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From p-adic to real Grassmannians via the

quantum
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Abstract

Let F be a local field. The action of GLn(F) on the Grassmann variety Gr(m,n,F)
induces a continuous representation of the maximal compact subgroup of GLn(F) on
the space of L2-functions on Gr(m,n,F). The irreducible constituents of this rep-
resentation are parameterized by the same underlying set both for Archimedean
and non-Archimedean fields [11,12]. This paper connects the Archimedean and
non-Archimedean theories using the quantum Grassmannian [7,28]. In particular,
idempotents in the Hecke algebra associated to this representation are the image
of the quantum zonal spherical functions after taking appropriate limits. Conse-
quently, a correspondence is established between some irreducible representations
with Archimedean and non-Archimedean origin.

Key words: Representations of real and p-adic groups, quantum Grassmannians,
multivariable orthogonal polynomials, shifted Macdonald polynomials.

1 Introduction

This paper is concerned with relationships between the Archimedean and non-
Archimedean places of a number field. Since the early works of Weil, Artin,
Iwasawa, Tate [30] and the far reaching conjectures of Langlands, deep rela-
tions have been discovered between the arithmetic of a number field and the
representation theory of algebraic groups over the local fields. It is within the
framework of representation theory that the relations between the local fields,
the places of the number field, will be discussed here.
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Local fields occur naturally as the completions of global fields. A global field
is either a number field, that is a finite extension of the rational numbers, or a
function field, that is a field of rational functions of a curve defined over a finite
field. A local field can be either Archimedean (R or C) or non-Archimedean
(Laurent series over a finite field or a finite extension of Qp). In the function
field case all the completions are non-Archimedean and thus carry the same
nature. In contrast, in the number field case both Archimedean and non-
Archimedean completions occur, thus having a completely different nature.
For example, the former is connected and the latter is totally disconnected.

Let F be a local field. For a non-Archimedean field, let O be the ring of integers
and ℘ be the maximal ideal. Let KF be the maximal compact subgroup of
GLn(F), for some n ∈ N which will be fixed throughout this paper. We have

KF =



























O(n) = the orthogonal group, F = R;

U(n) = the unitary group, F = C;

GLn(O) ≃ lim
←−

GLn(O/℘k), F non-Archimedean.

In particular, for Archimedean fields KF is a Lie group while for non-Archimedean
fields it is totally disconnected. In order to be able to compare between them
we appeal to representation theory. In this paper we focus on a special repre-
sentation of KF, the Grassmann representation, which arises from its natural
action on XF

m = Gr(m, n,F), the variety of m-dimensional subspaces of a fixed
n-dimensional space over F. The natural representation space is L2(XF

m) or
its dense subspace of smooth functions S(XF

m), with the action

[g · f ](x) = f(g−1x), f ∈ L2(XF

m), g ∈ KF.

As far as the decomposition to irreducibles is concerned, there is no difference
between the two spaces. By smooth functions we mean infinitely differentiable
for Archimedean places and locally constant for non-Archimedean ones. To
define the L2 structure, the transitive action of KF on XF

m is used, and the
measure on XF

m is taken to be the projection of the normalized Haar measure
from the group. Then, for all local fields, for the Archimedean ones [12] and
for the non-Archimedean ones [11], the following decomposition holds.

Theorem 1 (James-Constantine, Hill) For any local field F and m ≤ [n
2
],

the Grassmann representation is a multiplicity free direct sum of irreducible
representations of KF indexed by Λm, the set of partitions with at most m
parts.

Let {UF

λ }λ∈Λm be the irreducible representations which occur in L2(XF

m). In
view of the independence of the labeling set on the field, it is natural to ask
the following question.
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Question 2 Fix λ ∈ Λm. Are {UF

λ }F related when F runs over all local fields?

Our goal is to address this question. For this purpose, the Hecke algebra of
intertwining operators HF

m = S(XF

m ×KF XF

m) will be used. This is the con-
volution algebra of smooth functions on XF

m ×XF

m which are invariant under
the diagonal action of KF. An element of HF

m defines an intertwining operator
by realizing it as an integration kernel. The measure on ΩF

m := XF

m ×KF XF

m,
denoted by dhF, is the projection of the Haar measure from the group and
described explicitly in §2.1 and §2.2. As this algebra is commutative for all
local fields, the first part of Theorem 1 follows. The minimal idempotents of
the algebra have been computed in [12] for Archimedean fields and in [5] for
non-Archimedean fields:

• Archimedean fields [12]. The minimal idempotents in the Hecke algebra
are naturally associated to polynomial representations of GLm. In particular,
they are parameterized by Λm. They are eigenfunctions of the Laplacian on
the Grassmann manifold with distinct eigenvalues.
• Non-Archimedean fields [5]. The minimal idempotents in the Hecke

algebra are naturally associated with finite quotients ofOm, the free module
of rank m. In particular, they are parameterized by Λm. The idempotents are
computed in terms of combinatorial invariants of the lattice of submodules
of Om.

Interestingly, geometry plays an important role in both cases; geometrically
defined operators which commute with the group action are sufficient to sep-
arate representations. In the Archimedean case, it is the Laplacian on the
Grassmann manifold, whereas in the non-Archimedean case, a family of dis-
crete averaging operators plays the same role. The identical parametrization
of irreducibles is reflected by the same parametrization of idempotents in the
Hecke algebras for the different local fields. To show the link between the ir-
reducibles labeled by the same partition for the different fields, the quantum
Grassmannian will be used in the following scheme.

Each of the Hecke algebras HF

m is characterized by a triplet (space, measure,
idempotents)

(

ΩF

m, dhF, {eF

λ}λ∈Λm

)

These will be ’interpolated’ by similar objects which arise in the quantum
Grassmannian Uq(n)/Uq(m) ×Uq(n −m) (cf. [7] for a detailed discussion).
The objects which will be used are

(

Ωq
m, dSq

m, {Eq
λ}λ∈Λm

)

The precise definition of these q-objects is given later on. Roughly, Ωq
m is

the q-exponentiation of a shift of Λm; dSq
m(x; a, b, t) is the q-Selberg mea-

3



sure [9,13,14,2] defined on Ωq
m; and {Eq

λ(x; a, b, t)}λ∈Λm are the zonal spherical
functions which occur in the quantum Grassmannian. The zonal spherical
functions, also called multivariable little q-Jacobi polynomials [7,28], are or-
thogonal with respect to the q-Selberg measure.

