;λ)Gxm(xm, P ;λ)dA(P ) . (4.56)

Lemma 3.3 from [9] implies the relation
∫∫

L
Gx′m(x′m, P ;λ)Gxm(xm, P ;λ)dA(P )
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= − 1

4π
|xm|2

x̄′m − x̄m
x′m − xm

+

∫∫

L
Gxm(xm, P ;λ)Gxm(xm, P ;λ) dA(P ) +O(|x′m − xm|) , (4.57)

as x′m → xm. Using this relation rewrite the right hand side of (4.56) as

−2i lim
ǫ→0

∮

|xm|=√
ǫ

dxm
2xm

∫ +∞

0
dλ

{∫∫

L
Gx′m(x′m, P ;λ)Gxm(xm, P ;λ)dA(P ) +

1

4π
|xm|2

x̄′m − x̄m
x′m − xm

} ∣∣∣
xm=x′m

.

(4.58)
As before, using the resolvent identity, we rewrite the expression inside the braces as a derivative with
respect to λ and see that the right hand side of (4.55) equals

−2i lim
ǫ→0

∮

|xm|=√
ǫ

dxm
2xm

∫ +∞

0
dλ

∂

∂λ

{
Gx′m xm(x′m, xm;λ) − 1

4π

1

(x′m − xm)2
+

λ

4π
|xm|2

x̄′m − x̄m
x′m − xm

} ∣∣∣
x′m=xm

.

(4.59)
To further rewrite (4.59) we need the following two lemmas:

Lemma 12 The following relation holds

4πGx′m xm(x′m, xm;λ) =
1

(x′m − xm)2
− 1

4x2
m

− λ|xm|2
x̄′m − x̄m
x′m − xm

+ α(x′m, xm), (4.60)

where α(xm, x
′
m) is O(|x′m − xm|) as x′m → xm and λ belongs to any closed subinterval of (0,+∞).

To prove the lemma we notice that the geodesic local coordinates for the flat metric |w|2 in a vicinity
of the point Pm are given by the local parameter z = zm + x2

m. Therefore, as it is explained on
pp. 38-39 of [9] the asymptotical behavior of 4πGx′mxm(x′m, xm;λ) coincides with that of the second
derivative with respect to x′m and xm of the function

F (x′m, x̄
′
m, xm, x̄m) = log |z′ − z|2 +

1

4
λ|z − z′|2 log |z′ − z|2 , (4.61)

where z′ = zm + (x′m)2.
Using the Taylor expansion of (x′m − xm)2Fx′mxm(x′m, x̄

′
m, xm, x̄m) up to the terms of the second

order, we arrive at (4.60).
Further, one has the following analog of Lemma 11, which is an immediate consequence of varia-

tional formulas (2.28) for k = 2g + 1, . . . , 2g +M − 1.

Lemma 13 The following relation holds

∂

∂zm
[log detℑB] =

1

2i

g∑

α,β=1

(ℑB)−1
αβ

∮

s2g+m−1

vαvβ
w

, m = 2, . . . , g (4.62)

These lemmas together with (4.59) and formulas (4.52) and (4.53) written in the local parameter xm
imply the relation

∂

∂zm
[−ζ ′∆(0)] = − 1

12πi

∮

s2g+m−1

SB − Sw
w

+
∂

∂zm
[log detℑB] ,

where s2g+m−1 is a small positively oriented circle around Pm. The latter relation is equivalent to
(4.32) for k = 2g +m− 1, m = 2, . . . ,M . �
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4.4.1 Infinitesimal Polyakov type formula for the stratum Hg(1, . . . , 1).

The following corollary of Theorem 8 is an analog of classical Polyakov formula for variation of the
determinant of Laplacian under infinitesimal variation of the smooth metric within a given conformal
class 2.

Theorem 9 Let ω be a holomorphic differential on L with M = 2g − 2 simple zeros P1, . . . , PM , let
xm be the corresponding distinguished local parameter near Pm and let φ be an arbitrary holomorphic
differential on L. Define the function xm 7→ φ(xm) via φ = φ(xm)dxm and set φ′(Pm) := φ′(xm)|xm=0.
Then

d

dǫ

∣∣∣
ǫ=0

log
det ∆|ω+ǫφ|2

Area(L, |ω + ǫφ|2) =
1

16

M∑

m=1

φ′(Pm) (4.63)

Proof. Consider the one-parametric family ω + ǫφ. First, let us find the variational formulas for
the coordinate Aα, Bα, zm of the point (L, ω + ǫφ) ∈ Hg(1, . . . , 1). Obviously, one has

Ȧα :=
d

dǫ
Aα

∣∣∣
ǫ=0

=
d

dǫ

∮

aα

(ω + ǫφ) =

∮

aα

φ; Ḃα =

∮

bα

φ .

