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Abstract

State-sum invariants for knotted curves and surfaces using quandle cohomology were in-

troduced by Laurel Langford and the authors in [4]. In this paper we present methods to

compute the invariants and sample computations. Computer calculations of cohomological di-

mensions for some quandles are presented. For classical knots, Burau representations together

with Maple programs are used to evaluate the invariants for knot table. For knotted surfaces

in 4-space, movie methods and surface braid theory are used. Relations between the invariants

and symmetries of knots are discussed.
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1 Introduction

In [4], we (with Laurel Langford) defined a state-sum invariant of classical links and of knotted

orientable surfaces. The invariant uses the cohomology theory of racks and quandles developed

in [14, 15, 16, 19] as its input. We modified the cohomology theory slightly to allow for type I

Reidemeister moves and their higher dimensional analogues. Relations to linking numbers were

given for some cocycles, and it was shown that an invariant can detect non-invertibility of the

2-twist spun trefoil [40, 42]. The nature of these invariants, however, is still a mystery.

The purpose of this paper is to present computational methods in a variety of contexts. The

computational results have topological implications, such as non-invertibility for some knotted

surfaces. For classical knots we use Burau representations of the braid group and finite quotients

of the Alexander quandles to give computations. For small quandles these are well suited to

desktop computer calculations. In the case of knotted surfaces in R4 we develop methods of

computations using the theories of surface braids and movies. Our results are a combination of

the above mentioned theories and computer calculations. The latter are supported by Maple and

Mathematica. Here we have concentrated on several important families of knots and knotted

surfaces. In the classical case, we have computed several invariants in the knot table up to 9

crossings and torus knots. In the knotted surface case we have calculated for twist-spun torus

knots (where the movies and surface braids follow some patterns), and for the movie of a deform-

spun figure-8 knot. There are advantages to both the movie and the surface braid methods.

1.1 Organization. In Section 2 the basic definitions are reviewed from [4]. Section 3 presents

cohomological dimensions for some Alexander quandles, after reviewing other calculations. Using

some of these cocycles, invariants for knots in the table are computed in Section 4. Another good

family of classical knots is torus knots. We prove some periodicity and computations of invariants

for torus knots in Section 5. In Section 6, we give an explicit computation for a deform-spun

figure-8 knot. This knotted sphere has 6 critical points, 16 triple points and no branch points. For

twist spun torus knots in dimension 4, we use movie methods (Section 7) and surface braid theory

(Section 8). Relations between the invariant and symmetries of knots are discussed in Section 9.

1.2 Acknowledgements. José Barrionuevo, Edwin Clark, and Cornelius Pillen had helpful

programming hints for the computation of quandle cocycles. Seiichi Kamada is being supported

by a Fellowship from the Japan Society for the Promotion of Science.

2 Definitions of Quandle Cocycle Invariants

2.1 Definition. A quandle, X, is a set with a binary operation (a, b) 7→ a ∗ b such that

(I) For any a ∈ X, a ∗ a = a.

(II) For any a, b ∈ X, there is a unique c ∈ X such that a = c ∗ b.

(III) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A rack is a set with a binary operation that satisfies (II) and (III). A typical example of a quandle

is a group X = G with n-fold conjugation as the quandle operation: a ∗ b = b−nabn. Racks and

quandles have been studied in, for example, [3],[13],[23],[27], and [32]. The axioms for a quandle
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Figure 1: The 2-cocycle condition and the Reidemeister type III move

correspond respectively to the Reidemeister moves of type I, II, and III. (see also [13],[27]). Indeed,

knot diagrams were one of the motivations to define such an algebraic structure.

2.2 Definition. Let X be a rack, and let A be an abelian group, written additively. The cochain

group Cn = Cn(X;A) is the abelian group of functions f : FA(Xn)→ A from the free abelian group

generated by n-tuples of elements from X to the abelian group A. The coboundary homomorphism

δ : Cn → Cn+1 is defined by

(δf)(x0, · · · , xn) =
n∑

i=1

(−1)i−1f(x0, · · · , x̂i, · · · , xn)

+
n∑

j=1

(−1)jf(x0 ∗ xj , · · · , xj−1 ∗ xj , xj+1, · · · , xn).

(Note: Neither sum includes a 0th term as these terms cancel.)

The rest of the section is a review from [4].

2.3 Lemma. The cochain group and the boundary homomorphism form a cochain complex.

Proof. It is a routine calculation (that depends on axiom III of the rack) to check that δ ◦ δ = 0. ✷

2.4 Definition. The cohomology groups of the above complex are called the rack cohomology

groups and are denoted by Hn
rack(X,A). Also, the groups of cocycles and coboundaries are de-

noted by Zn
rack(X,A) and Bn

rack(X,A) respectively. Their elements are called n-cocycles and

n-coboundaries, respectively. This definition coincides with the cohomology theory defined in [14]

and [15].

For applications, we are interested in the case when X is a quandle, so we will intersect the

cocycles and coboundaries with a subset that captures axiom (I) and its consequences in higher

dimensions. Let Pn = {f ∈ Cn : f(~x) = 0 for all ~x such that xj = xj+1 for some j }. Let
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Figure 2: Assigning a 3-cocycle to a type III move (triple point)

Zn = Zn
rack ∩ Pn, and Bn = Bn

rack ∩ Pn. A straightforward calculation gives: if f ∈ Pn, then

δf ∈ Pn+1 if X is a quandle. Define

Hn
Q(X,A) = Hn(X,A) = (Pn ∩ Zn

rack)/(Pn ∩Bn
rack).

This group is called the quandle cohomology group. The elements f ∈ Zn(X,A) are called quandle

n-cocycles or simply n-cocycles.

Figures 1, 2, 3, and 4 indicate the relation between the cocycle conditions and the moves to

classical knots and knotted surfaces. In Fig. 1, 2-cocycles are assigned to crossings. Then the type

III Reidemeister move corresponds to the 2-cocycle condition. For knotted surfaces, 3-cocycles

are assigned to triple points on projections, which are the type III Reidemeister moves in a movie

description. Figure 2 shows the assignment of a 3-cocycle to a type III move. Figures 3 and 4

are movie descriptions of one of the generalized Reidemeister moves, called Roseman moves, which

corresponds to the 3-cocycle condition.

2.5 Definition. A color (or coloring) on an oriented classical knot diagram is a function C : R→

X, where X is a fixed quandle and R is the set of over-arcs in the diagram, satisfying the condition

depicted in the top of Fig. 2. In the figure, a crossing with over-arc, r, has color C(r) = y ∈ X. The

under-arcs are called r1 and r2 from top to bottom; they are colored C(r1) = x and C(r2) = x ∗ y.

If the pair of the co-orientation of the over-arc and that of the under-arc matches the (right-hand)

orientation of the plane, then the crossing is called positive; otherwise it is negative. Note that

locally the colors do not depend on the orientation of the under-arc.

Throughout this paper we consider only finite quandles.

2.6 Definition. Assume that a finite quandle X is given. Pick a quandle 2-cocycle φ ∈ Z2(X,A),

and write the coefficient group, A, multiplicatively. Consider a crossing in the diagram. For each
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Figure 5: Weights for positive and negative crossings

coloring of the diagram, evaluate the 2-cocycle on two of the three quandle colors that appear

near the crossing. One such color is the color on the upper arc and is the second argument of the

2-cocycle. The other color is the color on the under-arc away from which the normal arrow points;

this is the first argument of the cocycle.

In Fig. 5, the two possible oriented and co-oriented crossings are depicted. The left is a positive

crossing, and the right is negative. Let τ denote a crossing, and C denote a coloring. When the colors

of the segments are as indicated, the (Boltzmann) weights of the crossing, B(τ, C) = φ(x, y)ǫ(τ),

are as shown. These weights are assignments of cocycle values to the colored crossings where the

arguments are as defined in the previous paragraph.

The partition function, or a state-sum, is the expression

∑

C

∏

τ

B(τ, C).

The product is taken over all crossings of the given diagram, and the sum is taken over all possible

colorings. The values of the partition function are taken to be in the group ring Z[A] where A is

the coefficient group.

2.7 Theorem. The partition function is invariant under Reidemeister moves, so that it defines

an invariant of knots and links. Thus it will be denoted by Φ(K) (or Φφ(K) to specify the 2-cocycle

φ used).

With regard to the partition function, we easily obtain the following result.

2.8 Proposition. If Φφ and Φφ′ denote the state-sum invariants defined from cohomologous

cocycles φ and φ′ then Φφ = Φφ′ (so that Φφ(K) = Φφ′(K) for any link K). In particular, the

state-sum is equal to the number of colorings of a given knot diagram if the 2-cocycle used for the

Boltzmann weight is a coboundary.

Before we define a similar invariant for knotted surfaces, we recall the notion of knotted surface

diagrams. See [7] for details and examples. Let f : F → R4 denote a smooth embedding of a closed

surface F into 4-dimensional space. By deforming the map f slightly by an ambient isotopy in R4

if necessary, we may assume that p ◦ f is a general position map, where p : R4 → R3 denotes the

orthogonal projection onto an affine subspace.
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Along the double curves, one of the sheets (called the over-sheet) lies farther than the other

(under-sheet) with respect to the projection direction. The under-sheets are coherently broken in

the projection, and such broken surfaces are called knotted surface diagrams.

When the surface is oriented, we take normal vectors ~n to the projection of the surface such

that the triple (~v1, ~v2, ~n) matches the right-handed orientation of 3-space, where (~v1, ~v2) defines the

orientation of the surface. Such normal vectors are defined on the projection at all points other

than the isolated branch points.

2.9 Definition. A color on an oriented (broken) knotted surface diagram is a function C : R→ X,

where X is a fixed finite quandle and where R is the set of regions in the broken surface diagram,

satisfying the following condition at the double point set.

At a double point curve, two coordinate planes intersect locally. One is the over-sheet r, the

other is the under-sheet, and the under-sheet is broken into two components, say r1 and r2. A

normal of the over-sheet r points to one of the components, say r2. If C(r1) = x ∈ X, C(r) = y,

then we require that C(r2) = x ∗ y.

2.10 Lemma. The above condition is compatible at each triple point.

Proof. The meaning of this lemma is as follows. There are 6 double curves near a triple point,

giving 6 conditions on colors assigned. It can be checked in a straightforward manner that these

conditions do not contradict each other. In particular, there is one of the 4 pieces of the lower sheet

that receives color (a ∗ b) ∗ c or (a ∗ c) ∗ (b ∗ c) depending on what path was followed to compute

the color. Since these values agree in the quandle, there is no contradiction. ✷

2.11 Definition. Note that when three sheets form a triple point, they have relative positions

top, middle, bottom with respect to the projection direction of p : R4 → R3. The sign of a triple

point is positive if the normals of top, middle, bottom sheets in this order match the right-handed

orientation of the 3-space. Otherwise the sign is negative.

2.12 Definition. A (Boltzmann) weight at a triple point, τ , is defined as follows. Let R be the

octant from which all normal vectors of the three sheets point outwards; let a coloring C be given.

Let p, q, r be colors of the bottom, middle, and top sheets respectively, that bound the region

R. Let ǫ(τ) be the sign of the triple point, and θ be a quandle 3-cocycle. Then the Boltzmann

weight B(τ, C) assigned to τ with respect to C is defined to be θ(p, q, r)ǫ(τ) where p, q, r are colors

described above.

2.13 Definition. The partition function, or a state-sum, is the expression

∑

C

∏

τ

B(τ, C)

where B(τ, C) is the Boltzmann weight assigned to τ . As in the classical case, we take the coefficient

of the cohomology to be the group ring Z[A] where A is the coefficient group written multiplicatively.
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Figure 6: Roseman moves for knotted surface diagrams
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2.14 Theorem. The partition function does not depend on the choice of knotted surface diagram.

Thus it is an invariant of knotted surfaces F , and denoted by Φ(F ) (or Φθ(F ) to specify the 3-cocycle

θ used).

Proof Sketch. Roseman generalized Reidemeister moves to knotted surfaces, and their projections

are depicted in Fig. 6 [7, 37]. Thus two knotted surface diagrams represent isotopic knotted surface

if and only if the diagrams are related by a finite sequence of moves, called Roseman moves,

taken from this list. The well-definedness of the state-sum is proved by showing that it remains

invariant under the Roseman moves. In particular, Figs. 3 and 4 represent movie descriptions of the

terahedral move, which involves four general position planes (right-bottom of Fig. 6). Thus these

figures show that the state-sum is invariant under this move, for a specific choice of orientations.

Other cases are checked to prove the well-definedness. ✷

As in the classical dimension, we can show the following.

2.15 Proposition. If Φθ and Φθ′ denote the state-sum invariants defined from cohomologous

cocycles θ and θ′ then Φθ = Φθ′ (so that Φθ(K) = Φθ′(K) for any knotted surface K). In particular,

if θ is a 3-coboundary, then the state-sum defined above is equal to the number of colorings.

3 Non-trivial Cocycles

Here we define a few exemplary quandles and give some quandle cocycles that are not coboundaries.

3.1 Presentation of the Cohomology Groups. Suppose that the coefficient group A is either

a cyclic group, Z, Zn, or the rational numbers, Q. Define a characteristic function

χx(y) =

{
1 if x = y

0 if x 6= y

from the free abelian group generated by Xn to the group A. The set {χx : x ∈ Xn } of such

functions spans the group Cn
rack(X,A) of cochains. Thus if f ∈ Cn

rack(X,A) is a cochain, then

f =
∑

x∈Xn

Cxχx.

