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Abstract

In this paper, we first derive several identities on a compact shrinking Ricci

soliton. We then show that a compact gradient shrinking soliton must be

Einstein, if it admits a Riemannian metric with positive curvature operator

and satisfies an integral inequality. Furthermore, such a soliton must be of

constant curvature.

1 Introduction and Main Theorems

Hamilton started the study of the Ricci flow in [2]. In [3], Hamilton has classified all
compact manifolds with positive curvature operator in dimension four. Since then,
the Ricci flow has become a powerful tool for the study of Riemannian manifolds,
especially for those manifolds with positive curvature. Perelman made significant
progress in his recent work [5] and [6].

Suppose we have a solution to the Ricci flow

∂

∂t
gij = −2Rij (1.1)

on a compact Riemannian manifold M with Riemannian metric g(t). Ricci soliton
emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci flow is
called a Ricci soliton if it moves only by a one-parameter group of diffeomorphism and
scaling. If the vector field which induce the diffeomorphism is in fact the gradient of
a function, we call it a gradient Ricci soliton. For a gradient shrinking Ricci soliton,
we have the equation

Rij + ∇i∇jf =
1

2τ
gij , (1.2)
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where τ = T − t. T is the time the soliton becomes a point, and f is called Ricci
potential function. In the special case when f is a constant, then we have an Einstein
manifold.

Besides the above equation, a gradient shrinking Ricci soliton must also satisfies
the following equations,

R + △f =
n

2τ
(1.3)

and

R + |∇f |2 =
f − c

τ
, (1.4)

where c is a constant in space. The last equation (1.4) determines the value of f .
The Ricci potential function f satisfies the following evolution equation,

∂

∂t
f = |∇f |2 . (1.5)

Inspired by his own work in [3] and [4], Hamilton made the following conjecture:

Conjecture 1. (Hamilton) A compact gradient shrinking Ricci soliton with positive
curvature operator must be Einstein.

On the other hand, it is a well-known theorem of Tachibana [8] that any compact
Einstein manifold with positive sectional curvature must be of constant curvature.
Hence Hamilton’s conjecture is a generalization of the Tachibana theorem, since Ein-
stein manifolds are special Ricci solitons with constant Ricci potential functions.

In this paper, we first derive a sequence of identities on gradient shrinking Ricci
solitons. Then we show that the above conjecture is in fact true provided that the
Ricci soliton satisfies an integral inequality.

One of our main theorems is the following:

Theorem 1. Let (M, g(t)) be a compact gradient shrinking Ricci soliton, then M

must be of constant curvature if its curvature operator is positive and satisfies the
following inequality,

1

2

∫
|Rc|2|∇f |2e−f ≤

∫
Ke−f +

∫
RijklRikfjfle

−f , (1.6)

where
K = (∇i∇jRik −∇j∇iRik)Rjk . (1.7)

In Section Two, we first derive some integral identities about Riemannian curva-
ture on gradient shrinking Ricci solitons. More precisely, we prove the following two
identities,
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Theorem 2. On a compact gradient shrinking Ricci soliton, we have

∫
Rm(Rc, Rc)e−f =

1

2τ

∫
|Rc|2e−f +

1

2

∫
|div Rm|2e−f (1.8)

and∫
Rm(Rc, Rc)e−f =

1

2τ

∫
|Rc|2e−f +

∫
|∇Rc|2e−f −

1

2

∫
|div Rm|2e−f , (1.9)

where
Rm(Rc, Rc) = RijklRikRjl . (1.10)

As a corollary of Theorem 2, we have

Corollary 1. On a compact gradient shrinking Ricci soliton, we have

∫
|∇Rc|2e−f =

∫
|div Rm|2e−f . (1.11)

Moreover, (1.8) and (1.9) can be written as follows,

∫
Rm(Rc, Rc)e−f =

1

2τ

∫
|Rc|2e−f +

1

2

∫
|∇Rc|2e−f . (1.12)

In Section Three, we derive some identities about Ricci curvature, i.e., we show
the following theorem,

Theorem 3. On a compact gradient shrinking Ricci soliton, we have

1

2

∫
|Rc|2△(e−f) =

1

2

∫
|∇Rc|2e−f +

∫
Ke−f +

∫
RkljpRkjflfpe

−f . (1.13)

In Section Four, we prove Theorem 1 under the hypothesis of positive curvature
operator and inequality (1.6).
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2 Identities of Riemannian Curvature