By taking appropriate limits, the q-objects interpolate between the objects
related to the local fields. In the Archimedean limit q → 1, the space Ωq

m

becomes dense in the Archimedean space, and the atomic q-Selberg measure
approximates the continuous Selberg measure. In the non-Archimedean limit
q → 0, the space itself remains discrete, and the q-measure specializes to give
the non-Archimedean measure. Thus, for any local field F, the distribution
f 7→

∫

ΩF
m

fdhF is the limit of the distribution f 7→
∫

Ωq
m

fdSq
m (§3, Theorem 8).

Under the same limits the quantum zonal spherical functions {Eq
λ} are mapped

to {eF

λ} (§3, Theorem 10).

1.1 Related works

Similar interpolations between p-adic and real zonal spherical functions using
q-special functions have been established in several instances. For PGL2, the
zonal spherical functions which occur in the principal series of the groups
PGL2(R) and PGL2(Qp), have been shown to be limits of q-ultraspherical
polynomials (see [4] for the p-adic limit and [17] for the real limit). The p-
adic limit of the higher rank case appeared in the work of Macdonald [21,20],
whereas the real limit was proved by Koornwinder 1 . For compact groups,
such interpolation has appeared in the work of Haran [10] for the case of the
maximal compact subgroup of GLn and its action on the projective line. This
has also been further generalized by Porat [24] to invariants of the GLn-action
on the projective space with respect to upper triangular matrices.

1.2 Organization of the paper and notations

The paper is organized as follows. In section 2 we describe the Grassmann
representation in its various appearances, the Archimedean in §2.1, the non-
Archimedean in §2.2 and the quantum in §2.3. This section contains a de-
scription of all the ingredients required for carrying out the above plan, with
the necessary adjustments and complements. In section 3, the ingredients are
glued together to establish the interpolation. Section 4 contains an example,
the one-dimensional case, and section 5 is devoted to possible extensions of
this work.

1 Lecture at the INI program on Symmetric Functions and Macdonald Polynomials,
April 2001
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Notations: Whenever possible, the notations of [21] have been followed; par-
titions are written in a non-increasing order and are identified with the corre-
sponding Young diagrams. For a partition λ = (λ1, λ2, . . .), let λ′ denote the
transposed diagram, |λ| =

∑

i λi its weight and n(λ) =
∑

(i− 1)λi. The rank of
the partition is the number of its nonzero parts, and its height is the largest
part. We shall also use the notation λ = (1µ12µ2 · · · ) where µi = |{j|λj = i}|.

Two partial orderings on partitions are used; The partial order defined by
the inclusion of Young diagrams ≤, and the dominance order � 2 . The set of
partitions which consist of at most m parts will be denoted by Λm. For any ring
A, we set G(A) = GLn(A). In addition to q, three other parameters (a, b, t) are
used. Depending on the context, they are sometimes rewritten using exponents
(α, β, γ). For λ = (λ1, . . . , λm) ∈ Λm, the vector (qλ1, . . . , qλm) is denoted by qλ;
the set of all such elements is denoted by qΛm ; and ρ = (m−1, m−2, . . . , 0). R

and C stand for the real and complex fields, and K for a non-Archimedean local
field with residue field of cardinality pr = |O/℘|. Multivariable indeterminants
such as (x1, . . . , xm) are abbreviated by x, and Am = C[x1, . . . , xm]Σm is the
algebra of symmetric polynomials with m variables. Integration with respect
to any measure, discrete or continuous, is denoted by the integral sign.

1.3 Acknowledgements

I am grateful to S. Haran for inspiring discussions, A. Nevo for hosting this
research and commenting on this manuscript, T. Koornwinder for his hospi-
tality while this work was completed, many discussions and careful reading of
this manuscript, and to J. Stokman for suggesting that I look at the shifted
Macdonald polynomials. I thank the referee for his constructive comments.

2 The Grassmann representation

2.1 Archimedean theory

This section is concerned with the Archimedean fields R and C. All the objects
involved are well known (see James and Constantine [12], and Vretare [31]),
but are described here for completeness. The corresponding maximal compact
subgroup K is the orthogonal group O(n) in the real case, and the unitary
group U(n) in the complex case.

2 λ � µ⇐⇒ |λ| = |µ| and
∑j

i=1 λi ≤
∑j

i=1 µi ∀j ∈ N
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2.1.1 Space and measure

Points in the space ΩR

m = XR

m×O(n)X
R

m [resp. ΩC

m = XC

m×U(n)X
C

m] represent the
relative position of two m-dimensional subspaces in the real [resp. complex]
Grassmann manifold modulo the action of O(n) [resp. U(n)]. They are given
in terms of m critical angles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 which are conveniently
rewritten [12, §5] using ui = sin2(θi) to give 3

ΩR

m ≃ ΩC

m ≃ Ωm := {u = (u1, . . . , um)|0 ≤ u1 ≤ · · · ≤ um ≤ 1} (2.1)

The projection of the normalized Haar measure from K to the orbit space
Ωm is given by special values of the parameters in the Selberg measure [26,1]
which is given by

dSm(u; α, β, γ) = sα,β,γ
m

m
∏

i=1

u
α/2−1
i (1− ui)

β/2−1
∏

i<j

|ui − uj|
γdu (2.2)

where

sα,β,γ
m =

m
∏

j=1

Γ(α/2 + β/2 + (m + j − 2)γ/2)Γ(γ/2)

Γ(α/2 + (j − 1)γ/2)Γ(β/2 + (j − 1)γ/2)Γ(jγ/2)
(2.3)

That this is a probability measure on Ωm is due to Selberg [26]. We are inter-
ested in the following specializations

dhR(u) = dSm(u; n− 2m + 1, 1, 1)

dhC(u) = dSm(u; 2(n− 2m + 1), 2, 2)

2.1.2 Idempotents

Define an inner product on the algebra of symmetric polynomials Am by

〈f, g〉α,β,γ =
∫

Ωm

f(u)g(u) dSm(u; α, β, γ) f, g ∈ Am (2.4)

Let {Mλ}λ∈Λm be the monomial basis of Am

Mλ(x) =
∑

η

xη1
1 · · ·x

ηm
m (2.5)

where the summation is over all distinct permutations of η of λ. The gen-
eralized Jacobi polynomials {Eλ(x; α, β, γ)}λ∈Λm are defined by the following
conditions [12,31]

(1) Eλ = dλMλ + lower terms, dλ 6= 0,

3 we choose the co-ordinates sin2(θi) rather than cos2(θi), see §2.2.1.
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(2) 〈Eλ, Mµ〉α,β,γ = 0 ∀µ ≺ λ,
(3) Normalization: ‖Eλ‖

2 = Eλ(0; α, β, γ).