We are interested in those fs in Pn; i.e. those homomorphisms that vanish on S = {(x1, . . . , xn) ∈

Xn : xj = xj+1 for some j}. So we can write

f =
∑

x∈Xn\S

Cxχx.

If δf = 0, then f vanishes on expressions of the form
∑

j

(−1)j+1(x0, . . . , x̂j , . . . , xn) +
∑

k

(−1)k(x0 ∗ xk, . . . , xk−1 ∗ xk, xk+1, . . . , xn).

In computing the cohomology we consider all such expressions as (x0, . . . xn) ranges over all

(n + 1)-tuples for which each consecutive pair of elements is distinct. By evaluating linear com-

binations of characteristic functions on these expressions, we determine those functions that are

cocycles. Similarly, we compute the coboundary on each of the characteristic functions in the previ-

ous dimension, to determine which linear combinations of characteristic functions are coboundaries.

10



3.2 Definition [13]. A rack is called trivial if x ∗ y = x for any x, y.

The dihedral quandle Rn of order n is the quandle consisting of reflections of the regular n-gon

with the conjugation as operation. The dihedral group D2n has a presentation

〈x, y|x2 = 1 = yn, xyx = y−1〉

where x is a reflection and y is a rotation of a regular n-gon. The set of reflections Rn in this

presentation is {ai = xyi : i = 0, · · · , n − 1} where we use the subscripts from Zn in the following

computations. The operation is

ai ∗ aj = a−1
j aiaj = xyjxyixyj = xyjy−iyj = a2j−i.

Compare with the well known n-coloring of knot diagrams [17].

The quandles with three elements are classified in [13] and consist of three isomorphic classes,

the trivial one, R3, and P3.

Let S4 denote the quandle with four elements, denoted by 0, 1, 2, 3, with the relations

0 = 0 ∗ 0 = 1 ∗ 2 = 2 ∗ 3 = 3 ∗ 1

1 = 0 ∗ 3 = 1 ∗ 1 = 2 ∗ 0 = 3 ∗ 2

2 = 0 ∗ 1 = 1 ∗ 3 = 2 ∗ 2 = 3 ∗ 0

3 = 0 ∗ 2 = 1 ∗ 0 = 2 ∗ 1 = 3 ∗ 3.

This quandle is the following set of 3-cycles in the permutation group on 4 elements: {0 = (243), 1 =

(134), 2 = (142), 3 = (123)} with conjugation as the operation.

3.3 Lemma. Any cochain on a trivial quandle is a cocycle. Only the zero map is a coboundary.

Proof. This follows from the definitions. ✷

In [4, 14, 15, 16, 19], cohomology groups are computed for some quandles. A Maple program

is found in [21]. The techniques that we used in [4] are applied to give the following:

• H2
Q(R3, A) = 0 for any A,

• H2
Q(R4,Z2) = (Z2)

4,

• H2
Q(R4, A) = A×A for any A without order 2 elements,

• H2
Q(R5, A) = 0 for any A,

• H2
Q(R6, A) = A×A for any A,

• H2
Q(S4,Z2) = Z2,

• H2
Q(S4, A) = 0 for any A without order 2 elements

For the third cohomology, we have

• H3
Q(P3, A) = A×A for any A,

11



• H3
Q(R3,Z3) = Z3,

• H3
Q(R3, A) = 0 for any A without order 3 elements,

• H3
Q(R4,Z2) = (Z2)

8,

• H3
Q(R4,Zq) = Zq × Zq for any odd prime q,

• H3
Q(R4,Z) = Z× Z× Z2 × Z2,

• H3
Q(R4,Q) = Q×Q,

• H3
Q(R5,Z5) = Z5,

• H3
Q(R5, A) = 0 for any A without order 5 elements,

• H3
Q(S4,Z2) = (Z2)

3,

• H3
Q(S4,Z4) = (Z2)

2 × Z4,

• H3
Q(S4,Zq) = 0 for any odd prime q,

• H3
Q(S4,Z) = Z2,

• H3
Q(S4,Q) = 0.

An important class of quandles are Alexander quandles.

3.4 Definition [13, 27]. Let Λ = Z[T, T−1] be the Laurent polynomial ring over the integers.

Then any Λ-module M has a quandle structure defined by a ∗ b = Ta + (1− T )b for a, b ∈M .

There are many Λ-modules such that L⊗Z Zn is a finite quandle. When Zn[T, T−1]/(h(T )) is

a finite quandle, it is called a (mod n)-Alexander quandles. Let us point out an exceptional case.

Suppose that gcd (a, n) > 1, and consider Λn,a = Zn[T, T−1]/(T − a). Then Λn,a is not a quandle

because axiom II fails. If gcd (a, n) = 1, then Λn,a is a quandle.

Some of the quandles we have already seen are related to Alexander quandles.

• Zn[T, T−1]/(T + 1) ∼= Rn,

• Z2[T, T−1]/(T 2 − 1) ∼= R4,

• Z2[T, T−1]/(T 2 + T + 1) ∼= S4 (The correspondence is 0↔ 0, 1↔ 1, 2↔ 1 + T, and 3↔ T ).

3.5 Table. Extending these results, we give the following table (next page) of cohomological

dimensions for some quandles with mod p coefficients (where p is a prime), computed by Maple.

The orders q of the coefficient groups A = Zq are indicated in the table. The quandles are chosen

as follows. First, the programs require time beyond our patience for quandles of larger than ten

elements. Second, Burau matrices enable us to write a program to compute invariants for knots

in the knot table (which will be presented in the next section) for Alexander quandles, and all

examples of quandles we have dealt with are Alexander quandles (dihedral quandles are the case

12



T = −1 in the Alexander quandles). Hence, we computed for Alexander quandles of less than 10

elements, and we considered the Alexander quandles of the form Zp[T, T−1]/(h(T )), where h is a

polynomial whose leading and constant terms are invertible in Zp for the quandle to be finite. By

multiplying by a unit, we can assume that such polynomials are monic. In the case deg(h(T )) = 3,

typical elements are of the form a + bT + cT 2 and hence the quandle has the order p3, and for

this order to be less than 10, we only have the choice p = 2, and the choices of h(T ) are T 3 + 1,

T 3 + T 2 + 1, and T 3 + T + 1 that are listed in the table below as the last 3 entrees. The cases for

smaller degrees are as shown in the table.

q = \ dimH2(Q,Zq) dimH3(Q,Zq)

quandle Q order 2 3 5 7 11 13 17 19 2 3 5 7 11

R3 3 0 0 0 0 0 0 0 0 0 1 0 0 0

R4 4 4 2 2 2 2 2 2 2 8 2 2 2 2

R5 5 0 0 0 0 0 0 0 0 0 0 1 0 0

R6 6 2 2 2 2 2 2 2 2 2 4 2 2 2

R7 7 0 0 0 0 0 0 0 0

R8 8 4 2 2 2 2 2 2 2

R9 9 0 0 0 0 0 0 0 0

Z5[T, T−1]/(T − 2) 5 0 0 0 0 0 0 0 0 0 0 0 0 0

Z5[T, T−1]/(T − 3) 5 0 0 0 0 0 0 0 0 0 0 0 0 0

Z7[T, T−1]/(T − 2) 7 0 0 0 0 0 0 0 0

Z7[T, T−1]/(T − 3) 7 0 0 0 0 0 0 0 0

Z7[T, T−1]/(T − 4) 7 0 0 0 0 0 0 0 0

Z7[T, T−1]/(T − 5) 7 0 0 0 0 0 0 0 0

Z8[T, T−1]/(T − 3) 8 4 2 2 2 2 2 2 2

Z8[T, T−1]/(T − 5) 8 16 12 12 12 12 12 12 12

Z9[T, T−1]/(T − 2) 9 0 0 0 0 0 0 0 0

Z9[T, T−1]/(T − 4) 9 6 9 6 6 6 6 6 6

Z9[T, T−1]/(T − 5) 9 0 0 0 0 0 0 0 0

Z2[T, T−1]/(T 2 + 1) 4 2 0 0 0 0 0 0 0 8 2 2 2 2

Z2[T, T−1]/(T 2 + T + 1) 4 1 0 0 0 0 0 0 0 3 0 0 0 0

Z3[T, T−1]/(T 2 + 1) 9 0 1 0 0 0 0 0 0

Z3[T, T−1]/(T 2 − 1) 9 6 6 6 6 6 6 6 6

Z3[T, T−1]/(T 2 + T + 1) 9 3 6 3 3 3 3 3 3

Z3[T, T−1]/(T 2 − T + 1) 9 0 0 0 0 0 0 0 0

Z3[T, T−1]/(T 2 + T − 1) 9 0 0 0 0 0 0 0 0

Z2[T, T−1]/(T 3 + 1) 8 4 2 2 2 2 2 2 2

Z2[T, T−1]/(T 3 + T 2 + 1) 8 0 0 0 0 0 0 0 0

Z2[T, T−1]/(T 3 + T + 1) 8 0 0 0 0 0 0 0 0

Table 3.5 : Cohomological dimensions of Alexander quandles
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3.6 Remark. We conjecture that the dimension with A = Z is the dimension for prime q’s when

they have the same value for most of them we computed. For example, we already know [4] that

H2(R4,Z) = Z2 and in Table 3.5 we have dimensions 2 for all q but q = 2. So it is natural to

conjecture the same pattern for other quandles when it happens.

3.7 Remark. The blank entries in Table 3.5 means that Maple did not finish computations of

the first item of the program within 24 hours.

3.8 Remark. In Table 3.5, Z9[T, T−1]/(T−7) is omitted since it is isomorphic to Z9[T, T−1]/(T−

4); the mapping

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 6, f(4) = 7, f(5) = 8, f(6) = 3, f(7) = 4, f(8) = 5

gives an isomorphism.

Two quandles Q and R are said to be dual quandles if there is a one-to-one correspondence

γ : Q → R between their elements, and γ(a) ∗ γ(b) = γ(a∗̄b) where c = a∗̄b is the unique element

c ∈ Q such that a = c∗b. In general, if ab ≡ 1 mod p, then Zp[T, T−1]/(T−a) and Zp[T, T−1]/(T−b)

are dual quandles. The above quandles, Z9[T, T−1]/(T − 4) and Z9[T, T−1]/(T − 7), are not only

isomorphic but also dual of each other. More generally, we have the following.

3.9 Lemma. The quandles Zp[T, T−1]/(T − a) and Zp[T, T−1]/(T − b) are dual to each other if

ab ≡ 1 mod p. (We assume gcd(p, a) = gcd(p, b) = 1 so that the quandles have p elements. In this

case we denote Zp[T, T−1]/(T − a) by Λp,a.)

Proof. Consider the identity map Zp → Zp. x ∗1 y = ax + (1− a)y and x ∗2 y = bx + (1− b)y. The

dual of Zp[T, T−1]/(T − b) has the operation x∗2y = (x + (b − 1)y)b−1. However if ab ≡ 1 (hence

b−1 = a), then x∗2y = (x + (b− 1)y)a = ax + (1− a)y = x ∗1 y. Hence Λp,a is dual to Λp,b. ✷

In a subsequent paper, we will prove that dual quandles have isomorphic cohomology groups.

3.10 Remark. Recall that Λ9,4 and Λ9,7 are isomorphic. This implies that Λ9,4 is “self-dual”,

i.e., isomorphic to its dual. In general, Λp,a is not self-dual, and hence Λp,a is not isomorphic to

Λp,b even if ab ≡ 1 mod p.

We have that Λ5,2 is not isomorphic to Λ5,3, Λ7,3 is not isomorphic to Λ7,5.

3.11 Question. When are Λp,a is isomorphic to Λp,b with ab ≡ 1 mod p? Equivalently, when is

Λp,a self-dual?

4 Computations for Knot Table

For Alexander quandles, closed braids and Burau representations can be used to compute the

cocycle invariants. In this section we present computational results obtained by Maple. The

Maple program we used in this section can be found in [21]. Here is a sketch of an algorithm we

used.

14



1. We used the same program that we used in the preceding section to compute cocycle groups

for Alexander quandles. Then we made specific choices of cocycles. The choices are made

after some experiments.

2. If B =

[
0 T

1 1− T

]

is the Burau matrix, and v is a row vector of Λ2, where Λ is an Alexander

quandle, representing the colors assigned to the top two strings at a positive crossing, then

the colors at the bottom strings are represented by a vector vB. Furthermore, the cocycle

contribution at this crossing is φ(v1, v2) where v = (v1, v2). The actual vectors have larger

dimensions depending on the braid index of the given closed braid, but it is simply shifted to

the position of the corresponding braid generator.

3. If B(w) is the Burau representation of a braid word w, then a vector v colors the closed braid

if and only if vB(w) = v. The Maple program searches for all such colors, and then evaluates

the state-sum contributions.

We used the closed braid form for knots in the table given in [22] up to (including) 9 crossings

to obtain the following results. We list some of the quandles with non-trivial cohomology computed

in the preceding section. We chose q with highest dimensions among all non-zero dimensions. We

conjecture that the invariants are positive integers for knots with Rn if n is even. Note that some

quandles have non-trivial values for links [4], and could define interesting invariants for links even

if they are trivial for knots.

1. For Z2[T, T−1]/(T 2 + 1) with the coefficient A = Z2 all knots in the table up to 9 crossings

have the trivial invariant (have value 4). Thus none colors non-trivially.

For Z9[T, T−1]/(T − 4) and Z3[T, T−1]/(T 2 + T + 1) with A = Z3, all knots of the first half

(42 out of 84) of the table up to 9 crossings have the trivial invariant (have value 9). We

stopped the program after 5 days.