In this section, we prove Theorem 2. On a gradient shrinking Ricci soliton, we have
the following identities:

(div Rm)jkl = Rijkl,i = ∇iRijkl = ∇iRklij

= −∇kRijli −∇lRijik = ∇kRjl −∇lRjk

= −∇kfjl + ∇lfjk = ∇l∇kfj −∇k∇lfj

=Rlkjpfp . (2.1)

Hence we have the following two identities,

∇i(Rijkle
−f ) = 0 (2.2)

and
∇i(Rike

−f) = 0 . (2.3)

Using integration by parts, we derive that

∫
|div Rm|

2e−f

=

∫
Rlkjpfp(−Rjk,l + Rjl,k)e

−f

=

∫
RlkjpfpRjl,ke

−f −

∫
RlkjpfpRjk,le

−f

= −

∫
RlkjpfpkRjle

−f +

∫
RlkjpfplRjke

−f

= −

∫
RlkjpRljfkpe

−f −

∫
RkljpRkjflpe

−f

= − 2

∫
RlkjpRljfkpe

−f .

Hence we have the following lemma:

Lemma 1. On a gradient shrinking Ricci soliton, we have

∫
RlkjpRljfkpe

−f = −
1

2

∫
|div Rm|2e−f ≤ 0 . (2.4)

Now we can prove (1.8) in Theorem 2.

Proof. By the above lemma and the gradient shrinking Ricci soliton equation:

fkp =
1

2τ
gkp − Rkp ,
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we can derive ∫
|div Rm|

2e−f

= − 2

∫
RlkjpRlj(

1

2τ
gkp − Rkp)e

−f

= −
1

τ

∫
|Rc|2e−f + 2

∫
Rm(Rc, Rc)e−f ,

so we have ∫
Rm(Rc, Rc)e−f =

1

2τ

∫
|Rc|2e−f +

1

2

∫
|div Rm|2e−f .

Before we prove (1.9), we first prove the following two lemmas:

Lemma 2.

∇i∇jRik −∇j∇iRik = RjmRmk − RijmkRim (2.5)

Proof. Using the formula

∇i∇jRlk −∇j∇iRlk = −RijmlRmk − RijmkRlm ,

and let i = l in the above formula and take the sum.

Lemma 3. On a gradient shrinking Ricci soliton,

−2

∫
∇kRjl∇lRjke

−f =
1

τ

∫
|Rc|2e−f − 2

∫
Rm(Rc, Rc)e−f . (2.6)

Proof.

− 2

∫
∇kRjl∇lRjke

−f

=2

∫
Rjk(∇i∇jRik −∇jRikfi)e

−f

=2

∫
Rjk(∇i∇jRik)e

−f − 2

∫
Rjk∇jRikfie

−f

=2

∫
Rjk(∇j∇iRik + RmjRmk − RijmkRim)e−f + 2

∫
RikRjkfije

−f

=0 + 2

∫
RjkRmjRmke

−f + 2

∫
RikRjkfije

−f − 2

∫
RijmkRimRjke

−f

=2

∫
RjkRki(fij + Rij)e

−f − 2

∫
RijmkRimRjke

−f

=
1

τ

∫
|Rc|2e−f − 2

∫
Rm(Rc, Rc)e−f .

This finishes the proof of the lemma.

5



We used the following lemma in the above,

Lemma 4. On a gradient shrinking Ricci soliton, we have
∫

∇j∇iRikRjke
−f = 0 . (2.7)

Proof.
∫

∇j∇iRikRjke
−f = −

∫
∇iRik∇j(Rjke

−f ) = 0 .

Now we can prove (1.9) in Theorem 2.

Proof.
∫

|div Rm|
2e−f

=

∫
|∇kRjl −∇lRjk|

2e−f

=2

∫
|∇Rc|2e−f − 2

∫
∇kRjl∇lRjke

−f

=2

∫
|∇Rc|2e−f +

1

τ

∫
|Rc|2e−f − 2

∫
Rm(Rc, Rc)e−f ,

so ∫
Rm(Rc, Rc)e−f =

1

2τ

∫
|Rc|2e−f +

∫
|∇Rc|2e−f −

1

2

∫
|div Rm|

2e−f .

By (1.8) and (1.9) we have the corollary 1.