Our normalization, which is different from the one in [12,31], is chosen so that
the idempotents in the Hecke algebras are given by the generalized Jacobi
polynomials for the same special values as above:

eR

λ(u) = Eλ(u; n− 2m + 1, 1, 1)

eC

λ(u) = Eλ(u; 2(n− 2m + 1), 2, 2)

The generalized Jacobi polynomials are also eigenfunctions with distinct eigen-
values of a second order differential operator which specializes to the Laplace-
Beltrami operator on the real/complex Grassmann manifolds after the param-
eters have been specialized.

2.2 Non-Archimedean theory

Let O be the ring of integers of a non-Archimedean local field K. Let ℘ = (π)
be the maximal ideal and pr the cardinality of the residue field O/℘. By the
principal divisors theorem, any finite O-module is of the form ⊕j

i=1O/℘λi for a
partition λ = (λ1, . . . , λj), which will be referred to as the type of the module.
As an example, Λm above parameterizes all types of finite O modules with
rank bounded by m. Note that in the partial order defined by the inclusion of
Young diagrams, λ ≤ µ if and only if a module of type λ can be embedded in
a module of type µ. In such case we shall use the notation

(

µ

λ

)

= # of submodules of type λ contained in a module of type µ. (2.6)

Elements in Λm with height bounded by k are denoted by Λk
m = {λ ∈ Λm | 0 ≤

λ ≤ km} = {isomorphism types of submodules of (O/℘k)m}.

The non-Archimedean theory is completely determined by finite quotients.
More precisely, let Ok = O/℘k and let Ik stand for Ker{G(O) → G(Ok)}.
Each irreducible representation of the (pro-finite) group G(O) factors through
the groups G(Ok), except for a finite set of k ∈ N whose cardinality is the
level of the representation. In particular, the Grassmann representation can
be filtered as follows

(0) ⊂ L2(XK

m)I1 ⊂ · · · ⊂ L2(XK

m)Ik ⊂ · · · ⊂ L2(XK

m) (⋆)

and each of its irreducible constituents is contained in some finite term. The
k-th term in this filtration is in fact a representation of G(Ok), and the di-
rect limit of this sequence is precisely the smooth part of the Grassmann
representation. The finite space Ik\X

K
m can be canonically identified with
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Xkm = Gr(m, n,Ok), the Grassmannian of free submodules of (Ok)
n of rank m.

Thus, we may identify the representation space L2(XK

m)Ik with Fkm = F(Xkm),
the space of C-valued functions on Xkm.

Let Hkm = EndG(Ok)(Fkm) be the Hecke algebra associated with the represen-
tation Fkm. It is isomorphic to the convolution algebra F(Xkm ×G(Ok) Xkm)
by interpreting elements of the latter as G(Ok)-invariant summation kernels
(see [5, §2.2] for details). The G(Ok)-orbit of an element (y, z) ∈ Xkm ×Xkm

is determined by the type of the intersection y ∩ z, giving rise to the identifi-
cation Λk

m ≃ Xkm ×G(Ok) Xkm. The following diagram summarizes the objects
involved and the maps between them.

G(O) XK

m ×XK

m → XK

m ×G(O) XK

m dhK HK

m

↓ ↓ ↓ ↓ ↑

G(Ok) Xkm ×Xkm → Λk
m dhk Hkm

↓ ↓ ↓ ↓ ↑

G(Ok−1) X(k−1)m ×X(k−1)m → Λk−1
m dhk−1 H(k−1)m

Here dhK and dhk stand for the projection of the Haar measure from G(O) to
XK

m×G(O)X
K
m and Λk

m respectively. The map from Λk
m to Λk−1

m is easily described
using the transposed Young diagrams, and is given by λ′ = (λ′

1, . . . , λ
′
k) 7→ λ̄′ =

(λ′
1, . . . , λ

′
k−1). We have

G(O) ≃ lim
←−

G(Ok) HK

m ≃ lim
−→
Hkm

XK

m ×G(O) XK

m ≃ Λ̂m := lim←−Λk
m dhK = lim−→ dhk

2.2.1 Space and measure

Points in the space ΩK

m = XK

m×G(O) XK

m correspond to the relative position of
two m-dimensional spaces modulo the diagonal G(O)-action. By the above dis-
cussion it may be identified with Λ̂m = lim←−Λk

m, namely with ’partitions’ (λi)
m
i=1

where the value ∞ is allowed [5, §2.3.1]. By analogy with the Archimedean
space (2.1) it is convenient to rewrite it as

ΩK

m = {p−λ = (p−λ1 , · · · , p−λm)|λ ∈ Λ̂m} ⊂ ΩR,C
m (2.7)

Note that this embedding is topological, and has the advantage that the origin
0 = (0, · · · , 0) is the common representative of the orbit of the trivial relative
position for all local fields, namely, 0 = [(x, x)] ∈ XF

m×KF
XF

m. This is also the
reason for the choice of the co-ordinates ui = sin2(θi) rather than ui = cos2(θi)
for the Archimedean spaces.

8



The following proposition computes the measures dhk and dhK. Note that the
measure dhK vanishes outside the set Ω̇K

m = {p−λ|λ ∈ Λm} ⊂ ΩK

m.

Notation: Let [i]q = 1 − qi for i ∈ N, [i]q! = [i]q[i − 1]q · · · [1]q and
[

i
i′

]

q
=

[i]q!
[i′]q![i−i′]q!

. The index q is omitted whenever q = p−r = |O/℘|−1.

Proposition 3

(1) dh1(λ) =

[

m
λ′

1

][

n−m
m−λ′

1

]

[

n
m

] p−rλ′
1(n−2m+λ′

1) (k = 1)

dhk(λ)

dhk−1(λ̄)
=

[

λ′
k−1

λ′
k

]

[n− 2m + λ′
k−1]!

[n− 2m + λ′
k]!

p−rλ′

k(n−2m+λ′

k) (k > 1)

(2) dh
K(p−λ) =

[

m
m−λ′

1,λ′

1−λ′

2,...