2. For S4 = Z2[T, T−1]/(T 2+T +1) with the coefficient A = Z2, we used the cocycle φ =
∏

χ(a,b)

where the product is taken over all pairs (a, b) such that a, b ∈ {0, 1, T + 1} and a 6= b. The

invariants take the following values.

• 4(1 + 3t) for 31, 41, 72, 73, 81, 84, 811, 813, 91, 96, 912, 913, 914, 921, 923, 935, 937.

• 16(1 + 3t) for 818, 940.

• 16 for 85, 810, 815, 819 − 821, 916, 922, 924, 925, 928 − 930, 936, 938, 939, 941 − 945, 949.

• 4 otherwise.

3. For Z3[T, T−1]/(T 2 + 1) with the coefficient A = Z3, we used the cocycle

φ = χ2 T, 2 + 2χ2 T, T + 2χ2 T, 1+T + 2χ2 T, 2+T + 2χ1+2 T, 0 + 2χ1+2 T, 1 + 2χ1+2 T, 2 + χ1+2 T, T

+χ1+2 T, 1+T + χ1+2 T, 2+T + χ2 T, 1 + χ2 T, 0 + 2χ0, 2 T + 2χ0, 2+T + χ0, T + χ0, 2

+2χ0, 1 + 2χ1, 2 T + χ1, 2+T + 2χ1, 1+T + 2χ1, 2 + χ1, 0 + χ0, 1+2 T + χ2, 1

+2χ2, 0 + χ1, 1+2 T + χ2, 1+2 T + 2χ2, 2 T + χ2, 1+T + 2χ2, T + χT, 2 + 2χT, 0

+χT, 1+T + 2χT, 2+T + χT, 2 T + 2χT, 1+2 T + χ1+T, 1 + 2χ1+T, T + 2χ1+T, 2 + χ1+T, 2+T

+2χ1+T, 1+2 T + χ1+T, 2 T + χ2+T, 0 + 2χ2+T, 1+T + χ2+T, T + χ2+T, 2 T + 2χ2+T, 1+2 T .
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Figure 7: The torus knot T (3, 4)

The invariants take the following values.

• 9(1 + 4t + 4t2) for 41, 52, 83, 817, 818, 821, 96, 97, 911, 924, 926, 937 − 939, 947.

• 297 + 216t + 216t2 for 940.

• 81 for 63, 82, 819, 824, 912, 913, 946.

• 9 otherwise.

4.1 Remark. With S4, we do not know any knot with the invariant not equal to an integer or

k(4 + 12t) for an integer k. However, the torus link T (5, 15) has the invariant 544 + 480t (with S4

and A = Z2, with the same cocycle as above).

5 Computations for Torus Knots

The Burau matrices for torus knots have periodicities with some quandles. In this section we give

such periodicities and use them to compute the invariants for torus knots. Throughout the section

let Q be a finite Alexander quandle (Q = Zm[T, T−1]/(h(T )) for some positive integer m and a

Laurent polynomial h(T )).

Consider a (n, k)-torus knot or link L = T (n, k) (Fig. 7 depicts T (3, 4)). Then L may be

represented as the closure of an n-string braid β of the form (σn−1σn−2 . . . σ1)
k. If we color this

braid by the quandle Q, any possible color of the closed braid β̂ can be uniquely determined by a

choice of colors on the top segment of the n-strands expressed as a vector, say [a1, a2, · · · , an] where

ai ∈ Q for i = 1, 2, . . . n, which we call a color vector. Note that [a1, a2, · · · , an] =
∑n

i=1 aiei, where

ei is a basic unit vector, with all 0 except a 1 in the i-th position.

The braid word σn−1σn−2 . . . σ1 on strands colored [a1, a2, · · · , an] on the top ends alters this

n-tuple of colors to the color vector [an, a1 ∗ an, · · · , an−1 ∗ an] assigned on the strings below the

word σn−1σn−2 . . . σ1. This operation can be represented by multiplying the color vector on the
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right by the n× n matrix

A =





0 T . . . 0
... 0

. . .

0 T

1 1− T . . . 1− T





which is a product of Burau matrices.

So for any j ∈ N∪{0} with 0 ≤ j ≤ k, the color vectors after the braid word (σn−1σn−2 . . . σ1)
j

is [a1, a2, · · · , an]Aj = (
∑n

i=1 aiei)A
j =

∑n
i=1 ai(eiA

j). Thus any choice of color vectors induces

nontrivial color of L if
∑n

i=1 ai(eiA
j) =

∑n
i=1 aiei, which occurs if and only if eiA

j = ei for every

i = 1, 2, . . . , n. Note that this is equivalent to Aj = I.

5.1 Definition. The color period of a quandle Q for the family T (n) = {T (n,m) : m ∈ Z} is the

minimum positive integer k such that Ak = I.

5.2 Lemma. If enAkn = en for some k ∈ Z, then ejA
kn = ej for all j = 1, 2, . . . , n.

Proof. Let enAkn = en. Then enA(k−1)n+1 = Ke1 for some K ∈ Q. Since ejA = Tej+1 for

j = 1, 2, . . . , n− 1,

enAkn = enA(k−1)n+1An−1 = Ke1A
n−1 = KT n−1en = en.

Hence, KT n−1 = 1.

Now consider ejA
kn for j ∈ {1, 2, . . . , n}. Then,

ejA
kn = (ejA

n−j)A(k−1)n+j = T n−j(enA(k−1)n+1)Aj−1 = T n−jKe1A
j−1 = T n−j+j−1Kej = ej .✷

5.3 Proposition. For A as above, the color periods, p, of the following quandles Q for the family

T (n) = {T (n,m) : m ∈ Z} are:

• Q = Z8[T, T−1]/(T − 3), p =

{
2n if n = 2k + 1, k ∈ N,

4n if n = 2k, k ∈ N.

• Q = Z3[T, T−1]/(T 2 + 1), p =






2n if n = 4k + 2, k ∈ N,

3n if n = 4k, k ∈ N,

4n otherwise.

• Q = Z3[T, T−1]/(T 2 − 1), p =

{
2n if n = 2k + 1, k ∈ N,

3n if n = 2k, k ∈ N.

• Q = Z2[T, T−1]/(T 3 − 1), p =

{
2n if n = 3k, k ∈ Z,

3n otherwise.

• Q = Z2[T, T−1]/(T 2 + T + 1) = S4, p =






2n if n = 3k, k ∈ Z,

3 if n = 2,

3n otherwise.

17



• Q = Rj for j = 2k, k ∈ N, p =

{
2n if n = 2k + 1, k ∈ N,

kn if n = 2k, k ∈ N.

• Q =

{
Z8[T, T−1]/(T − 5), or

Z2[T, T−1]/(T 2 + 1)
, p = 2n.

• Q =






Z9[T, T−1]/(T − 4), or

Z9[T, T−1]/(T − 7), or

Z3[T, T−1]/(T 2 + T + 1)

, p = 3n.

Proof. We prove the cases Q = Z2[T, T−1]/(T 2 + T + 1) = S4, Q = Z3[T, T−1]/(T 2 + 1), and

Q = Rj for j ∈ N. The rest are similar.

First consider Q = Z2[T, T−1]/(T 2 + T + 1) = S4, and let n = 3k for some k ∈ N.

Consider enA = [1, 1 − T, · · · , 1− T ]. Denote by qb(a) the operation a ∗ b in S4. Note that

[a1, a2, · · · , an]A = [an, qan
(a1), qan

(a2), · · · , qan
(an−1)]

and that q3
b (a) = (qb ◦ qb ◦ qb)(a) = a for all a, b ∈ S4. Hence

enAn = [1− T, · · · , 1− T, qn−1
1−T (1)] = [1− T, · · · , 1− T, T ].

Furthermore,

enAn+1 = [T, qT (1− T ), · · · , qT (1− T )] = [T, 0, · · · , 0],

and

enA2n = [0, · · · , 0, qn−1
0 (T )] = [0, · · · , 0, 1] = en.

Hence, since enAp 6= en for any 0 < p < 2n and eiA
2n = ei for all i = 1, 2, . . . n by the preceding

Lemma, the color period is 2n.

Now consider n = 3k + 1 for some k ∈ N ∪ {0}. Again, consider enA = [1, 1 − T, · · · , 1 − T ].

Note that

enAn = [1− T, · · · , 1− T, qn−1
1−T (1)] = [1− T, · · · , 1− T, 1],

and so enAn+1 = [1, T, · · · , T, ]. Thus, enA2n = [T, · · · , T, 1], which leads to enA2n+1 = e1. From

this, it can be seen that

enA3n = T n−1en = T 3k+1−1en

for some k ∈ Z. Thus enA3n = T 3ken = en. Thus the color period is 3n.

For n = 3k + 2 for some k ∈ N ∪ {0}. Again, consider enA = [1, 1 − T, · · · , 1− T ]. Note

enAn = [1− T, · · · , 1− T, qn−1
1−T (1)] = [1− T, · · · , 1− T, 0],

and so enAn+1 = [0, 1, · · · , 1], which is en when n = 2. Thus, enA2n = [1, · · · , 1, T + 1], which leads

to enA2n+1 = (T + 1)e1 = T 2e1. From this, it can be seen that

enA3n = T 2+(n−1)en = T n+1en = T 3k+2+1en = en

since n = 3k + 2 for some k ∈ Z. Thus the color period here is 3n.

18



For Q = Z3[T, T−1]/(T 2 + 1), we proceed as with S4. If n ≡ 0 (mod 4), then we have the

following computations.

enA = [1, 1 − T, · · · , 1− T ]

= [1, 1 + 2T, · · · , 1 + 2T ]

enAn = [2T + 1, · · · , 2T + 1, 2T + 2]

enAn+1 = [2T + 2, T + 2, · · · , T + 2]

enA2n = [T + 2, · · · , T + 2, T ]

enA2n+1 = [T, 0, · · · , 0].

Thus, enA3n = en. So for n ≡ 0 (mod 4), the color period of a n-strand torus link is 3n. Now let

n ≡ 2 (mod 4). Then enAn = [2T + 1, 2T + 1, · · · , 2T ], and so enAn+1 = 2Te1. Thus enA2n = en.

So, the color period is 2n. For n ≡ 1 (mod 4), one computes

enAn = [2T + 1, · · · , 2T + 1, 1]

enAn+1 = [1, 2, · · · , 2]

enA2n = [2, · · · , 2, 1]

enA2n+1 = [1, T + 1, · · · , T + 1]

enA3n = [T + 1, · · · , T + 1, 1]

enA3n+1 = [1, 0, · · · , 0].

Hence, enA4n = en. For n ≡ 3 (mod 4), one computes

enAn = [2T + 1, · · · , 2T + 1, T + 1]

enAn+1 = [T + 1, T, · · · , T ]

enA2n = [T, · · · , T, T + 2]

enA2n+1 = [T + 2, 2T + 2, · · · , 2T + 2]

enA3n = [2T + 2, · · · , 2T + 2, 2]

enA3n+1 = [2, 0, · · · , 0]

Hence, enA4n = en. Thus the color periods are 4n.

Finally, for Q = Rj for j = 2k, k ∈ N, note that Q is isomorphic to Zj[T, T−1]/(T + 1). So,

T = −1, which makes 1 − T = 2, so enA = [1, 2, · · · , 2]. If n is odd, enAn = [2, · · · , 2, 1], so

enAn+1 = [1, 0, · · · , 0]. This means that enA2n = en. Thus the color period is 2n. If n is even

enAn = [2, · · · , 2, 3]. Noting that n ∗ (n + 1) = n + 2, for i = 1, 2, . . . , k we will get

enAin = [2i, · · · , 2i, 2i + 1],

enAin+1 = [2i + 1, 2i + 2, · · · , 2i + 2].

When i = k − 1, 2i + 2 = 2(k − 1) + 2 = 2k = j ≡ 0 (mod j), and so enAnk = en. ✷

5.4 Proposition. Let p be the color period of a quandle Q for the family T (n). Let θ ∈ Z2(Q,Zq).

Then Φθ(T (n, k)) is periodic with respect to k with period at most pq.
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Proof. Let Q be a quandle that has color period p with respect to T (n). Then any torus knot or link

T (n, s) with s > p, s = ph+r (0 ≤ r < p), can be thought of as the closure of a finite number (h) of

the block (σn−1σn−2 . . . σ1)
p and a remainder block (σn−1σn−2 . . . σ1)

r. It has been shown that the

color vector after the pth block is the same as the initial (at the top of the braid representation) color

vector. Hence the (ph+r)-th color vector is the same as the r-th color vector for r = 1, 2, . . . , p−1.