3 Identities of Ricci Curvature

Because of the soliton equation, there will be several identities for Ricci curvature on
the gradient shrinking Ricci solitons. We first prove Theorem 3. By using (2.1), we
derive that

∆Rjk = ∇i(∇iRjk) = ∇i(∇jRik −Rijklfl) = ∇i∇jRik − (∇iRijkl)fl −Rijklfli , (3.1)

so

< ∆Rc, Rc >= ∇i∇iRjkRjk = ∇i∇jRikRjk − (∇iRijkl)flRjk − RijklfliRjk , (3.2)
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and

1

2
∆|Rc|2 =

1

2
∆(RjkRjk) = ∇i(∇iRjkRjk) = (∆RjkRjk) + |∇Rc|2 . (3.3)

Furthermore, we have

1

2

∫
∆|Rc|2e−f =

1

2

∫
|Rc|2∆e−f

so

1

2

∫
|Rc|2∆e−f

=

∫
< ∆Rc, Rc > e−f +

∫
|∇Rc|2e−f

=

∫
|∇Rc|2e−f +

∫
(∇i∇jRikRjk −∇j∇iRikRjk)e

−f

+

∫
∇j∇iRikRjke

−f −

∫
∇iRijklflRjke

−f −

∫
RijklfliRjke

−f

=

∫
|∇Rc|2e−f +

∫
Ke−f +

∫
∇j∇iRikRjke

−f −

∫
∇iRijklflRjke

−f −

∫
RijklfliRjke

−f

=

∫
|∇Rc|2e−f +

∫
Ke−f −

∫
∇iRijklflRjke

−f −

∫
RijklfliRjke

−f . (3.4)

We used Lemma 4 in the last equation.
Plug (2.1) and (2.4) into (3.4), apply Corollary 1, we obtain

1

2

∫
|Rc|2∆e−f =

∫
|∇Rc|2e−f +

∫
Ke−f −

∫
∇iRijklflRjke

−f −
1

2

∫
|∇Rc|2e−f

=
1

2

∫
|∇Rc|2e−f +

∫
Ke−f +

∫
RkljpRjkflfpe

−f . (3.5)

If we assume that the metric on the gradient shrinking Ricci soliton has positive
curvature, then ∫

RkljpRjkfpfle
−f

is a positive term. In fact, this is true for any metric with positive curvature operator.
We have

Lemma 5. Let (M, g) be a Riemannian manifold with positive curvature operator,
then

RijklRikfjfl ≥ 0

point-wise.
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Proof.

Rikjl =
∑

α

λαωα
ikω

α
jl ,

where
ωα = ωα

ikdxi ∧ dxk

are 2-forms (in fact, they are the eigenfunctions of the curvature operator). And

λα ≥ 0 ,

so

RikjlRijfkfl =
∑

α

λα[ωα
ikω

α
jlRijfkfl] ,

with

ωα
ikω

α
jlRijfkfl = Rij(ω

α
ikfk)(ω

α
jlfl) = Rijγ

α
i γα

j ≥ 0

and
γα

i = ωα
ikfk .

Remark. It’s an easy calculation to see that

1

2

∫
|Rc|2∆e−f =

1

τ

∫
Rc(∇f,∇f)e−f ≥ 0 .

4 Proof of Theorem 1

For a compact Riemannian manifold with positive curvature operator, we first need
the following lemma of Berger:

Lemma 6. (Berger) Assume T is a symmetric two tensor on a Riemannian mani-
fold (M, g) with non-negative sectional curvature, then

K = (∇i∇jTik −∇j∇iTik)Tjk ≥ 0 .

In fact,

K =
∑
i<j

Rijij(λi − λj)
2 ,

where λi’s are the eigenvalues of T .
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We apply this lemma in the special case of

T = Rc .

Then we know that our K which is defined in (1.7) is non-negative.
By combining Theorem 3 and inequality (1.6), we can prove Theorem 1.

Proof. By

1

2

∫
|Rc|2△(e−f)

=

∫
∇iRjkRjkfie

−f

≤
1

2

∫
|∇Rc|2e−f +

1

2

∫
|Rc|2|∇f |2e−f

≤
1

2

∫
|∇Rc|2e−f +

∫
Ke−f +

∫
RijklRikfjfle

−f ,

we show that for all i, j and k we have

∇iRjk = Rjkfi ,

and∫
RkljpRkjflfpe

−f =

∫
Rkljp∇lRkjfpe

−f = −

∫
RkljpRkjflpe

−f =
1

2

∫
|∇ Rc|2e−f .

So ∫
Ke−f = 0 ,

hence
K ≡ 0

and f is a constant. Therefore, the soliton must be of constant curvature.
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