]

[n−m]!
[m−λ′

1]![n−2m]!
[

n
m

] p−r
∑

(λ′

i)
2−r(n−2m)

∑

λ′

i

Proof. The proof of part (2) follows directly from part (1) using

dhK(p−λ) =
∏

k≥1

dhk(λ)

dhk−1(λ̄)
(2.8)

where dh0 = 1.

To prove (1), start with k = 1. The measure dh1 appeared in connection with
the q-Johnson association scheme [6], but is included here for completeness.
Fix spaces z1 ⊂ y1 of dimensions λ′

1 ≤ m in (O/℘)n. Then

n1 = |{y| dim y = m, y ∩ y1 = z1}| =
[

n−m

m− λ′
1

]

pr
pr(m−λ′

1)2

n2 = # of choices for z1 =
(

1m

1λ′
1

)

=
[

m

λ′
1

]

pr

n3 = # of m-dimensional subspaces in (O/℘)n =
[

n

m

]

pr

and dh1(λ) = n1n2/n3, which together with the relation
[

i
i′

]

q
=
[

i
i′

]

1/q
qi′(i−i′),

gives the desired formula.

For k > 1, fix two Ok-modules f ⊂ F of types φ = km ≤ kn = Φ. Let
F̄ = F/℘k−1F where z 7→ z̄ is the quotient map. For any module y, let t(y)

9



denote its isomorphism type. Then for any λ ≤ km

dhk

(

λ
)

dhk−1

(

λ̄
) =

(

Φ
φ

)−1

(

Φ̄
φ̄

)−1

∣

∣

∣

{

z | t(z ∩ f) = λ, t(z) = φ
}∣

∣

∣

∣

∣

∣

{

z̄ | t(z̄ ∩ f̄) = λ̄, t(z̄) = φ̄
}∣

∣

∣

(Haar → counting measure)

=

(

Φ̄
φ̄

)

(

Φ
φ

) ·

(

φ
λ

)

(

φ̄
λ̄

) ·

∣

∣

∣

{

z | z ∩ f = y0, t(z) = φ
}∣

∣

∣

∣

∣

∣

{

z̄ | z̄ ∩ f̄ = ȳ0, t(z̄) = φ̄
}
∣

∣

∣

(y0 fixed of type λ)

=

(

p−rm(n−m)

)([

λ′
k−1

λ′
k

]

prλ′

k
(m−λ′

k
)

)(

[n− 2m + λ′
k−1]!

[n− 2m + λ′
k]!

pr(m−λ′

k
)(n−m)

)

The computation of the first two terms is straightforward (alternatively, use
the explicit formulas in [5, §4.1]), and for the third term we argue as follows.
Let y0 ⊂ f be a fixed submodule of type λ. Let z̄ be a fixed submodule of F̄
of type φ̄ such that f̄ ∩ z̄ = ȳ0. Then |{z|z∩f=y0, t(z)=φ}|

|{z̄|z̄∩f̄=ȳ0, t(z̄)=φ̄}|
counts the number of

submodules z ⊂ F of type φ which fit into the following diagram

z 7−→ z̄

∪ ∪

y0 = z ∩ f 7−→ ȳ0

∩ ∩

f 7−→ f̄

That is, we need to count liftings of z̄ which intersect f precisely in y0. First,
observe that we may assume λ′

k = 0. This amounts to moding out a kλ′

k-type
summand of y0. A second observation is that counting different liftings of z̄
is equivalent to deforming a fixed basis of a chosen lifting. Namely, let z be a
lifting of z̄ and let Bz be a basis for z. Complete this basis to a basis BF of F .
If z′ is another lifting of z̄, then it has a basis Bz′ which is a deformation of Bz

with elements from ℘k−1BF . There are in fact many such bases, however, if we
deform only with elements from ℘k−1(BF \ Bz) we get that z′ = z′′ ⇐⇒ Bz′ =
Bz′′ . Putting the last two observations together, we now fix z which fits into
the diagram above together with a basis Bz, and count proper deformations
which also fit the diagram. Let Bz =

∐k
i=0 B

i
z and Bf =

∐k
i=0 B

i
f be bases

of z and f respectively such that
∐

i π
k−iBi

z =
∐

i π
k−iBi

f is a basis for y0.
The assumption λ′

k = 0 implies that Bk
f = Bk

z = ∅. Elements of Bz \ B
k−1
z

can be deformed arbitrarily, and there are |℘k−1(BF \ Bz)| · |Bz \ B
k−1
z | =

pr(n−m)(m−λ′

k−1
) such deformations. However, when deforming the j-th basis

element of Bk−1
z , elements from ℘k−1(Bf \ B

k−1
f ) together with the span of

the previously chosen j − 1 elements must be avoided in order not to enlarge
the intersection y0. Thus, the number of possible deformations of this element
is (pr(n−m) − pr(m−λ′

k−1+j−1)). Multiplying all contributions gives the desired

10



result for the third term

(pr(n−m) − pr(m−λ′

k−1)) · · · (pr(n−m) − pr(m−1)) · pr(n−m)(m−λ′

k−1)

and completes the proof of the proposition. ✷

2.2.2 Idempotents

We have the following inner product on HK

m

〈f, g〉K =
∫

ΩK
m

f ḡdhK ∀f, g ∈ HK

m (2.9)

The idempotents in the algebra HK

m, considered as functions on ΩK

m, are or-
thogonal with respect to the measure dhK. Since Ω̇K

m = p−Λm is an open dense

subset of ΩK

m = p−Λ̂m (see [5, §2.3]), and carries the full measure of the space
by proposition 3, it suffices to know the restrictions of functions to Ω̇K

m. The
explicit computation of the minimal idempotents in HK

m has been carried out
in [5, §4.2]. The algebra HK

m is equipped with the following natural bases

• {gK

λ}λ∈Λm - Geometric basis (delta functions supported on points in Ω̇K

m).
• {cK

λ}λ∈Λm - Cellular basis.
• {eK

λ}λ∈Λm - Algebraic basis (minimal idempotents).