Let v be an initial color vector which colors T (n, s). Let tα and tβ be the contribution of to the

state-sum of (σn−1σn−2 . . . σ1)
p and (σn−1σn−2 . . . σ1)

r respectively, for the color with the initial

color vector v. Then the contribution of (σn−1σn−2 . . . σ1)
s is tαh+β since s = ph + r. Hence if

h = q (with A = Zq), we obtain tαh+β = tβ, and therefore Φ(T (n, ph + r)) = Φ(T (n, r)). ✷

5.5 Example. The above Proposition implies that the invariants Φ(T (n, r)) for 0 ≤ r < pq

determine all the rest of Φ(T (n, s)). Here we present the list of Φ(T (2, s)), for a cocycle in

Z2(Z8[T, T−1]/(T − 5),Z2) (as this quandle displays a variety of polynomial values). In this case

the period pq is 8. In the following table, k represents any integer. The cocycle used is

φ = χ0, 1 + χ0, 5 + χ1, 5 + χ2, 1 + χ2, 5 + χ3, 5 + χ5, 1 + χ7, 1.

torus link invariant

T (2, 8k) 64

T (2, 1 + 8k) 8

T (2, 2 + 8k) 28 + 4t

T (2, 3 + 8k) 8

T (2, 4 + 8k) 48 + 16t

T (2, 5 + 8k) 8

T (2, 6 + 8k) 28 + 4t

T (2, 7 + 8k) 8

5.6 Table. The following table presents calculations of Φ(T (n, k)) with some quandles for some

small values of k. The quandles are Alexander quandles with A = Zq. Although they do not

give complete set of initial conditions (as the periods pq are sometimes too large), they give use-

ful information together with the proposition above. The table lists Φ(T (n, k)) for n ≤ k since

T (n, k) = T (k, n).

We used the following cocycles:

Θ1 = χ0, 2 + χ1, 0 + χ1, 2 + χ2, 0

Θ2 = χ0, 3 + χ4, 1 + χ2, 5 + χ2, 3 + χ2, 1 + χ1, 5 + χ1, 3 + χ3, 5 + χ3, 1

Θ3 = χ0, 4 + χ2, 4 + χ2, 0 + χ4, 0 + χ3, 4 + χ3, 2 + χ4, 2 + χ5, 0

+ χ2, 6 + χ3, 0 + χ3, 6 + χ4, 6 + χ5, 2 + χ6, 2 + χ1, 6 + χ1, 4

Θ4 = χ1, 0 + χT, 0

Θ5 = χ0, 1 + χ0, T + χ1, 0 + χ1, T + χT, 0 + χT, 1

Θ6 = χ1, 0 + 2χ0, 2 + χ0, 1 + 2χ2, 1 + χ1, 2 + 2χ0, T + χ1, T+1 + χT, 0 + 2χT, 1 + χT+1, T
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+ χ2+T, T+1 + 2χ2+T, T + 2χ2 T, 0 + 2χ2+T, 1+2 T + χ2+T, 2 T + χ2 T, T+1

+ χ2 T, 2 + 2χ2 T, 1 + χ1+2 T, 0 + 2χ0, 2+2 T + χ2 T, 1+2 T + χ0, 2 T + 2χ0, 2+T

+ 2χ0, T+1 + 2χ2 T, 2+T + χ1, 2 T + 2χ1+2 T, T+1 + χ1+2 T, T + χ1+2 T, 2

+ χ1+2 T, 1 + 2χ1, 2+2 T + χ2, 2 T + χ2, 2+T + 2χ2+2 T, 2 + χ2, T+1 + χ2, T

+ χ2+2 T, 2+T + 2χT, 2 + 2χT, 2+T + 2χT, T+1 + 2χT, 1+2 T + χT, 2 T + χT+1, 1

+ χT+1, 2 + 2χT+1, 2+T + 2χT+1, 2 T + 2χT+1, 1+2 T + 2χ2+T, 0 + χ2+T, 1

Θ7 = χ0, 1 + χ2, 1 + χ0, T + χ1, T + χ2+T, T + χ2+T, 2+2 T + χ2T, 1 + χ1, 2+2 T + χ2+2 T, T + χ2, T

+ χ2+2 T, 1 + χ2, 2+2 T + χT+1, 2+2 T

Θ8 = χ0, 1 + χ0, T + χ0, 2+2 T + 2χ1, T + χ1, 2+2 T + 2χ2, 1 + χ2, 2+2 T + χT, 1 + 2χT, 2+2 T

+ χT+1, T + 2χT+1, 2+2 T + 2χ2+T, 1 + 2χ2+T, T + 2χ2+T, 2+2 T + χ2 T, 1

+ 2χ2 T, T + 2χ2+2 T, 1 + χ2+2 T, T

Θ9 = χ0, 1 + χ0, 5 + χ1, 5 + χ2, 1 + χ2, 5 + χ3, 5 + χ5, 1 + χ7, 1

Θ10 = χ0, 1 + χ0, 4 + χ0, 7 + χ3, 1 + χ3, 4 + χ3, 7 + χ6, 1 + χ6, 4 + χ6, 7
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quandle Q cocycle A T(n,k) invariant

R4 Θ1 Z2 T (2, 4) 8 + 8t

T (4, 6) 8 + 8t

T (4, 8) 128 + 128t

R6 Θ2 Z2 T (2, 2) 6 + 6t

T (2, 6) 18 + 18t

T (4, 4) 216 + 216t

T (4, 12) 648 + 648t

R8 Θ3 Z2 T (2, 8) 32 + 32t

T (4, 16) 2048 + 2048t

Z2[T, T−1]/(T 2 + 1) Θ4 Z2 T (2, 4) 8 + 8t

T (4, 6) 8 + 8t

T (4, 8) 128 + 128t

Z2[T, T−1]/(T 2 + T + 1) Θ5 Z2 T (2, 3) 4 + 12t

T (3, 3) 4 + 12t

T (3, 6) 16 + 48t

Z3[T, T−1]/(T 2 + 1) Θ6 Z3 T (2, 4) 9 + 36t + 36t2

T (4, 4) 297 + 216t + 216t2

T (4, 8) 297 + 216t + 216t2

T (4, 10) 9 + 36t + 36t2

Z3[T, T−1]/(T 2 − 1) Θ7 Z2 T (2, 2) 21 + 6t

T (2, 6) 63 + 18t

T (3, 3) 63 + 18t

T (4, 4) 1647 + 540t

T (4, 12) 4941 + 1620t

Z3[T, T−1]/(T 2 + T + 1) Θ8 Z3 T (3, 3) 135 + 54t + 54t2

T (3, 6) 135 + 54t + 54t2

Z8[T, T−1]/(T − 5) Θ9 Z2 T (2, 2) 28 + 4t

T (2, 4) 48 + 16t

T (2, 6) 28 + 4t

T (3, 3) 104 + 24t

T (4, 4) 1600 + 448t

T (4, 6) 48 + 16t

T (4, 6) 3072 + 1024t

Z9[T, T−1]/(T − 7) Θ10 Z2 T (2, 6) 63 + 18t

T (3, 3) 81 + 162t

T (3, 9) 567 + 162t

T (4, 12) 4941 + 1620t

Table 5.6 : Nontrivial invariants of torus links

22



6 Computations with Movies

In this section we present a method of computing the cocycle invariants using movies, with a sample

calculation for a deform-spun figure-8 knot, the movie of which is illustrated in Fig. 8.

First, we describe the knotted sphere that the movie illustrates. The sequence of stills consist

of classical knot diagrams. Successive stills differ by a Reidemeister move of type II or III, a

critical point of the surface, or a planar isotopy of the underlying diagram. Type I moves are

not used in this particular example, though they may appear in general. Exceptions are made for

maximal/minimal points (or the birth/death of small circles) where dots are depicted in some stills

in the figure to make clear where they occurred. In this case, the exact moment of critical points

are depicted in a still, instead of between successive stills. The entries in the figure are referred to

by a pair of numbers that indicate the row and column in the figure. Thus still (1,8) is a standard

picture of the connected sum of a pair of figure-8 knots.

Stills (1,1), (1,2), (6,7), and (6,8) represent critical levels in which simple closed curves are born

or die. In particular, the still (1,1) consists of a single dot where a birth occurs. The still (1,2)

consists of one circle and a dot.

These curves are colored a and b with the curve colored b nested inside the curve colored a.

Other critical points (saddle points) occur between stills (1,7) and (1,8) and between (6,1) and

(6,2). Since these are all the critical points the resulting surface depicted is a sphere.

The labels indicate a coloring of the diagram by S4. It is seen that for any a, b ∈ S4, if d = a ∗ b

and c = b∗d, then such a choice gives a coloring. In particular, there is a non-trivial coloring of this

knotted surface by S4. The quandle rule holds at each crossing point of the stills. As the crossings

move from still to still, they sweep out double point arcs, and the quandle coloring rule holds along

these double point arcs. The non-trivial colorings show that the quandle of the embedded sphere

is non-trivial, and so the sphere is indeed knotted. Observe that the proof of knotting does not

depend on an a priori knowledge that the sphere is deform-spun knot.

Next we describe the story-board of the movie. Roughly the second, third, fourth rows each

involve pushing the top figure-8 tangle past an arc of the bottom figure-8 tangle. The figure is

arranged to fit on a page, and so at the end of the first and second rows the top knot has begun its

next migration. Each of the four crossings of the top figure-8 tangle must cross under or over one

of the four arcs of the bottom figure-8 tangle. When the crossings past these arcs triple points in

the projection occur. The triple points appear as Reidemeister type III moves between the stills.

There are 16 such triple points they occur in the scenes listed in the table below.

Most of the rest of the changes are type II Reidemeister moves. The exceptions are (2, 6) 7→

(2, 7), where a rescaling has taken place, and (4, 7) 7→ (5, 1), where the bottom tangle has rotated

clockwise around the left most arc to become the top tangle in (5, 1).

One can use the movie to obtain the following presentation of the quandle of the knotted sphere.

〈x, y : y ∗ (x ∗ ȳ) = x ∗ y; y ∗ (y ∗ (x ∗ ȳ))) = x〉.

In order to evaluate the cocycle invariant for cocycles in Z3(S4, A), we need to examine the

signs of the triple points and the colors of the regions away from which the normal point. This

examination is easily made by comparing the given scenes in the movie with the Reidemeister type

III moves that are illustrated in Fig. 9. This figure illustrates the 96 possible type III moves (48 in
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Figure 8: A deform spun figure eight knot
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Figure 9: All possibilities of oriented type III moves

the direction of the arrows, 48 in the opposite direction). The black dots indicate the region into

which all normals point when the normal points to the left of the oriented arc. The labels (p, q, r)

indicate the colors on the bottom, middle, and top (resp.) sheets that are the arguments of the

quandle cocycles. The entries in Fig. 9 are indicated in a manner similar to those in the previous

figure. Thus in entry (1, 6) the braid move σ1σ2σ1 7→ σ2σ1σ2 is indicated.

In the following table we indicate the scenes that correspond to triple points, the entry in Fig. 9

to which the scenes correspond. The third column indicates whether the entry in the figure is read

forward (left to right) or backward (right to left). If it is backward then the sign of the triple

point is opposite to that indicated in the figure. The last column indicates the Boltzmann weight

associated to the triple point in the movie Fig. 8.
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Scene in movie type III direction Weight

(1, 9) 7→ (1, 10) (1, 2) ← θ(b, a, a)−1

(2, 1) 7→ (2, 2) (2, 5) → θ(c, b, a)

(2, 2) 7→ (2, 3) (2, 4) → θ(c, d, a)−1

(2, 3) 7→ (2, 4) (1, 4) → θ(b, c, a)

(2, 8) 7→ (2, 9) (5, 4) → θ(c, b, a)−1

(3, 1) 7→ (3, 2) (6, 1) → θ(d, c, d)−1

(3, 2) 7→ (3, 3) (6, 4) → θ(c, c, b)

(3, 3) 7→ (3, 4) (5, 1) → θ(c, b, c)

(4, 1) 7→ (4, 2) (1, 6) → θ(b, a, b)

(4, 2) 7→ (4, 3) (2, 3) → θ(c, d, b)

(4, 3) 7→ (4, 4) (2, 6) → θ(c, b, b)−1

(4, 4) 7→ (4, 5) (1, 3) → θ(b, c, b)−1

(5, 2) 7→ (5, 3) (2, 6) ← θ(a, b, c)

(5, 4) 7→ (5, 5) (4, 5) ← θ(d, d, a)

(5, 5) 7→ (5, 6) (2, 4) → θ(c, d, b)−1

(5, 6) 7→ (5, 7) (1, 1) → θ(c, b, d)−1

Recall from [4] that the following are non-trivial 3-cocycles for S4 with various coefficients.

η1 = +χ(0,1,0) + χ(0,2,1) + χ(0,2,3) + χ(0,3,0) + χ(0,3,1) + χ(0,3,2) + χ(1,0,1)

+χ(1,0,3) + χ(1,2,0) + χ(1,3,1) + χ(2,0,3) + χ(2,1,0) + χ(2,1,3) + χ(2,3,2);

η2 = +χ(0,1,2) − χ(0,1,3) − χ(0,2,1) + χ(0,3,0) + χ(0,3,1) − χ(0,3,2) + 2χ(1,0,1)

+χ(1,0,2) + χ(1,0,3) − χ(1,2,0) + χ(1,3,2) + χ(2,0,1) + χ(2,0,2) + χ(2,0,3)

+χ(2,1,3) + χ(3,0,1) + χ(3,0,2) + χ(3,0,3) + χ(3,1,3);

η11 = −χ(0,1,0) − χ(0,1,3) + χ(0,3,1) + χ(0,3,2) − χ(1,0,1) − χ(1,0,2) − χ(1,0,3)

+χ(1,2,0) − χ(1,2,1) + χ(1,3,0) + χ(1,3,1) + χ(1,3,2) + χ(2,0,3) − χ(2,1,0) − χ(3,0,2) + χ(3,2,3)

Thus we have

6.1 Theorem. The state sum invariants for the deform-spun figure-8 knot that is depicted in

Fig. 8 is

Φθ =
∑

θ(b, c, a)θ(c, b, c)θ(b, a, b)θ(a, b, c)θ(c, d, a)−1θ(d, c, d)−1θ(b, c, b)−1θ(c, b, d)−1

where the sum is taken over all pairs of elements a, b ∈ S4 and a = d ∗ b while c = b ∗ d. We have

the values

• Φη11
= 16.