To find the variations of the coordinates zm one has to find the derivative

d

dǫ

∫ P̃m(ǫ)

P̃1(ǫ)
(ω + ǫφ)

∣∣∣
ǫ=0

,

where P̃m(ǫ) are the zeroes of the differential ω + ǫφ (we have 2g − 2 one-parametric families of the
zeroes parameterized by ǫ ∈ [0, δ] with sufficiently small δ > 0.) One has

∫ P̃m(ǫ)

P̃1(ǫ)
(ω + ǫφ) =

∫ Pm

P1

(ω + ǫφ) +

∫ P1

P̃1

ω + ǫ

∫ P1

P̃1

φ+

∫ P̃m

Pm

ω + ǫ

∫ P̃m

Pm

φ =

=

∫ Pm

P1

(ω + ǫφ) +O(ǫ2)

since ω(P1) = ω(Pm) = 0. Therefore,

żm =

∫ Pm

P1

φ .

It is instructive to check the following property: the tangent vector

V =

g∑

α=1

(
Ȧα

∂

∂Aα
+ Ḃα

∂

∂Bα

)
+

M∑

m=2

żm
∂

∂zm

to the space Hg(1, . . . , 1) should annihilate any function on Hg(1, . . . , 1) which depends only on moduli
of the underlying Riemann surface L. It is sufficient to show that V{Bγδ} = 0, for any entry of the
matrix B of the b-periods of the surface L. Indeed, formulas (2.28) imply

V{Bγδ} = −
g∑

α=1

∮

aα

φ

∮

bα

vγvδ
ω

+

g∑

α=1

∮

bα

φ

∮

aα

vγvδ
ω

+

M∑

m=1

∫ Pm

P1

φ

∮

Pm

vγvδ
ω

=

2This theorem gives an answer to the question posed by P. Zograf
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=

∫

∂[ bL\∪Mm=1B(Pm)]

(∫ P

P1

φ

)
vγ(P )vδ(P )

ω(P )
= 0 ,

where B(Pm) are small disks centered at Pm. We have used Riemann’s bilinear relations and the
equality ∮

Pm

(∫ P

P1

φ

)
vγ(P )vδ(P )

ω(P )
=

(∫ Pm

P1

φ

)∮

Pm

vγvδ
ω

;

the latter equality holds because the differential
vγvδ
ω has a simple pole at Pm.

Now Theorem 8 implies

d

dǫ

∣∣∣
ǫ=0

log
det∆|ω+ǫφ|2

Area(L, |ω + ǫφ|2) = V

{
log

det∆|ω+ǫφ|2

Area(L, |ω + ǫφ|2)detℑB

}
=

− 1

12πi

{

−
g∑

α=1

∮

aα

φ

∮

bα

SB − Sω
ω

+

g∑

α=1

∮

bα

φ

∮

aα

SB − Sω
ω

+

M∑

m=1

∫ Pm

P1

φ

∮

Pm

SB − Sω
ω

}

. (4.64)

In the distinguished local parameter xm near Pm one has ω = 2xmdxm and denoting by F (xm) :=

F (P ) :=
∫ P
P1
φ, we obtain

∮

Pm

(∫ P

P1

φ

)
SB − Sω

ω
=

∮

|xm|=δ
F (xm)

(SB(xm) − {x2
m, xm})(dxm)2

2xmdxm

=

∮

|xm|=δ

(
F (xm)SB(xm)

2xm
+

3

4

F (xm)

x3
m

)
dxm

= F (0)

∮

|xm|=δ

SB(xm) + 3
2x

−2
m

2xm
dxm +

3

4
πiF ′′(0)

=

∫ Pm

P1

φ

∮

Pm

SB − Sω
ω

+
3

4
πiφ′(Pm).

Therefore, the right hand side of (4.64) can be rewritten as

− 1

12πi

{
−

g∑

α=1

∮

aα

φ

∮

bα

SB − Sω
ω

+

g∑

α=1

∮

bα

φ

∮

aα

SB − Sω
ω

+
M∑

m=1

∮

Pm

(∫ P

P1

φ

)
SB − Sω

ω
− 3

4
πi

M∑

m=1

φ′(Pm)

}
=

=
1

16

M∑

m=1

φ′(Pm) − 1

12πi

∫

∂[ bL\∪Mm=1B(Pm)]

(∫ P

P1

φ

)
SB − Sω

ω
.

The contour integral in the last expression vanishes since the integrand is holomorphic inside the union
of integration contours, which implies (4.63).