The cellular basis is an intermediate basis which plays an important role in the
non-Archimedean theory and also for the interpolation. It is lower triangular
with respect to the geometric basis, defined explicitly by

cK

λ =
∑

µ≥λ

(

µ

λ

)

gK

µ (2.10)

On the other hand it is upper triangular with respect to the algebraic basis;
The subspaces

J K

λ = SpanC{c
K

µ |µ ≤ λ} J K

λ− = SpanC{c
K

µ |µ < λ}

are in fact ideals, and {J K
λ /J K

λ−}λ∈Λm exhaust the irreducible HK
m-modules

(hence the term cellular basis). As eK

λ is by definition the idempotent which
corresponds to the representation J K

λ /J K

λ− we have

〈eK

λ , cK

µ 〉K = 0 ∀µ ≤ λ (2.11)
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2.3 Quantum Grassmannians and some symmetric functions

In this section we describe the q-objects which interpolate between the objects
related to the local fields. For more details, the reader is referred to [14,2] for
the measure theoretic considerations (the q-Selberg measure), to [28,29] for
the spherical functions analysis (multivariable little q-Jacobi polynomials), to
[23,22,18,19] for the generalized binomial coefficients and the shifted Macdon-
ald polynomials and to [7] for the description of quantum Grassmannians.
Throughout this section the parameters q, t, a and b are used, where the first
two are the standard Macdonald parameters. In some parts restrictions are
set on their values.

2.3.1 The q-Selberg measure

The q-Selberg measure is a multivariable generalization of the q-beta measure
[3]. Let q, t, a, b ∈ (0, 1) and let ρ = (m− 1, m− 2, . . . , 0). Let

Ωq
m = {qλtρ = (qλ1tm−1, qλ2tm−2, . . . , qλm)|λ ∈ Λm} ⊂ ΩR,C

m (2.12)

and denote

(x)∞ = (x; q)∞ =
∞
∏

i=0

(1− qix) (2.13)

(x1, . . . , xl)∞ =
l
∏

i=1

(xi)∞ (2.14)

The q-Selberg measure is given by

dSq
m(x;a, b, t) =

m
∏

j=1

(atm−j , btj−1, tj , qxj)∞
(abtm+j−2, t, q, bxj)∞

aλj t2j−2
∏

j<i

(qxj/txi)∞
(txj/xi)∞

(

1−
xj

xi

) (2.15)

for x = qλtρ ∈ Ωq
m. Askey conjectured [3, §2] that dSq

m(x; a, b, t) is a probability
measure supported on Ωq

m for t = qγ, γ ∈ N. This was proved independently
by Habsieger [9] and Kadell [13], and was further generalized by Aomoto [2,
Proposition 2] for any γ ∈ R>0. Our notation follows [2] with the dictionary

a↔ qα−(m−1)(2γ−1) m↔ n

b↔ qβ+1 xj ↔ q−1tn−j+1

t↔ qγ tρ ↔ q−1ξF

12



and Proposition 2 in [2] translates into

∫

Ωq
m

dSq
m =

∑

qλtρ∈Ωq
m

dSq
m(qλtρ; a, b, t) = 1 (2.16)

Note that the order of the variables is reversed with respect to [2,28,14] since
partitions there are written in non-decreasing order while here they are written
in non-increasing order. Also, we avoid the use of the q-Jackson integral, which
is illuminating when one takes the Archimedean limit but is less adapted for
taking the non-Archimedean limit.

2.3.2 Multivariable little q-Jacobi polynomials

Define an inner product on the algebra of symmetric polynomials Am by

〈f, g〉q,a,b,t =
∫

Ωq
m

f(ω)g(ω)dSq
m(ω; a, b, t) f, g ∈ Am

Definition 4 (Stokman, [28]) The multivariable little q-Jacobi polynomials
{Eq

λ(x; a, b, t)}λ∈Λm are the unique polynomials defined by

(1) E
q
λ = dλMλ + lower terms, dλ 6= 0,

(2) 〈Eλ, Mµ〉q,a,b,t = 0, ∀µ ≺ λ,
(3) Normalization 4 : ‖Eq

λ‖
2 = E

q
λ(0; a, b, t).

The multivariable little q-Jacobi polynomials have interpretation as zonal
spherical functions in the representation of Uq(n) which arises from its ac-
tion on Uq(n)/Uq(m) ×Uq(n −m). As we focus only on the zonal spherical
functions, the reader is referred to [7] for a detailed discussion on the quantum
Grassmannian.

2.3.3 The basis {Cq
λ}

In the absence of an explicit formula for the multivariable little q-Jacobi poly-
nomials, a key role in the interpolation between the idempotents in the Hecke
algebras is played by a q-version of the non-Archimedean cellular basis (2.10).
In short, it consists of a symmetrized and normalized version of the shifted

4 note the different normalization comparing to [28].
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Macdonald polynomials. We review their definition and some of their proper-
ties. The only parameters to be used here are (q, t). Let

vλ = vλ(q, t) =
∏

(i,j)∈λ

(1− qλi−jtλ
′

j−i+1)

v′
λ = v′

λ(q, t) =
∏

(i,j)∈λ

(1− qλi−j+1tλ
′

j−i)

The shifted Macdonald polynomials, also known as interpolation Macdonald
polynomials, were defined in [23,15,25]. They were further studied in [22], in
which an integral representation is given and a binomial formula. They are
defined as follows [22, §1].

Definition 5 The shifted Macdonald polynomials {P ⋆
λ (x; q, t)}λ∈Λm are poly-

nomials in m variables defined by the following conditions

(1) P ⋆
λ has degree |λ|,

(2) P ⋆
λ is symmetric in the variables xit

−i,
(3) P ⋆

λ (qµ; q, t) = 0 unless λ ≤ µ,
(4) P ⋆

λ (qλ; q, t) = (−1)|λ|t−2n(λ)qn(λ′)v′
λ.

The values of these polynomials on points qµ with λ ≤ µ are connected to
two-parameter generalized binomial coefficients, defined in [18, §4] and [22,
§1].

Definition 6 The generalized binomial coefficients
(

µ
λ

)

q,t
are defined by the

identity

(v′
λ)

−1Pλ(x; q, t)
m
∏

i=1

(xi; q)
−1
∞ =

∑

µ

(

µ

λ

)

q,t
tn(µ)−n(λ)(v′

µ)
−1Pµ(x; q, t)

where the Pλ’s are the Macdonald polynomials.

The connection between the generalized binomial coefficients and the shifted
Macdonald polynomials is given by

(

µ

λ

)

q,t
=

P ⋆
λ (qµ)

P ⋆
λ (qλ)

, [19, §7] [22, §1] (2.17)

The q-analogue of the non-Archimedean cellular basis which was described
in §2.2.2, is the following symmetrized and normalized version of the shifted
Macdonald polynomials

Definition 7 The basis {Cq
λ(x; t)}λ∈Λm of Am is defined by

C
q
λ(x1, . . . , xm; t) =

P ⋆
λ (x1t

1−m, x2t
2−m, . . . , xm; q, t)

P ⋆
λ (qλ; q, t)

, λ ∈ Λm (2.18)
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3 Interpolation

We are now in a position to state our results concerning the interpolation. Most
of them are multidimensional generalizations of Haran’s work [10] regarding
interpolation between projective spaces (Grassmannians of lines) over local
fields. By interpolation, we mean that the q-objects described in §2.3 have
limits which are the local objects described in §2.1 and §2.2. The functions or
measures of which we take limits are of m variables and might carry one, two
or three parameters, in addition to q.