• Φη1
= 4 + 12t for t a generator of Z2.

• Φ2η1
= 4 + 12t2 for t a generator of Z4.

• Φη2
= 4 + 12t for t a generator of Z2.

• Φη2
= 4 + 12t for t a generator of Z4.
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7 Twist-spun Torus Knots

Let τkT (p, q) denote the k-twist spun (p, q)-torus knot (or link). The construction of twist spun

knots was first defined by Zeeman [42], see also [40]. In this section we use movies to compute the

state-sum expressions of τkT (2,m) with cocycles over dihedral quandles. We prove the invariants

are periodic with respect to k. Then we evaluate the state-sum for some quandle cocycles with

various coefficients. First we establish some notation.

7.1 Notation. Let x, y denote elements of an Alexander quandle Λ = Zp[T, T−1]/(f(T )); let s

denote an integer. Define quandle elements G(s) = G(x, y, s, T ) recursively by

G(−1) = x

G(0) = y

G(s + 1) = TG(s− 1) + (1− T )G(s)

Then G(−2) = T−1y + (1− T−1)x, and for s ≥ 0,

G(s) = x
s∑

j=1

(−1)j+1T j + y
s∑

j=0

(−1)jT j.

Define h(x, y, 0) = y, and h(x, y, n) = T−ny + (1 − T−n)x. Then h satisfies the relation

Th(x, y, n + 1) + (1− T )x = h(x, y, n).

If θ is a 3-cocycle for the quandle Λ, then define

Θm
0 (x, y, T ) =

m−1∏

j=0

θ(G(x, y,−2, T ), G(x, y, j − 1, T ), G(x, y, j, T ))−1 .

and

Θm
1 (x, y, T ) =

m−1∏

j=0

θ(G(x, y, j − 2, T ), G(x, y, j − 1, T ), G(x, y,−2, T )).

Next we describe the important scenes in the movie of the twist-spun torus knots, τkT (2,m).

The tangle depicted in Fig. 10 is the tangle of T (2,m) upon which we will apply the twisting. The

initial stages of the first half-twist are indicated in Figs. 10 and 11. The final stages of the half-twist

are indicated in Fig. 12. In Fig. 10 quandle elements are indicated on the center arcs of the torus

tangle. After the sth crossing the arc on the right of the crossing is colored G(s). The normal

direction to the surface is chosen to be a right pointing arrow on arcs that run downward. On the

right-hand side of Fig. 11 a new arc with color G(−2) is born via a type II Reidemeister move.

The asterisk in the triangle indicates the location of a type III Reidemeister move that is about

to take place. Compare this to Fig. 9 entry (2,6). This and the subsequent type III Reidemesiter

moves during the first half-twist are all of this type; the signs are all negative. The arguments for

the cocycles are indicated in Fig. 11 where the relationship between the arguments on subsequent

type III moves is indicated by the crossed arrows. The second half-twist is indicated in Figs. 13

through 16. Here the type III move appears in Fig. 9 as entry (6,6).
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28



y=G(0)

-1

y

θ

-1-1

y

x

*

( G(-2),G(-1),G(0) )

x=G(-1)
y

z=G(-2)=T    y + (1-T    )x

Figure 11: Start twisting on top

G(-2),G(-1),G(0) )θ(

-1

θ(

-1

)

-1

G(-2),G(0),G(1) 

-1
z=G(-2)=T    y + (1-T    )x

z=G(-2)=T    y + (1-T    )x

*

x=G(-1)

y

G(1)

G(2)

G(3)

y=G(0)

θ

-1
G(-2),G(1),G(2) )(

θ( G(-2),G(-1),G(0) )

( )G(-2),G(0),G(1) 

θ

-1

-1-1

-1

*

x=G(-1)

y

G(1)

G(2)

G(3)

y=G(0)

Figure 12: Continue twisting by Reidemeister III moves

7.2 Theorem. The surface τkT (2,m), with the orientation shown in Fig. 10, colors nontrivially

with the Alexander rack Λ = Zp[T, T−1]/(f(T )) if and only if 1− T + · · · ± Tm−1 = 0 and T k = 1

in Λ.

The state-sum invariant of τkT (2,m) with a cocycle θ of the Alexander quandle Λ is

∑

x,y

k−1∏

n=0

Θm
0 (x, h(x, y, n), T )Θm

1 (x, h(x, y, n), T )

Proof. As discussed above, Fig. 10 through Fig. 16 depict one full twist of a diagram of T (2,m)

by a sequence of Reidemeister moves. First, Fig. 10 shows that T (2,m) is non-trivially colored

by Λ if and only if G(s) = G(x, y,m, T ) = x
∑m

j=1(−1)j+1T j + y
∑m

j=0(−1)jT j = y if and only

if
∑m

j=1(−1)j+1T j = 0 in Λ. After one full twist, the color on the right-hand arc of the figures

changes to h(x, y, 1) = T−1y + (1 − T−1)x. By induction, the color on the right-hand arc after k

full twists is h(x, y, k) = T−ky + (1− T−k)x Hence τkT (2,m) is non-trivially colored if and only if

T k = 1 in Λ. Note also that the colors on τkT (2,m) are periodic with period k if T k = 1.

After one full twist the Reidemeister type III moves have contributed factors of Θm
0 (x, y, T )Θm

1 (x, y, T )

to a term in the state-sum, and the color y = h(x, y, 0) on the right-hand arc has changed to h(x, y, 1)

when the twist is complete. The result follows. ✷.
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Figure 13: Complete half a twist
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7.3 Corollary. Suppose 1− T + · · · ± Tm−1 = 0 and T n = 1 in the given Alexander rack Λ. Let

θ be a 3-cocycle in Z3(Λ,Zq). Then Φθ(τ
kT (2,m)) is periodic with respect to k with period nq.

Proof. The colors have period n and the state-sum takes values in Zq, so the state-sum has period

nq. ✷

7.4 Corollary. The surface τkT (2,m) colors nontrivially with the dihedral rack Rh if and only if

h = m and 2|k. The state-sum invariant of τ2wT (2,m) with a cocycle θ of a dihedral rack Rm is

Φθ(τ
2wT (2,m)) =

∑

x,y

k−1∏

n=0

Θm
0 (x, h(x, y, n),−1)Θm

1 (x, h(x, y, n),−1)

=
∑

x,y

[Θm
0 (x, y,−1)Θm

1 (x, y,−1)] [Θm
0 (x, 2x− y,−1)Θm

1 (x, 2x− y,−1)]

× [Θm
0 (x, y,−1)Θm

1 (x, y,−1)] [Θm
0 (x, 2x− y,−1)Θm

1 (x, 2x− y,−1)]

× · · · a total of w factors · · ·

× [Θm
0 (x, y,−1)Θm

1 (x, y,−1)] [Θm
0 (x, 2x− y,−1)Θm

1 (x, 2x− y,−1)]

Furthermore, if the coefficient of the cohomology is A = Zq, i.e. if θ ∈ C2
Q(Rm,Zq), then

Φθ(τ
kT (2,m)) is periodic with respect to k with period 2q.

Proof. Evaluate h(x, y, n) at T = −1 to obtain

(−1)2jy + (1− (−1)2j)x = y,

(−1)2j+1y + (1− (−1)2j+1)x = 2x− y.

The terms of the state-sum have the form Θw so that it has period q. Since the color has period 2,

the invariant has period 2q. ✷

7.5 Table. For the rest of the section we present Maple computations of the state-sum invariants

for twist spun T (2,m) torus knots using the above formulas. Computations are summarized in the

following table. The Alexander ideal of τkT (2,m) is (∆m = Tm−1 − · · · ± 1, T k − 1). Somewhat

simplified ideals are shown in the table. Since ∆m divides T 2m − 1 if m is odd and Tm − 1 if m

is even, the Alexander modules are periodic with respect to k. Thus we listed up to the smallest

period in the table.

The quandles we used are those whose 3-cocycles were computed in Section 3 with non-trivial

cohomological dimension. Often there is a pattern that the dimensions are the same for several

prime numbers of q. In that case, the smallest among such is chosen.

Since the dihedral quandles Rm and other quandles of the same order appear often as quan-

dles that color τkT (2,m) non-trivially, we listed knots with m < 7, as Maple does not finish

computations for larger quandles in predictable time.

The blank entries means that either only trivial quandles color, or no quandles color. In these

cases the invariant column is also left blank.

For τ4T (2,m), the invariant follows from periodicity, since τ2T (2,m) colors with the same

quandle Rm In this case, the same cocycle was used for both knotted surfaces. When the same

quandles are used for various k, we applied the periodicity in this way. Such cases are marked by
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(p) in the table. The first few examples of such values are provided in the table, but the others are

left for the reader.

When there are more than one choice of cocycles that give different values of the invariant,

some different choices are made by experiments. In particular, we do not know those listed exhaust

all possibilities. The cocycles of choice are presented with the table.

If, for example, 3 + 6t is a value of the invariant with A = Z3, then 3 + 6t2 appears also as a

value, by taking the negative of the cocycles of the former value. Such cases are listed but cocycles

are not given in duplicate.

The choices of cocycles are as follows. The indices in front of cocycles represent indices in the

table: (m − k − A − b) represents the invariant for τkT (2,m), the first (represented by (−A−))

choice of quandle/coefficient, the second (represented by (−b)) choice of a cocycle.

(3 − 2−A) 2χ0, 1, 2 + 2χ0, 2, 1 + 2χ1, 0, 1 + 2χ1, 0, 2 + 2χ2, 0, 1 + 2χ2, 0, 2

(3− 3−A− a) χ0, T, 1+T + χ0, 1+T, 1 + χ1, 0, 1 + χ1, 0, T + χ1, 0, 1+T + χ1, T, 0 + χ1, T, 1 + χ1, 1+T, 0

+ χT, 0, 1 + χT, 0, T + χT, 1, 0 + χT, 1+T, 0

(3− 3−A− b) χ1, T, 1+T + χ1, T, 0 + χ1, T, 1 + χ1, 0, 1 + χ0, 1+T, 0 + χ0, T, 0 + χ0, T, 1 + χ0, 1, T

+ χT, 1+T, 0 + χT, 0, T + χT, 0, 1+T + χ1+T, T, 1+T + χ1+T, 0, T + χ1+T, 0, 1+T + χ1+T, 0, 1

(4− 2−A− a) χ0, 1, 0 + χ0, 1, 3 + χ0, 2, 1 + χ0, 2, 3 + χ0, 3, 0 + χ0, 3, 1

(4− 2−A− b) χ0, 3, 1 + χ0, 2, 3 + χ0, 3, 2 + χ0, 2, 0 + χ2, 0, 1 + χ2, 1, 3 + χ2, 1, 0 + χ2, 0, 2

(4− 2−B − a) χ0, 1, 0 + χ0, 1, T + χ0, T, 0 + χ0, T, 1 + χ0, 1+T, 1 + χ0, 1+T, T

(4− 2−B − b) χ0, 1, 0 + χ0, 1, T + χ0, T, 0 + χ0, T, 1 + χ0, 1+T, 1 + χ0, 1+T, T + χ1, 0, 1 + χ1, 0, 1+T

+ χ1, T, 0 + χ1, T, 1+T + χ1, 1+T, 0 + χ1, 1+T, 1

(5 − 2−A) 3χ3, 0, 2 + 4χ3, 0, 1 + 3χ3, 0, 3 + χ3, 0, 4 + χ3, 4, 0 + 4χ3, 4, 3 + 2χ3, 1, 2 + χ3, 1, 3

+2χ4, 0, 1 + 3χ4, 0, 2 + 2χ3, 2, 1 + 3χ4, 0, 3 + χ4, 0, 4 + 2χ0, 1, 0 + 4χ0, 1, 2 + 2χ0, 1, 3

+2χ0, 1, 4 + 2χ0, 2, 0 + 3χ1, 0, 1 + χ0, 3, 1 + χ0, 3, 2 + 3χ0, 4, 0 + χ0, 4, 14χ1, 0, 2

+3χ1, 0, 3 + 4χ3, 2, 4 + 4χ0, 4, 3 + 3χ0, 4, 2 + 2χ1, 0, 4 + 2χ1, 3, 2 + 2χ1, 3, 1 + 2χ1, 2, 4

+3χ1, 3, 0 + 3χ1, 2, 1 + 2χ1, 2, 3 + 3χ1, 2, 0 + 4χ1, 3, 4 + 3χ1, 4, 0 + 4χ1, 4, 1 + χ2, 0, 2

+χ2, 0, 3 + 3χ2, 1, 2 + 2χ2, 1, 3 + 4χ2, 1, 0 + 2χ2, 3, 0 + 2χ2, 1, 4 + 2χ2, 3, 4 + 2χ2, 4, 0

+3χ2, 4, 1 + 3χ2, 3, 2 + 4χ2, 3, 1 + χ2, 4, 2 + χ4, 2, 1

(6 − 2−A) χ0, 1, 2 + χ0, 2, 1 + χ1, 0, 1 + χ1, 0, 2 + χ2, 0, 1 + χ2, 0, 2

(6− 2−B − a) χ2, 3, 1 + χ2, 3, 4 + 2χ2, 5, 0 + 2χ2, 5, 3 + χ4, 0, 2 + χ4, 0, 5 + χ4, 1, 2 + χ4, 1, 5

+χ4, 1, 3 + χ4, 2, 0 + χ4, 2, 3 + χ4, 1, 0χ2, 1, 3 + χ2, 1, 5χ2, 1, 2 + 2χ0, 1, 2