�

It is instructive to check this result choosing φ = ω. Due to the rescaling property (4.19) of the
determinants in conical metrics one has:

det∆|ω+ǫω|2 = |1 + ǫ|2{−( 2−2g
6

−1)− 1
12

P2g−2
1 ( 2π

4π
+ 4π

2π
−2)}det∆|ω|2 = |1 + ǫ| g−1

2
+2det∆|ω|2
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and
d

dǫ

∣∣∣
ǫ=0

log
det ∆|ω+ǫω|2

Area(L, |ω + ǫω|2) =
d

dǫ

∣∣∣
ǫ=0

log |1 + ǫ| g−1
2 =

g − 1

4
(4.65)

On the other hand for φ = ω one has φ′(Pm) = 2 and

1

16

M∑

m=1

φ′(Pm) =
4g − 4

16
=
g − 1

4

in agreement with (4.65).

4.5 Explicit formulas for det ∆|w|2

The following theorem, which is the main result of the present paper, can be considered as a natural
generalization of Ray-Singer formula (1.2) to the higher genus case.

Theorem 10 Let a pair (L, w) be a point of the space Hg(k1, . . . , kM ). Then the determinant of the

Laplacian ∆|w|2 acting in the trivial line bundle over the Riemann surface L is given by the following
expression

det ∆|w|2 = C Area(L, |w|2) detℑB |τ(L, w)|2, (4.66)

where Area(L, |w|2) :=
∫
L |w|2 is the area of L; B is the matrix of b-periods; constant C is independent

of a point of connected component of Hg(k1, . . . , kM ). Here τ(L, w) is the Bergman tau-function on
the space Hg(k1, . . . , kM ) given by (3.24).

Proof. The proof immediately follows from the definition of the Bergman tau-function and Theo-
rems 6 and 8. �

Remark 10 It can be easily verified that expression (4.66) is consistent with rescaling property
(4.19)3.

From (4.66) we can deduce the “integrated” version of the infinitesimal formula of Polyakov type
given by Theorem 9. For simplicity we consider only the generic case of differentials with simple zeros.

Corollary 6 Let w and w̃ be two holomorphic differentials with simple zeros on the same Riemann
surface L. Assume for convenience that none of zeros of the differential w coincides with a zero of
the differential w̃. Then the following formula holds:

det ∆|w|2

det ∆|w̃|2 =
Area(L, |w|2)
Area(L, |w̃|2)

2g−2∏

k=1

∣∣∣
res|P̃m{w

2/w̃}
res|Pm{w̃2/w}

∣∣∣
1/12

, (4.67)

where {Pk} are zeros of w; P̃k are zeros of w̃.

Proof. The formula (4.67) follows from the expression (4.66) for the determinant of laplacian in
the metric |w|2 and the link (3.29) between Bergman tau-functions computed at the points (L, w) and
(L, w̃) of the space Hg(1, . . . , 1).

�

3We thank the anonymous referee for this remark.
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Remark 11 For an arbitrary hermitian metric g on L the expression

Q−1 :=
Area(L,g) detℑB

det∆g
:= ||1 ⊗ (v1 ∧ · · · ∧ vg)||2g, (4.68)

with {vα}α=1,...,g being the basis of holomorphic 1-forms on L normalized by
∮
aα
vβ = δαβ , defines a

Quillen metric on the determinant line

λ(OL) = detH0(L,OL) ⊗ (detH1(L,OL))−1 = detH0(L,OL) ⊗ detH0(L,Ω1
L) .

The formula (1.10) shows that if g is chosen to be flat singular metric with trivial holonomy
given by |w|2, then corresponding function Q(L, |w|2) defined by (4.31), (4.68) is the modulus square
of a holomorophic function of moduli (i.e. coordinates on the space of holomorphic differentials).
This property distinguishes singular flat metrics with trivial holonomy among other metrics of a
given conformal class, in some sense their properties are nicer than those of the metric of constant
negative curvature: for the Poincaré metric g the Belavin-Knizhnik theorem implies that the second
holomorphic-antiholomorphic derivatives of log ||1 ⊗ (v1 ∧ · · · ∧ vg)||g with respect to (Teichmüller)
moduli are nontrivial (see [9]).

It should be noted that some other generalizations of the Ray-Singer theorem are already known.
There exists an explicit formula for the determinant of Laplacian in the Arakelov metric (see, e. g.,
[9], formulas (1.29), (4.58) and (5.23); see also references in [9]). For Arakelov metric g the property
of holomorphic factorization also fails. Another higher genus analog of the Ray-Singer formula was
obtained by Zograf, Takhtajan and McIntyre (see [30, 29] and references therein) for det∆ in the
Poincaré metric in the context of Schottky spaces; in the context of Hurwitz spaces an analog of the
Ray-Singer formula for the determinant of the Laplacian in the Poincaré metric was found in [14].

It should be also noted that the results of the present work can be extended to the case of arbitrary
compact polyhedral surfaces (see [13]).
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Mathématique, 78(1999), 1-36

[26] Nag S., The complex analytic theory of Teichmüller spaces, Wiley, 1988

[27] Mumford, D. Tata lectures on Theta I,II, Birkhäuser, Boston (1983,84)
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