3.1 Definition of the limits

Two kinds of limits are considered; For f q = f q(x; a, b, t) ∈ C[x] define the
Archimedean limit by

[lim
Arch

f q](u; α, β, γ) = lim
q→1

f q(u; qα/2, qβ/2, qγ/2) u ∈ ΩR,C
m (3.1)

and, the Non-Archimedean limit by

[ lim
NonArch

f q](p−λ; α, β, γ) = lim
q→0

f q(qλp−γρ; p−α, p−β, p−γ) p−λ ∈ ΩK

m (3.2)

In both limits, the parameter q disappears and the parameters a, b, t are re-
placed by α, β, γ. In practice, the non-Archimedean limit amounts to first
substituting (a, b, t) = (p−α, p−β, p−γ), and then substituting q = 0. To get
interpretation of these functions in the Hecke algebras HF

m, set

(α, β, γ) = r(n− 2m + 1, 1, 1) (3.3)

where for non-Archimedean places r = [O/℘ : Fp], the degree of the residue
field over its prime field, and since this degree is the same as [K : Qp] for
non-ramified extensions, we set r = 1 for a real place and r = 2 for a complex
place.

3.2 Interlude for setting the strategy

We shall follow the following plan. First, we observe that the Archimedean
and non-Archimedean weak limits of the distribution

f 7→
∫

Ωq
m

fdSq
m,

are the distributions
f 7→

∫

ΩF
m

fdhF,
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when substituting the appropriate parameters (3.3). Second, we observe that
the flag which is used to define the zonal spherical functions in the quantum
Grassmannian converges to the flag which is used to define the idempotents
{eF

λ}. We then conclude that the zonal spherical functions in the quantum
Grassmannian converge to the idempotents.

3.3 Limits of the measure

We now prove (the non-Archimedean part of)

Theorem 8 For any local field F the measure on the space XF

m ×KF
XF

m is a
limit of the q-Selberg measure.

Proof. For the Archimedean limit see [28]; As q → 1 the space Ωq
m ap-

proximates the space Ωm, and the distribution f 7→
∫

Ωq
m

fdSq
m weakly con-

verges to the distribution f 7→
∫

Ωm
fdSm. In fact, the possible existence of

the Archimedean limit was the main motivation for introducing the q-Selberg
measure.

For the non-Archimedean limit, we show that the function dhK is a limit of
the function dSq

m. Substituting a typical element ωλ = qλtρ in the q-Selberg
measure gives

dSq
m(qλtρ; a, b, t) = f1 · f2 · f3 , λ ∈ Λm

where

f1 =
m
∏

j=1

(atm−j , btj−1, tj)∞
(abtm+j−2, t, q)∞

(normalization constant)

f2 =
m
∏

j=1

(qλj+1tm−j)∞
(bqλj tm−j)∞

aλj t2λj(j−1) (local factors)

f3 =
∏

j<i

(qλj−λi+1ti−j−1)∞
(qλj−λiti−j+1)∞

(1− qλj−λiti−j) (mixed factors)

Taking the non-Archimedean limit of these expressions gives

[ lim
NonArch

f1](p
−λ; α, β, γ) =

m
∏

j=1

(1− p−α−(m−j)γ)(1− p−β−(j−1)γ)(1− p−jγ)

(1− p−α−β−(m+j−2)γ)(1− p−γ)

[ lim
NonArch

f2](p
−λ; α, β, γ) =

m
∏

j=1

p−λj [α+2(j−1)γ]
∏

{j:λj=0}

(1− p−β−(m−j)γ)−1

[ lim
NonArch

f3](p
−λ; α, β, γ) =

∏

j<i
λi=λj

1− p−(i−j)γ

1− p−(i−j+1)γ
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so that the product of these terms is [limNonArch dS
q
m](p−λ; α, β, γ). To get the

non-Archimedean measure for the Grassmannian we specialize (α, β, γ) =
r(n− 2m + 1, 1, 1) and get

[ lim
NonArch

f1](p
−λ; r(n− 2m + 1), r, r) =

[m]![n−m]!

[1]m
[

n
m

]

[n− 2m]!

[ lim
NonArch

f2](p
−λ; r(n− 2m + 1), r, r) =

1

[m− λ′
1]!

p−r
∑m

j=1
λj(n−2m+2j−1)

[ lim
NonArch

f3](p
−λ; r(n− 2m + 1), r, r) =

[1]m
∏k

i=0[λ
′
i − λ′

i+1]!

which will agree with the second part of proposition (3) once we show that
the exponents of p are the same, that is

−
m
∑

j=1

λj(n− 2m + 2j − 1) = −
∑

(λ′
i)

2 − (n− 2m)
∑

λ′
i

However, since
∑

λ′
j =

∑

λi, the last equality reduces to

m
∑

j=1

λj(2j − 1) =
∑

(λ′
i)

2

And this equality follows from the fact that both sides evaluate the cardinality
of EndO(⊕O/℘λi). Thus, we conclude that

dhK(p−λ) = [ lim
NonArch

dSq
m]
(

p−λ; r(n− 2m + 1), r, r
)

. ✷

3.4 Limits of functions

In [16, §2], Koornwinder has given an alternative proof for Haran’s non-
Archimedean limit of little q-Jacobi polynomials which involves the one vari-
able shifted Macdonald polynomials. This section consists of a generalization
of this proof to the multidimensional case.

Proposition 9

[ lim
NonArch

C
q
λ](p

−µ; p−r) = c
K

λ (p−µ).