+2χ0, 1, 5 + 2χ0, 3, 22χ0, 3, 5 + 2χ0, 2, 4 + 2χ0, 2, 1 + χ0, 4, 2 + 2χ0, 4, 3 + 2χ0, 4, 0

+2χ0, 5, 0 + 2χ0, 5, 1 + χ0, 4, 5 + 2χ0, 5, 4 + 2χ0, 5, 3 + χ2, 0, 1 + χ2, 0, 2 + χ2, 0, 5

+χ2, 0, 4 + χ2, 1, 0

(6− 2−B − b) χ5, 2, 3 + 2χ1, 2, 3 + 2χ1, 4, 0 + 2χ1, 4, 3 + χ1, 3, 2 + χ1, 3, 5 + 2χ1, 4, 2 + 2χ1, 4, 5

+χ1, 5, 0 + χ1, 5, 3 + χ2, 0, 1 + χ2, 0, 2 + χ2, 0, 5 + χ2, 0, 4 + χ2, 1, 0 + χ2, 1, 2
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+χ2, 1, 3 + χ2, 1, 5 + χ2, 3, 1 + χ2, 3, 4 + 2χ2, 5, 0 + 2χ2, 5, 3 + χ3, 0, 2 + χ3, 1, 0

+χ3, 0, 5 + χ3, 1, 3 + χ3, 1, 2 + χ3, 1, 5 + χ3, 2, 0 + χ3, 2, 3 + 2χ1, 0, 5 + 2χ1, 0, 2

+2χ0, 5, 1 + 2χ0, 5, 3 + χ4, 0, 2 + 2χ0, 5, 4 + χ0, 4, 2 + 2χ0, 4, 3 + 2χ0, 4, 0 + χ0, 4, 5

+2χ0, 5, 0 + χ4, 0, 5 + χ4, 1, 2 + χ4, 1, 5 + χ4, 2, 0 + χ4, 1, 0 + χ4, 1, 3 + χ4, 2, 3

+χ5, 0, 2 + χ5, 1, 3 + χ5, 1, 2 + χ5, 1, 5 + χ5, 2, 0 + χ5, 1, 0 + χ5, 0, 5 + 2χ1, 2, 0

+2χ0, 1, 2 + 2χ0, 1, 5 + 2χ0, 2, 1 + 2χ0, 2, 4 + 2χ0, 3, 2

(6− 2−B − c) 2χ5, 0, 4 + 2χ5, 1, 0 + χ5, 0, 5 + χ5, 1, 2 + χ5, 1, 5 + 2χ5, 1, 3 + χ5, 2, 1 + χ5, 2, 4

+χ5, 3, 1 + χ5, 0, 2 + 2χ0, 1, 2 + 2χ0, 1, 5 + 2χ0, 2, 1 + 2χ0, 2, 4 + 2χ0, 4, 0 + 2χ0, 3, 2

+2χ0, 3, 5 + χ0, 4, 5 + 2χ0, 5, 0 + 2χ0, 4, 3 + χ0, 4, 2 + 2χ0, 5, 1 + 2χ0, 5, 3 + 2χ0, 5, 4

+χ1, 0, 2 + χ1, 0, 1 + χ1, 0, 5 + 2χ1, 0, 4 + 2χ1, 2, 0 + 2χ1, 2, 3 + χ1, 2, 4 + 2χ1, 3, 1

+χ1, 4, 2 + χ1, 4, 5 + 2χ1, 5, 1 + χ2, 0, 1 + χ2, 0, 4 + χ2, 0, 2 + χ2, 0, 5 + χ2, 1, 0

+χ2, 1, 3 + χ2, 1, 2 + χ2, 1, 5 + χ2, 3, 1 + χ2, 3, 4 + 2χ2, 5, 0 + 2χ2, 5, 3 + χ3, 0, 2

+χ3, 0, 1 + χ3, 0, 5 + 2χ3, 0, 4 + χ3, 1, 0 + 2χ3, 1, 2 + χ3, 1, 3 + 2χ3, 2, 0 + 2χ3, 1, 5

+2χ3, 2, 3 + 2χ3, 2, 1 + χ3, 2, 4 + 2χ3, 4, 0 + χ3, 4, 2 + 2χ3, 4, 3 + χ3, 4, 5 + χ3, 5, 1

+χ4, 0, 2 + χ4, 1, 2 + χ4, 0, 5 + χ4, 1, 0 + χ4, 1, 3 + χ4, 1, 5 + χ4, 2, 3 + χ4, 2, 0
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Table 7.5 : Cocycle invariants of twist spun torus knots τkT (2,m)

Torus k Alexander Color Invariants

links ideals quandles

T (2, 3) 2 (T + 1, 3)(∼= R3) Z3(R3,Z3) 3 + 6t (3− 2−A)

3 + 6t2

3 (T 2 − T + 1, 2) Z3(Z2[T, T−1]/(T 2 + T + 1),Z2) 10 + 6t (3− 3−A− a)

8 + 8t (3− 3−A− b)

4 (T + 1, 3)(∼= R3) Z3(R3,Z3) 3 + 6t2, 3 + 6t (p)

5 (1)

6 (T 2 − T + 1) Z3(R3,Z3) 9 for any cocycle (p)

Z3(Z2[T, T−1]/(T 2 + T + 1),Z2) 4 for any cocycle (p)

T (2, 4) 2 (T 2 − 1, 2T − 2) Z3(R4,Z2) 12 + 4t (4− 2−A− a)

8 + 8t (4− 2−A− b)

Z3(R4,Z3) 16

Z3(Z2[T, T−1]/(T 2 + 1),Z2) 12 + 4t (4− 2−B − a)

8 + 8t (4− 2−B − b)

Z3(Z2[T, T−1]/(T 2 + 1),Z3) 16 for any cocycles

3 (1)

4 (∆4)

T (2, 5) 2 (T 2 − 1, 2T − 3) Z3(R5,Z5) 5 + 10t + 10t4 (5− 2−A)

5 + 10t2 + 10t3

3 (1)

4 (T + 1, 5)(∼= R5) Z3(R5,Z5) (p)

5 (∆5, 2)

6 (T + 1, 5)(∼= R5) Z3(R5,Z5) (p)

7 (1)

8 (T 2 + 5, 2T − 3) Z3(R5,Z5) (p)

9 (1)

10 (T 2 − 1, 2T − 3) Z3(R5,Z5) (p)

T (2, 6) 2 (T 2 − 1, 3T − 3) Z3(R3,Z3) 3 + 6t (6− 2−A)

3 + 6t2

Z3(R6,Z2) 36 for any cocycle

Z3(R6,Z3) 24 + 12t (6− 2−B − a)

24 + 12t2

12 + 24t (6− 2−B − b)

12 + 24t2

12 + 12t + 12t2 (6− 2−B − c)

3 (T 3 − 1) Z3(Z2[T, T−1]/(T 2 + T + 1),Z2) 16 for any cocycle

4 (T 2 − 1, 3T − 3) Z3(R3,Z3) (p)

Z3(R6,Z2) (p)

Z3(R6,Z3) (p)

5 (1)

6 (∆6) Z3(R6,Z3) (p)

Z3(Z2[T, T−1]/(T 2 + T + 1),Z2) (p)
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8 Computations with Surface Braids

In this section, we use surface braid theory to provide computations for τ2T (2,m). Some of the

results here coincide with those of the previous section, but there are advantages to the current

approach that we outline. First, by making computations in more than one context, we are able to

cross-check our results. Second, the braid chart provides a snap-shot of the entire knotted surface

whereas in a movie description more work is needed to reconstruct the diagram of the knotting.

Third, presentations for the fundamental quandle and the form of the partition function can be

read directly from the braid chart. Thus the techniques we present for the current example are

applicable in general to surfaces that are given in braid form.

We begin with a brief review of the theory of surface braids; see [25, 24, 7] for more details.

8.1 Definition. Let D2 and D be 2-disks and Xm a fixed set of m interior points of D2. By

pr1 : D2 ×D → D2 and pr2 : D2 ×D → D, we mean the projections to the first factor and to the

second factor.

A surface braid ([24], [39]) of degree m is a compact, oriented surface S properly embedded

in D2 ×D such that the restriction of pr2 to S is a degree-m simple branched covering map and

∂S = Xm×∂D ⊂ D2×∂D. A degree-m branched covering map f : S → D is simple if |f−1(y)| = m

or m− 1 for y ∈ D. In this case, the branch points are simple (z 7→ z2).

A surface braid S of degree m is extended to a closed surface Ŝ in D2 × S2 such that Ŝ ∩

(D2 × D) = S and Ŝ ∩ (D2 × D) = Xm × D, where S2 is the 2-sphere obtained from D2 by

attaching a 2-disk D along the boundary. By identifying D2 × S2 with the tubular neighborhood

of a standard 2-sphere in R4, we assume that Ŝ is a closed oriented surface embedded in R4. We

call it the closure of S in R4. It is proved in [25] that every closed oriented surface embedded in

R4 is ambient isotopic to the closure of a surface braid.

Two surface braids S and S′ in D2 ×D are said to be equivalent if there is an isotopy {ht} of

D2 ×D such that

1. h0 = id, h1(S) = S′,

2. for each t ∈ [0, 1], ht is fiber-preserving; that is, there is a homeomorphism ht : D → D with

ht ◦ pr2 = pr2 ◦ ht, and

3. for each t ∈ [0, 1], ht|D2×∂D = id.

Let Cm be the configuration space of unordered m interior points of D2. We identify the

fundamental group π1(Cm,Xm) of Cm with base point Xm with the braid group Bm on m strings.

Let S denote a surface braid and Σ(S) ⊂ D the branch point set of the branched covering map

S → D. For a path a : [0, 1]→ D − Σ(S), we define a path

ρS(a) : [0, 1]→ Cm

by

ρS(a)(t) = pr1(S ∩ (D2 × {a(t)})).

If pr1(S∩(D2×{a(0)})) = pr1(S∩(D2×{a(1)})) = Xm, then the path ρS(a) represents an element

of π1(Cm,Xm) = Bm. Take a point y0 in ∂D. The braid monodromy of S is the homomorphism

ρS : π1(D −Σ(S), y0)→ Bm
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such that ρS([a]) = [ρS(a)] for any loop a in D − Σ(S) with base point y0.

8.2 Definition. Let Σ(S) = {y1, . . . , yn}. Take a regular neighborhood N(Σ(S)) = N(y1) ∪

· · · ∪N(yn) in D. A Hurwitz arc system A = (α1, . . . , αn) for Σ(S) is an n-tuple of simple arcs in

E(Σ(S)) = cl (D \N(Σ(S)) such that each αi starts from a point of ∂N(yi) and ends at y0, and

αi ∩ αj = {y0} for i 6= j, and α1, . . . , αn appear in this order around y0.

Let γi (i = 1, . . . , n) be the loop α−1
i · ∂N(yi) · αi in D − Σ(S) with base point y0 which goes

along αi, turns around the endpoint of αi in the positive direction, and returns along αi. The braid

system of S associated with A is an n-tuple of m-braids

(ρS([γ1]), ρS([γ2]), . . . , ρS([γn])).

8.3 Definition. An m-chart [24] is oriented, labelled graph Γ in D, which may be empty or have

closed edges without vertices called hoops, satisfying the following conditions:

1. Every vertex has degree one, four or six.

2. The labels of edges are in {1, 2, . . . ,m− 1}.

3. For each degree-six vertex, three consective edges are oriented inward and the other three are

outward, and these six edges are labelled i and i + 1 alternately for some i.

4. For each degree-four vertex, diagonal edges have the same label and are oriented coherently,

and the labels i and j of the diagonals satisfy |i− j| > 1.

We call a degree 1 (resp. degree 6) vertex a black (resp. white) vertex. A degree 4 vertex is called

a crossing point of the chart.

For an m-chart Γ, we consider a surface braid S of degree m satisfying the following conditions:

1. For a regular neighborhood N(Γ) of Γ in D and for any y ∈ D − intN(Γ) the projection is

pr1(S ∩ (D2 × {y})) = Xm, where Xm denotes the m fixed interior points of D2.

2. The branch point set of S coincides with the set of the black vertices of Γ.

3. For a path α : [0, 1]→ D which is in general position with respect to Γ and α(0), α(1) are in

D − intN(Γ), the m-braid determined by ρS(α) is the m-braid presented by the intersection

braid word wΓ(a).

Then we call S a surface braid described by Γ.

In general, the singularity set of the image of S by the projection I1× I2× I3× I4 → I2× I3× I4

is identified naturally with the chart Γ in the sense of [26] and [7]. The white vertices are in one-to-

one correspondence to the triple points and the black vertices are to the branch points. Figure 17

shows the relationship schematically, see [26] and [7] for details.

Let m be an integer with m ≥ 3 and let Γ be the 4-chart illustrated in Fig. 18. Let S be the

surface braid of degree 4 described by Γ. The closure of S in R4 is the surface link τ2(T (2,m))

which is obtained from T (2,m), the torus knot/link of type (2,m), by Zeeman’s 2-twist spinning.

(If m is odd, then it is a 2-knot. If m is even, then it consists of 2 components; one is a 2-sphere

and the other is a torus. If m = 0, 1, or 2, then τ2(T (2,m)) is a ribbon surface link and every

quandle cocycle invariant of it is trivial. So we assume m ≥ 3 in this paper.)
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Figure 17: Projections and charts
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8.4 Theorem. For a quandle 3-cocycle θ ∈ Z3
Q(X;A), the state sum Φθ(τ

2(T (2,m))) is

∑

y1,y2

∏

j:odd;1≤j≤m−2

θ(y2 ∗ (y1y2)
(j−1)/2y−1

1 , y1 ∗ (y2y1)
(j+1)/2y−2

1 , y1)
−1

×
∏

j:even;1≤j≤m−2

θ(y1 ∗ (y2y1)
j/2y−2

1 , y2 ∗ (y1y2)
j/2y−1

1 , y1)
−1

×
∏

j:odd;1≤j≤m−1

θ(y1 ∗ (y2y1)
(j−5)/2y2, y2 ∗ (y1y2)

(j−3)/2, y1 ∗ y2y
−1
1 )−1

×
∏

j:even;1≤j≤m−1

θ(y2 ∗ (y1y2)
(j−4)/2, y1 ∗ (y2y1)

(j−4)/2y2, y1 ∗ y2y
−1
1 )−1

×
∏

j:odd;1≤j≤m−1

θ(y1 ∗ y2y
−1
1 , y2 ∗ (y1y2)

(j−3)/2, y1 ∗ (y2y1)
(j−3)/2y2)

+1

×
∏

j:even;1≤j≤m−1

θ(y1 ∗ y2y
−1
1 , y1 ∗ (y2y1)

(j−4)/2y2, y2 ∗ (y1y2)
(j−2)/2)+1

×
∏

j:odd;1≤j≤m−2

θ(y1, y2 ∗ (y1y2)
(j−1)/2, y1 ∗ (y2y1)

(j−1)/2y2)
+1

×
∏

j:even;1≤j≤m−2

θ(y1, y1 ∗ (y2y1)
(j−2)/2y2, y2 ∗ (y1y2)

j/2)+1,

where y1, y2 run over all elements of X satisfying y2 ∗ (y1y2)
(m−1)/2 = y1 (if m is odd) or y1 ∗

(y2y1)
m/2 = y1 (if m is even), and y1 ∗ y2

2 = y1.

The formula is restated as follows.

8.5 Theorem. Let m = 2n + 1 (resp. m = 2n). For a quandle 3-cocycle θ ∈ Z3
Q(X;A), the state

sum Φθ(τ
2(T (2,m))) is

∑

y1,y2

n(resp. n−1)∏

k=1

θ(y2 ∗ (y1y2)
k−1y−1

1 , y1 ∗ (y2y1)
ky−2

1 , y1)
−1

×
n−1∏

k=1

θ(y1 ∗ (y2y1)
ky−2

1 , y2 ∗ (y1y2)
ky−1

1 , y1)
−1

×
n∏

k=1

θ(y1 ∗ (y2y1)
k−3y2, y2 ∗ (y1y2)

k−2, y1 ∗ y2y
−1
1 )−1

×

n(resp. n−1)∏

k=1

θ(y2 ∗ (y1y2)
k−2, y1 ∗ (y2y1)

k−2y2, y1 ∗ y2y
−1
1 )−1

×
n∏

k=1

θ(y1 ∗ y2y
−1
1 , y2 ∗ (y1y2)

k−2, y1 ∗ (y2y1)
k−2y2)

+1

×

n(resp. n−1)∏

k=1

θ(y1 ∗ y2y
−1
1 , y1 ∗ (y2y1)

k−2y2, y2 ∗ (y1y2)
k−1)+1

×

n(resp. n−1)∏

k=1

θ(y1, y2 ∗ (y1y2)
k−1, y1 ∗ (y2y1)

k−1y2)
+1
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×
n−1∏

k=1

θ(y1, y1 ∗ (y2y1)
k−1y2, y2 ∗ (y1y2)

k)+1,

where y1, y2 run over all elements of X satisfying y2 ∗ (y1y2)
n = y1 (resp. y1 ∗ (y2y1)

n = y1) and

y1 ∗ y2
2 = y1.

Proof. For the Hurwitz arc system (α1, . . . , α6) illustrated in Fig. 18, the braid system

(w−1
1 σǫ1

k1
w1, w

−1
2 σǫ2

k2
w2, . . . , w

−1
6 σǫ6

k6
w6)

of S is given by

w1 = σ
−(m−2)
2 σ3σ2, σǫ1

k1
= σ3,

w2 = σ−1
2 σ3σ2, σǫ2

k2
= σ−1

1 ,

w3 = σ
−(m−1)
1 σ3σ2, σǫ3

k3
= σ2,

w4 = σ−1
1 σ2, σǫ4

k4
= σ−1

2 ,

w5 = σ
−(m−2)
2 , σǫ5

k5
= σ1,

w6 = σ−1
2 , σǫ6

k6
= σ−1

3 .

For arcs {β1,1, . . . , β1,m−2, β2,1, . . . , β2,m−1, β3,1, . . . , β3,m−1, β4,1, . . . , β4,m−2} as in Fig. 19, the

intersection word wΓ(βi,j) (i ∈ {1, 2, 3, 4}) are as follows (sgn means the sign of the white vertex

Wi,j near the starting point of βi,j , and labels mean the labels around Wi,j):

wΓ(β1,j) = σ
−(j−1)
2 σ3σ2, sgn = −1, labels = {2, 3}, (j = 1, . . . ,m− 2);

wΓ(β2,j) = σ
−(j−1)
1 σ3σ2, sgn = −1, labels = {1, 2}, (j = 1, . . . ,m− 1);

wΓ(β3,j) = σ
−(j−2)
2 , sgn = +1, labels = {1, 2}, (j = 1, . . . ,m− 1);

wΓ(β4,j) = σ
−(j−1)
3 , sgn = +1, labels = {2, 3}, (j = 1, . . . ,m− 2);

Suppose that m is odd. Then the quandle automorphisms Q(wi) (i = 1, . . . , 6) of FQ〈x1, . . . , x4〉

are as follows:

Q(σ
−(m−2)
2 σ3σ2) :






x1 → x1,

x2 → x4 ∗ (x3x4)
(m−3)/2x−1

2 ,

x3 → x3 ∗ (x4x3)
(m−3)/2x4x

−1
2 ,

x4 → x2,

Q(σ−1
2 σ3σ2) :






x1 → x1,

x2 → x4 ∗ x−1
2 ,

x3 → x3 ∗ x4x
−1
2 ,

x4 → x2,

Q(σ
−(m−1)
1 σ3σ2) :






x1 → x1 ∗ (x2x3x
−1
2 x1)

(m−3)/2x2x3x
−1
2 ,

x2 → x3 ∗ (x−1
2 x1x2x3)

(m−1)/2x−1
2 ,

x3 → x4 ∗ x−1
2 ,

x4 → x2,

Q(σ−1
1 σ2) :






x1 → x3 ∗ x−1
2 ,

x2 → x1 ∗ x2x3x
−1
2 ,

x3 → x2,

x4 → x4,
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Figure 18: A braid chart and Hurwitz system for the 2-twist spun T (2,m): Here m = 7
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Figure 19: Paths to the preferred regions near triple points
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Q(σ
−(m−2)
2 ) :






x1 → x1,

x2 → x3 ∗ (x2x3)
(m−3)/2,

x3 → x2 ∗ (x3x2)
(m−3)/2x3,

x4 → x4,

Q(σ−1
2 ) :






x1 → x1,

x2 → x3,

x3 → x2 ∗ x3,

x4 → x4,

Hence the defining relations Q(wi)(xki
) = Q(wi)(xki+1) (i = 1, . . . , 6) of Q(S) are

x3 ∗ (x4x3)
(m−3)/2x4x

−1
2 = x2,

x1 = x4 ∗ x−1
2 ,

x3 ∗ (x−1
2 x1x2x3)

(m−1)/2x−1
2 = x4 ∗ x−1

2 ,

x1 ∗ x2x3x
−1
2 = x2,

x1 = x3 ∗ (x2x3)
(m−3)/2,

x2 ∗ x3 = x4.

Thus the quandle Q(S), for odd m, is

〈x1, . . . , x4| x3 ∗ (x2x3)
(m−1)/2 = x2,

x2 ∗ x2
3 = x2,

x1 = x2 ∗ x3x
−1
2 ,

x4 = x2 ∗ x3〉

= 〈x2, x3| x3 ∗ (x2x3)
(m−1)/2 = x2,

x2 ∗ x2
3 = x2〉.

This is isomorphic to the dihedral quandle Rm.

Suppose that m is even. Then the quandle automorphisms Q(wi) (i = 1, . . . , 6) of FQ〈x1, . . . , x4〉

are as follows:

Q(σ
−(m−2)
2 σ3σ2) :






x1 → x1,

x2 → x3 ∗ (x4x3)
(m−4)/2x4x

−1
2 ,

x3 → x4 ∗ (x3x4)
(m−2)/2x−1

2 ,

x4 → x2,

Q(σ−1
2 σ3σ2) :






x1 → x1,

x2 → x4 ∗ x−1
2 ,

x3 → x3 ∗ x4x
−1
2 ,

x4 → x2,

Q(σ
−(m−1)
1 σ3σ2) :






x1 → x3 ∗ (x−1
2 x1x2x3)

(m−2)/2x−1
2 ,

x2 → x1 ∗ (x2x3x
−1
2 x1)

(m−2)/2x2x3x
−1
2 ,

x3 → x4 ∗ x−1
2 ,

x4 → x2,
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Q(σ−1
1 σ2) :






x1 → x3 ∗ x−1
2 ,

x2 → x1 ∗ x2x3x
−1
2 ,

x3 → x2,

x4 → x4,

Q(σ
−(m−2)
2 ) :






x1 → x1,

x2 → x2 ∗ (x3x2)
(m−4)/2x3,

x3 → x3 ∗ (x2x3)
(m−2)/2,

x4 → x4,

Q(σ−1
2 ) :






x1 → x1,

x2 → x3,

x3 → x2 ∗ x3,

x4 → x4,

Hence the defining relations Q(wi)(xki
) = Q(wi)(xki+1) (i = 1, . . . , 6) of Q(S) are

x4 ∗ (x3x4)
(m−2)/2x−1

2 = x2,

x1 = x4 ∗ x−1
2 ,

x1 ∗ (x2x3x
−1
2 x1)

(m−2)/2x2x3x
−1
2 = x4 ∗ x−1

2 ,

x1 ∗ x2x3x
−1
2 = x2,

x1 = x2 ∗ (x3x2)
(m−4)/2x3,

x2 ∗ x3 = x4.

Thus the quandle Q(S), for even m, is

〈x1, . . . , x4| x2 ∗ (x3x2)
m/2 = x2,

x2 ∗ x2
3 = x2,

x1 = x2 ∗ x3x
−1
2 ,

x4 = x2 ∗ x3〉

= 〈x2, x3| x2 ∗ (x3x2)
m/2 = x2,

x2 ∗ x2
3 = x2〉.

Now we calculate the Boltzmann weight for each white vertex. Let ι : 〈x1, x2, x3, x4〉 → Q(S)

be the natural projection map (that is i∗ in [4]). Let θ be a quandle 3-cocycle of a finite quandle,

and c a coloring.

1. wΓ(β1,j) = σ
−(j−1)
2 σ3σ2, sgn = −1, labels = {2, 3}, (j = 1, . . . ,m− 2).

(a) For odd j (1 ≤ j ≤ m− 2), the composition of Q(σ
−(j−1)
2 σ3σ2) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x3 ∗ (x4x3)
(j−3)/2x4x

−1
2 → x3 ∗ (x2x3)

(j−1)/2x−1
2

x3 → x4 ∗ (x3x4)
(j−1)/2x−1

2 → x2 ∗ (x3x2)
(j+1)/2x−2

2

x4 → x2 → x2.
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Hence the Boltzmann weight is

B = θ(c(x3 ∗ (x2x3)
(j−1)/2x−1

2 ), c(x2 ∗ (x3x2)
(j+1)/2x−2

2 ), c(x2))
−1.

Put j = 2k − 1, then

B = θ(c(x3 ∗ (x2x3)
k−1x−1

2 ), c(x2 ∗ (x3x2)
kx−2

2 ), c(x2))
−1,

where k = 1, 2, . . . , n if m = 2n + 1, or k = 1, 2, . . . , n− 1 if m = 2n.

(b) For even j (1 ≤ j ≤ m− 2), the composition of Q(σ
−(j−1)
2 σ3σ2) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x4 ∗ (x3x4)
(j−2)/2x−1

2 → x2 ∗ (x3x2)
j/2x−1

2

x3 → x3 ∗ (x4x3)
(j−2)/2x4x

−1
2 → x3 ∗ (x2x3)

j/2x−1
2

x4 → x2 → x2.

Hence the Boltzmann weight is

B = θ(c(x2 ∗ (x3x2)
j/2x−2

2 ), c(x3 ∗ (x2x3)
j/2x−1

2 ), c(x2))
−1.

Put j = 2k, then

B = θ(c(x2 ∗ (x3x2)
kx−2

2 ), c(x3 ∗ (x2x3)
kx−1

2 ), c(x2))
−1,

where k = 1, 2, . . . , n − 1.

2. wΓ(β2,j) = σ
−(j−1)
1 σ3σ2, sgn = −1, labels = {1, 2}, (j = 1, . . . ,m− 1).

(a) For odd j (1 ≤ j ≤ m− 1), the composition of Q(σ
−(j−1)
1 σ3σ2) and ι maps






x1 → x1 ∗ (x2x3x
−1
2 x1)

(j−1)/2x−1
1 → x2 ∗ (x3x2)

(j−5)/2x3

x2 → x3 ∗ (x−1
2 x1x2x3)

(j−1)/2x−1
2 → x3 ∗ (x2x3)

(j−3)/2

x3 → x4 ∗ x−1
2 → x2 ∗ x3x

−1
2

x4 → x2 → x2.