Proof. Using (2.17), definition 7 and the definition of the non-Archimedean
limit, we observe that

[ lim
NonArch

C
q
λ](p

−µ; p−r) = C
q
λ(q

µp−rρ; p−r)
∣

∣

∣

q=0
=
(

µ

λ

)

0,p−r
(3.4)
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Hence, recalling (2.10), we should show that
(

µ
λ

)

0,p−r
=
(

µ
λ

)

= cK

λ (p−µ). In-

deed,
(

µ

λ

)

q,t
= t−n(µ)+n(λ) Jµ/λ(1, t, t

2, · · · ; q, t) [18, §15] (3.5)

where Jµ/λ are symmetric functions defined in terms of the integral Macdonald
polynomials Jν = vνPν by

Jµ/λ =
v′

µ

v′
λ

∑

ν

(v′
ν)

−1fµ
ν,λJν [18, §15] and [21, VI (7.5)] (3.6)

with fµ
ν,λ = fµ

ν,λ(q, t) defined by

Pλ(x; q, t)Pν(x; q, t) =
∑

µ

fµ
ν,λ(q, t)Pµ(x; q, t) [21, VI (7.1’)] (3.7)

We now substitute (3.6) into (3.5) and specialize to the case q = 0. As
v′

λ(0, t) ≡ 1 we get

(

µ

λ

)

0,t
= t−n(µ)+n(λ)

∑

ν

fµ
ν,λ(0, t)Jν(1, t, t

2, · · · ; 0, t) (3.8)

however,

Jν(1, t, t
2, · · · ; q, t) = tn(ν) [21, p. 366(9)]

fµ
ν,λ(0, t) = tn(µ)−n(λ)−n(ν)gµ

ν,λ(t
−1) [21, p. 217(3.6) and p. 343(7.2)(ii)]

where gµ
ν,λ are the Hall polynomials [21, chapter II]. Thus

(

µ

λ

)

0,t
=
∑

ν

gµ
ν,λ(t

−1) (3.9)

Since gµ
ν,λ(p

r) is by definition the number of O-submodules of type λ and co-
type ν in an O-module of type µ, summing over all the co-types ν, gives the
total number of submodules of type λ, and we have

[ lim
NonArch

C
q
λ](p

−µ; p−r) =
(

µ

λ

)

0,p−r
=
(

µ

λ

)

= cK

λ (p−µ). ✷

With this in hand we can prove (the non-Archimedean part of)

Theorem 10 For any local field F the idempotents in the Hecke algebra as-
sociated with the Grassmann representation are limits of multivariable little
q-Jacobi polynomials.

Proof. The partial orderings ≤ and � can be completed simultaneously to
a total ordering, e.g. the lexicographical ordering. LetM = Flag{Mλ|λ ∈ Λm}
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be the flag defined by the monomial basis of Am with respect to such total
ordering. The multivariable little q-Jacobi are obtained by applying the Gram-
Schmidt procedure to the flagM, with respect to the inner product 〈·, ·〉q,a,b,t

(definition 4).

The Archimedean limit, Eλ = limArch E
q
λ, follows as this inner product deforms

continuously to the inner product 〈·, ·〉α,β,γ, which is used to define the gener-
alized multivariable polynomials (§2.1), see [29] for details.

As for the non-Archimedean limit, we observe that the flagM is also defined
by the basis {Cq

λ}λ∈Λm ; Indeed,

C
q
λ = P ⋆

λ (qλ)−1Pλ + lower terms w.r.t. ≤ (by the binomial formula [22, (1.12)])

Pλ = Mλ + lower terms w.r.t. � (by definition [21, VI(4.7)])

Thus, using the total ordering which refines both partial orderings, {Cq
λ} and

{Mλ} define the same flagM. The idempotents basis in the non-Archimedean
Hecke algebra HK

m are obtained by applying the Gram-Schmidt procedure to
the cellular basis {cK

λ}. As the q-Selberg measure deforms continuously to the
non-Archimedean measure dhK (by theorem 8), and the basis {Cq

λ} converges
to the cellular basis (by proposition 9), the multivariable little q-Jacobi poly-
nomials converge to the idempotents up to constants. Our normalization in
definition 4 is designed to eliminate these constants, as for idempotents one
has ‖eK

λ‖
2 = eK

λ (0). ✷

4 Example

This section is devoted to the one-dimensional case which was treated in [10]
(see also [16]), as it admits a completely explicit description. For m=1, the
representation of KF arises from its action on the projective space XF

1 =
Pn−1

F
. The representation L2(Pn−1

F
) decomposes into irreducible representations

{UF

λ }λ∈Λ1 where Λ1 = N0. The space Pn−1
F
×KF Pn−1

F
, which describes the

KF-relative position of two lines, is given by [0, 1] (normalized angles) for
an Archimedean place and by {p−λ}λ∈N0∪{∞} ⊆ [0, 1] for a non-Archimedean
place. The triplets (space, measure, idempotents) are given as follows.

Archimedean. For u ∈ [0, 1] and λ ∈ N0 let

dS(u; α, β) =
Γ(α

2
+ β

2
)

Γ(α
2
)Γ(β

2
)
u

α
2
−1(1− u)

β
2
−1du

Eλ(u; α, β) =
(α

2
)λ(α

2
+ β

2
)λ

(β
2
)λ λ!

2λ−1+ α
2
+ β

2

λ−1+ α
2
+ β

2
2F1

[

−λ,λ+ α
2
+ β

2
−1

α
; u
]
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where (y)j = y(y + 1) · · · (y + j − 1) is the shifted factorial and 2F1 is the
hypergeometric function 5 . dS(u; α, β) is the normalized beta measure on
the unit interval, and {Eλ(u; α, β)}λ∈N0 are the normalized Jacobi polyno-
mials. For the special values (α, β) = (n − 1, 1) and (α, β) = 2(n − 1, 1)
the triplet ([0, 1], dS(u; α, β), {Eλ(u; α, β)}λ∈N0) specializes to the real and
complex triplets ([0, 1], dhR, {eR

λ}λ∈N0) and ([0, 1], dhC, {eC

λ}λ∈N0). The di-
mensions of the irreducible representations are given for by

dimUR

λ = Eλ(0; n− 1, 1) =
2λ + n

2
− 1

λ + n
2
− 1

(n−1
2

)λ(
n
2
)λ

(1
2
)λλ!

,

dimUC

λ = Eλ(0; 2n− 2, 2) =
2λ + n− 1

n− 1

(

n + λ− 2

λ

)2

.