Hence the Boltzmann weight is

B = θ(c(x2 ∗ (x3x2)
(j−5)/2x3), c(x3 ∗ (x2x3)

(j−3)/2), c(x2 ∗ x3x
−1
2 ))−1.

Put j = 2k − 1, then

B = θ(c(x2 ∗ (x3x2)
k−3x3), c(x3 ∗ (x2x3)

k−2), c(x2 ∗ x3x
−1
2 ))−1,

where k = 1, 2, . . . , n.
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(b) For even j (1 ≤ j ≤ m− 1), the composition of Q(σ
−(j−1)
1 σ3σ2) and ι maps






x1 → x3 ∗ (x−1
2 x1x2x3)

(j−2)/2x−1
2 → x3 ∗ (x2x3)

(j−4)/2

x2 → x1 ∗ (x2x3x
−1
2 x1)

j/2x−1
1 → x2 ∗ (x3x2)

(j−4)/2x3

x3 → x4 ∗ x−1
2 → x2 ∗ x3x

−1
2

x4 → x2 → x2.

Hence the Boltzmann weight is

B = θ(c(x3 ∗ (x2x3)
(j−4)/2), c(x2 ∗ (x3x2)

(j−4)/2x3), c(x2 ∗ x3x
−1
2 ))−1.

Put j = 2k, then

B = θ(c(x3 ∗ (x2x3)
k−2), c(x2 ∗ (x3x2)

k−2x3), c(x2 ∗ x3x
−1
2 ))−1,

where k = 1, 2, . . . , n if m = 2n + 1, k = 1, 2, . . . , n− 1 if m = 2n.

3. wΓ(β3,j) = σ
−(j−2)
2 , sgn = +1, labels = {1, 2}, (j = 1, . . . ,m− 1).

(a) For odd j (1 ≤ j ≤ m− 1), the composition of Q(σ
−(j−2)
2 ) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x3 ∗ (x2x3)
(j−3)/2 → x3 ∗ (x2x3)

(j−3)/2

x3 → x2 ∗ (x3x2)
(j−3)/2x3 → x2 ∗ (x3x2)

(j−3)/2x3

x4 → x4 → x2 ∗ x3.

Hence the Boltzmann weight is

B = θ(c(x2 ∗ x3x
−1
2 ), c(x3 ∗ (x2x3)

(j−3)/2), c(x2 ∗ (x3x2)
(j−3)/2x3))

+1.

Put j = 2k − 1, then

B = θ(c(x2 ∗ x3x
−1
2 ), c(x3 ∗ (x2x3)

k−2), c(x2 ∗ (x3x2)
k−2x3))

+1,

where k = 1, 2, . . . , n.

(b) For even j (1 ≤ j ≤ m− 1), the composition of Q(σ
−(j−2)
2 ) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x2 ∗ (x3x2)
(j−4)/2x3 → x2 ∗ (x3x2)

(j−4)/2x3

x3 → x3 ∗ (x2x3)
(j−2)/2 → x3 ∗ (x2x3)

(j−2)/2

x4 → x4 → x2 ∗ x3.

Hence the Boltzmann weight is

B = θ(c(x2 ∗ x3x
−1
2 ), c(x2 ∗ (x3x2)

(j−4)/2x3), c(x3 ∗ (x2x3)
(j−2)/2))+1.

Put j = 2k, then

B = θ(c(x2 ∗ x3x
−1
2 ), c(x2 ∗ (x3x2)

k−2x3), c(x3 ∗ (x2x3)
k−1))+1,

where k = 1, 2, . . . , n if m = 2n + 1, k = 1, 2, . . . , n− 1 if m = 2n.
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4. wΓ(β4,j) = σ
−(j−1)
3 , sgn = +1, labels = {2, 3}, (j = 1, . . . ,m− 2).

(a) For odd j (1 ≤ j ≤ m− 2), the composition of Q(σ
−(j−1)
3 ) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x2 → x2

x3 → x3 ∗ (x4x3)
(j−3)/2x4 → x3 ∗ (x2x3)

(j−1)/2

x4 → x4 ∗ (x3x4)
(j−1)/2 → x2 ∗ (x3x2)

(j−1)/2x3.

Hence the Boltzmann weight is

B = θ(c(x2), c(x3 ∗ (x2x3)
(j−1)/2), c(x2 ∗ (x3x2)

(j−1)/2x3))
+1.

Put j = 2k − 1, then

B = θ(c(x2), c(x3 ∗ (x2x3)
k−1), c(x2 ∗ (x3x2)

k−1x3))
+1,

where k = 1, 2, . . . , n if m = 2n + 1, k = 1, 2, . . . , n− 1 if m = 2n.

(b) For even j (1 ≤ j ≤ m− 2), the composition of Q(σ
−(j−1)
3 ) and ι maps






x1 → x1 → x2 ∗ x3x
−1
2

x2 → x2 → x2

x3 → x4 ∗ (x3x4)
(j−2)/2 → x2 ∗ (x3x2)

(j−2)/2x3

x4 → x3 ∗ (x4x3)
(j−2)/2x4 → x3 ∗ (x2x3)

j/2.

Hence the Boltzmann weight is

B = θ(c(x2), c(x2 ∗ (x3x2)
(j−2)/2x3), c(x3 ∗ (x2x3)

j/2))+1.

Put j = 2k, then

B = θ(c(x2), c(x2 ∗ (x3x2)
k−1x3), c(x3 ∗ (x2x3)

k))+1,

where k = 1, 2, . . . , n − 1.

By replacing c(x2) and c(x3) by y1 and y2, we have the theorem. ✷

8.6 Examples. The case of m = 3 (n = 1)

∑

y1,y2

θ(y2 ∗ y1, y2, y1)
−1

× θ(y2, y2 ∗ y1, y2)
−1

× θ(y2 ∗ y1, y1, y2)
−1

× θ(y2, y2 ∗ y1, y1)
+1

× θ(y2, y1, y2)
+1

× θ(y1, y2, y1 ∗ y2)
+1,
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where y1, y2 run over all elements of X satisfying y2 ∗ y1y2 = y1 and y1 ∗ y2
2 = y1.

Put z1 = y1 ∗ y2 = y2 ∗ y1 and z2 = y1 (and z1 ∗ z2 = y2), then

∑

y1,y2

θ(z1, z1 ∗ z2, z2)
−1

× θ(z1 ∗ z2, z1, z1 ∗ z2)
−1

× θ(z1, z2, z1 ∗ z2)
−1

× θ(z1 ∗ z2, z1, z2)
+1

× θ(z1 ∗ z2, z2, z1 ∗ z2)
+1

× θ(z2, z1 ∗ z2, z1)
+1,

where z1, z2 run over all elements of X satisfying z2 ∗ z1z2 = z1 and z1 ∗ z2
2 = z1. This formula is

the same as that in [4].

The case of m = 4 (n = 2)

∑

y1,y2

θ(y2 ∗ y−1
1 , y1 ∗ y2, y1)

−1

× θ(y1 ∗ y2, y2 ∗ y1y2y
−1
1 , y1)

−1

× θ(y1 ∗ y2, y2 ∗ y−1
1 , y1 ∗ y2)

−1

× θ(y1, y2, y1 ∗ y2)
−1

× θ(y2 ∗ y−1
1 , y1, y1 ∗ y2)

−1

× θ(y1 ∗ y2, y2 ∗ y−1
1 , y1)

+1

× θ(y1 ∗ y2, y2, y1 ∗ y2)
+1

× θ(y1 ∗ y2, y1, y2)
+1

× θ(y1, y2, y1 ∗ y2)
+1

× θ(y1, y1 ∗ y2, y2 ∗ y1y2)
+1,

where y1, y2 run over all elements of X satisfying y1 ∗ (y2y1)
2 = y1 and y1 ∗ y2

2 = y1.

Notice that y1 ∗ y2y
−1
1 = y1 ∗ y−1

2 = y1 ∗ y2 and y1 ∗ (y2y1)
−1 = y1 ∗ y2y1.

The case of m = 5 (n = 2)

∑

y1,y2

θ(y2 ∗ y1, y1 ∗ y2y1, y1)
−1

× θ(y1 ∗ y2, y2, y1)
−1

× θ(y1 ∗ y2y1, y1 ∗ y2, y1)
−1

× θ(y1 ∗ y2y1, y2 ∗ y1, y1 ∗ y2y1)
−1

× θ(y1, y2, y1 ∗ y2y1)
−1

× θ(y2 ∗ y1, y1, y1 ∗ y2y1)
−1

× θ(y2, y1 ∗ y2, y1 ∗ y2y1)
−1

× θ(y1 ∗ y2y1, y2 ∗ y1, y1)
+1
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× θ(y1 ∗ y2y1, y2, y1 ∗ y2)
+1

× θ(y1 ∗ y2y1, y1, y2)
+1

× θ(y1 ∗ y2y1, y1 ∗ y2, y1 ∗ y2y1)
+1

× θ(y1, y2, y1 ∗ y2)
+1

× θ(y1, y1 ∗ y2y1, y2 ∗ y1)
+1

× θ(y1, y1 ∗ y2, y1 ∗ y2y1)
+1,

where y1, y2 run over all elements of X satisfying y2 ∗ (y1y2)
2 = y1 and y1 ∗ y2

2 = y1.

8.7 Remark. The values of the partition function that we computed in this section differ from

those in the preceding section. For example, using the dihedral quandle R3 for the 2-twist-spun

trefoil would result in 3 + 6t2 here for (3 − 2 − A). This is because the orientations chosen are

opposite.

Even if the same orientation is chosen, the state-sum expressions (before evaluation with specific

cocycles) would be different. The expressions depend on the choice of diagram, and we used different

diagrams based on different methods. The different expressions are related by coboundaries, that

correspond to Roseman moves relating the two diagrams.

9 Symmetry and Cocycle Invariants

In this section, we discuss how the partition function behaves under mirror images and change of

orientation.

For an element
∑

aigi of a group ring Z[A] (where ai ∈ Z and gi ∈ A), we denote by
∑

aigi the

element
∑

aig
−1
i in the group ring.

For a link L, we denote by −L the same link with the opposite orientation, by L∗ the mirror

image of L.

9.1 Theorem. For any link L and any quandle 2-cocycle φ ∈ Z2(Q;A),

Φφ(−L∗) = Φφ(L).

Proof. Let D be a link diagram of L. We may assume that the arcs of D around each crossing

point are oriented downward as in Fig. 5. Let D∗ be the link diagram which is obtained from D

by reversing the vertical direction, and −D∗ the link diagram obtained from D∗ by reversing the

orientation of the arcs of D∗. Obviously, the diagram −D∗ presents the link −L∗. Each positive

(negative, resp.) crossing of D, which looks the left (right) side of Fig. 5, changes to a negative

(positive) crossing of −D∗, which looks the right (left) side of Fig. 5. We notice that the labels

x, y, x ∗ y around the crossing point of D are inherited to the corresponding crossing of −D∗. So

the colorings of D by a quandle Q are naturally in one-to-one correspondence to the colorings of

−D∗, and if the Boltzmann weight is φ(x, y)ǫ, then the corresponding crossing point has Boltzmann

weight φ(x, y)−ǫ. Therefore we have Φφ(−L∗) = Φφ(L). ✷

For a surface link F , we denote by −F the same surface link with the opposite orientation, by

F ∗ the mirror image of F .
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9.2 Theorem. For any surface link F and any quandle 3-cocycle θ ∈ Z3(Q;A),

Φθ(−F ∗) = Φθ(F ).

Proof. The proof is similar to the classical case. Let D be a broken surface diagram of F . We may

assume that every triple point of D looks like one of Fig. 9 in a movie. Let D∗ be the diagram which

is obtained from D by reversing the vertical direction in each cross-section of the movie, and −D∗

the link diagram obtained from D∗ by reversing the orientation of the arcs of each cross-sectional

link diagram of D∗. Obviously, the diagram −D∗ presents the surface link −F ∗. Each positive

(negative, resp) triple point of D, which looks like one of Fig. 9, changes to a negative (positive)

crossing of −D∗, which looks like another of the figure. For example, a triple point looking like

the (1,1)-entry of Fig. 9 changes to one like the (1,6)-entry. A triple point looking like (2,2)-entry

of Fig. 9 changes to one like (5,3)-entry, etc. We notice that the labels p, q, r around the crossing

point of D indicated in Fig. 9 are inherited to the corresponding crossing of −D∗. So the colorings

of D by a quandle Q are naturally in one-to-one correspondence to the colorings of −D∗, and if

the Boltzmann weight is θ(p, q, r)ǫ, then the corresponding crossing point has Boltzmann weight

θ(p, q, r)−ǫ. Therefore we have Φθ(−F ∗) = Φθ(F ). ✷

9.3 Example. The surface link τ2(T (2,m)) is isotopic to its mirror image τ2(T (2,m))∗. (This

is well-known for the case that m is an odd integer, and studied in more general cases, cf. [31].)

Hence

Φθ(τ
2(T (2,m))) = Φθ(τ

2(T (2,m))∗) = Φθ(−τ2(T (2,m))) = Φθ(−τ2(T (2,m))∗).

Thus, if we know Φθ(τ
2(T (2,m))), we do not need to calculate the invariants of −τ2(T (2,m)),

τ2(T (2,m))∗ and −τ2(T (2,m))∗.
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