Non-Archimedean. The case m = 1 is greatly simplified by the fact that
the terms in the filtration §2.2(⋆) are in bijection with the irreducibles, and
each step in the filtration contains exactly one new irreducible representa-
tion. It follows that λ and k are identified and

dimUK

λ = |Pn−1
O/℘λ| − |P

n−1
O/℘λ−1| =











(1−p−r(n−1))
(1−p−r)

pr(n−1), λ = 1

(1−p−rn)(1−p−r(n−1))
(1−p−r)

pr(n−1)λ, λ ≥ 2

and is equal to 1 for λ = 0, where |Pn−1
O/℘λ| =

1−p−rn

1−p−r pr(n−1)λ for λ ≥ 1, and

|Pn−1
O/℘0| = 1. The measure is easily seen to be

dhK(p−λ) =















|Pn−1
O/℘

|−1

|Pn−1
O/℘

|
= 1−p−r(n−1)

1−p−rn , λ = 0

1
|Pn−1

O/℘
|

|An
℘/℘λ

|−1

|An
℘/℘λ

|
= (1−p−r)(1−p−r(n−1))

(1−p−rn)p−r(n−1)λ , λ ≥ 1

where An stands for the affine n-space. For the idempotents, we use again
the fact that the filtration admits only one new irreducible in each step, but
this time on the level of the Hecke algebras. The Hecke algebra HK

1 is the
direct limit the algebras {Hλ}λ∈N0 (λ = k1 of §2.2). Each of these algebras
contains a unit element 1λ, which as a function on the orbits space is given
by |Pn−1

O/℘λ|1l{p−µ|µ≥λ}. Thus on p−N0 we have

eK

λ =











10 = 1lp−N0 , λ = 0

1λ − 1λ−1 = |Pn−1
O/℘λ |1l{p−µ|µ≥λ} − |P

n−1
O/℘λ−1|1l{p−µ|µ≥λ−1}, λ ≥ 1

cK

λ =
∑

µ≥λ

gK

µ = 1l{p−µ|µ≥λ}

5
2F1

[α1, α2

α3
;u
]

=
∑∞

j=0
(α1)j(α2)j

(α3)jj! uj
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and the non-Archimedean triplet is (p−N0 ∪ {0}, dhK, {eK

λ}λ∈N0).
Quantum. For q ∈ (0, 1) and λ ∈ N let

dSq(qλ; a, b) =
(a; q)∞
(ab; q)∞

(b; q)λ

(q; q)λ
aλ

E
q
λ(x; a, b) =

(1− abq2λ−1)(abq−1; q)λ(a; q)λ

(1− abq−1)(q; q)λ(b; q)λaλ 2φ1

[

q−λ, qλ−1ab

a
; q, qx

]

C
q
λ(x) =

(x; q−1)λ

(qλ; q−1)λ
=

(x− 1)(x− q) · · · (x− qλ−1)

(qλ − 1)(qλ − q) · · · (qλ − qλ−1)

where (y; q)j = (1−y)(1−yq) · · · (1−yqj−1) is the q-shifted factorial and 2φ1

is the basic hypergeometric function 6 . dSq(qλ; a, b) is the normalized q-beta
measure on the set {qλ}∞λ=0 and the associated orthogonal base consists of
the normalized little q-Jacobi polynomials [8,16], {Eq

λ(x; a, b)}λ∈N0 . Then the
q-triplet is given by (qN0 , dSq(qλ; a, b), {Eq

λ(x; a, b)}λ∈N0).

Remarks

• The parameter t does not appear in the one dimensional case.
• The formula

D
q
λ(a, b) = E

q
λ(0; a, b) =

(1− abq2λ−1)(abq−1; q)λ(a; q)λ

(1− abq−1)(q; q)λ(b; q)λaλ

interpolates between the dimensions of the irreducible representations UF

λ .
• The non-Archimedean limit for dSq, Dq

λ and C
q
λ is immediate. For more details

regarding this limit see [10] and [16, §2]. The Archimedean limit of the q-
beta measure and basic hypergeometric series is discussed in [3, §1] and [8,
pp. 1-28].

5 Related problems

5.1 The module of intertwining operators S(XF

m1
×KF XF

m2
)

For m1 ≤ m2 ≤ [n/2], one can consider in a similar manner the module of
intertwining operators between the representations S(XF

m2
) and S(XF

m1
). This

results in a very similar discussion, where the only difference occurs in the
parameters α, β and γ, while the geometry remains as in the equal dimension
case for m = m1. As an example see [16] for the case m1 = 1.

6
2φ1

[a1, a2

a3
;u
]

=
∑∞

j=0
(a1;q)j(a2;q)j

(a3;q)j(q;q)!
uj .
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5.2 Dimensions of the irreducible representations

The q-dimension of the irreducible representation U q
λ in the quantum Grass-

mannian, which independently on the normalization is given by

D
q
λ(a, b, t) =

E
q
λ(0; a, b, t)2

‖Eq
λ(x; a, b, t)‖2

(5.1)

interpolates between the dimensions of the irreducible representations which
correspond to λ for all local fields.

5.3 Haran’s process

The case m = 1 was studied extensively by Haran in [10]. Haran also constructs
discrete random processes in order to obtain the bases for the Archimedean
places, the non-Archimedean places and the q-case. The bases are defined
on the Martin boundary of the processes. It would be interesting to find a
generalization of these processes in the case of Grassmannians.

5.4 Other algebraic groups

A natural venue for further study is to consider other maximal compact sub-
groups KF of reductive algebraic groups and natural multiplicity free represen-
tations of them V F. The finite analogue of such representations can be found
in [27], in which such representations of Chevalley groups over finite fields are
studied. These can be considered as the level zero part of representations of
the maximal compact subgroups. Roughly, the picture is

V R, V C ←− q −→ V K

↑

V O/℘ = level zero part of V K

For example, the particular case of GLn(O/℘), which admits the |O/℘|−1-
Hahn polynomials as idempotents, is just the first term in the filtration de-
scribed in §2.2.
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Norm. Sup. (4), 29 (1996), pp. 583–637.

[15] F. Knop, Symmetric and non-symmetric quantum Capelli polynomials,
Comment. Math. Helv., 72 (1997), pp. 84–100.

[16] T. Koornwinder and U. Onn, LU factorizations, q = 0 limits,
and p-adic interpretations of some q-hypergeometric orthogonal polynomials,
math.CA/0405309; to appear in Ramanujan J.

23

http://lanl.arxiv.org/abs/math/0404408
http://lanl.arxiv.org/abs/math/0405309


[17] T. H. Koornwinder, Jacobi functions as limit cases of q-ultraspherical
polynomials, J. Math. Anal. Appl., 148 (1990), pp. 44–54.

[18] M. Lassalle, Coefficients binomiaux généralisés et polynômes de Macdonald,
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