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Abstract

These lectures are intended as an introduction to the technique of path integrals
and their applications in physics. The audience is mainly first-year graduate students,
and it is assumed that the reader has a good foundation in quantum mechanics. No
prior exposure to path integrals is assumed, however.

The path integral is a formulation of quantum mechanics equivalent to the standard
formulations, offering a new way of looking at the subject which is, arguably, more
intuitive than the usual approaches. Applications of path integrals are as vast as those
of quantum mechanics itself, including the quantum mechanics of a single particle,
statistical mechanics, condensed matter physics and quantum field theory.

After an introduction including a very brief historical overview of the subject, we
derive a path integral expression for the propagator in quantum mechanics, including
the free particle and harmonic oscillator as examples. We then discuss a variety of
applications, including path integrals in multiply-connected spaces, Euclidean path
integrals and statistical mechanics, perturbation theory in quantum mechanics and in
quantum field theory, and instantons via path integrals.

For the most part, the emphasis is on explicit calculations in the familiar setting
of quantum mechanics, with some discussion (often brief and schematic) of how these
ideas can be applied to more complicated situations such as field theory.
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1 Introduction

1.1 Historical remarks

We are all familiar with the standard formulations of quantum mechanics, developed more
or less concurrently by Schroedinger, Heisenberg and others in the 1920s, and shown to be
equivalent to one another soon thereafter.

In 1933, Dirac made the observation that the action plays a central role in classical
mechanics (he considered the Lagrangian formulation of classical mechanics to be more
fundamental than the Hamiltonian one), but that it seemed to have no important role in
quantum mechanics as it was known at the time. He speculated on how this situation might
be rectified, and he arrived at the conclusion that (in more modern language) the propagator
in quantum mechanics “corresponds to” exp iS/h̄, where S is the classical action evaluated
along the classical path.

In 1948, Feynman developed Dirac’s suggestion, and succeeded in deriving a third formu-
lation of quantum mechanics, based on the fact that the propagator can be written as a sum
over all possible paths (not just the classical one) between the initial and final points. Each
path contributes exp iS/h̄ to the propagator. So while Dirac considered only the classical
path, Feynman showed that all paths contribute: in a sense, the quantum particle takes all
paths, and the amplitudes for each path add according to the usual quantum mechanical rule
for combining amplitudes. Feynman’s original paper,1 which essentially laid the foundation
of the subject (and which was rejected by Physical Review!), is an all-time classic, and is
highly recommended. (Dirac’s original article is not bad, either.)

1.2 Motivation

What do we learn from path integrals? As far as I am aware, path integrals give us no
dramatic new results in the quantum mechanics of a single particle. Indeed, most if not
all calculations in quantum mechaincs which can be done by path integrals can be done
with considerably greater ease using the standard formulations of quantum mechanics. (It is
probably for this reason that path integrals are often left out of undergraduate-level quantum
mechanics courses.) So why the fuss?

As I will mention shortly, path integrals turn out to be considerably more useful in
more complicated situations, such as field theory. But even if this were not the case, I
believe that path integrals would be a very worthwhile contribution to our understanding of
quantum mechanics. Firstly, they provide a physically extremely appealing and intuitive way
of viewing quantum mechanics: anyone who can understand Young’s double slit experiment
in optics should be able to understand the underlying ideas behind path integrals. Secondly,
the classical limit of quantum mechanics can be understood in a particularly clean way via
path integrals.

It is in quantum field theory, both relativistic and nonrelativistic, that path integrals
(functional integrals is a more accurate term) play a much more important role, for several

1References are not cited in the text, but a short list of books and articles which I have found interesting
and useful is given at the end of this article.
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reasons. They provide a relatively easy road to quantization and to expressions for Green’s
functions, which are closely related to amplitudes for physical processes such as scattering
and decays of particles. The path integral treatment of gauge field theories (non-abelian
ones, in particular) is very elegant: gauge fixing and ghosts appear quite effortlessly. Also,
there are a whole host of nonperturbative phenomena such as solitons and instantons that
are most easily viewed via path integrals. Furthermore, the close relation between statistical
mechanics and quantum mechanics, or statistical field theory and quantum field theory, is
plainly visible via path integrals.

In these lectures, I will not have time to go into great detail into the many useful ap-
plications of path integrals in quantum field theory. Rather than attempting to discuss a
wide variety of applications in field theory and condensed matter physics, and in so doing
having to skimp on the ABCs of the subject, I have chosen to spend perhaps more time
and effort than absolutely necessary showing path integrals in action (pardon the pun) in
quantum mechanics. The main emphasis will be on quantum mechanical problems which
are not necessarily interesting and useful in and of themselves, but whose principal value is
that they resemble the calculation of similar objects in the more complex setting of quantum
field theory, where explicit calculations would be much harder. Thus I hope to illustrate the
main points, and some technical complications and hangups which arise, in relatively famil-
iar situations that should be regarded as toy models analogous to some interesting contexts
in field theory.

1.3 Outline

The outline of the lectures is as follows. In the next section I will begin with an introduction
to path integrals in quantum mechanics, including some explicit examples such as the free
particle and the harmonic oscillator. In Section 3, I will give a “derivation” of classical
mechanics from quantum mechanics. In Section 4, I will discuss some applications of path
integrals that are perhaps not so well-known, but nonetheless very amusing, namely, the case
where the configuration space is not simply connected. (In spite of the fancy terminology,
no prior knowledge of high-powered mathematics such as topology is assumed.) Specifi-
cally, I will apply the method to the Aharonov-Bohm effect, quantum statistics and anyons,
and monopoles and charge quantization, where path integrals provide a beautifully intuitive
approach. In Section 5, I will explain how one can approach statistical mechanics via path in-
tegrals. Next, I will discuss perturbation theory in quantum mechanics, where the technique
used is (to put it mildly) rather cumbersome, but nonetheless illustrative for applications in
the remaining sections. In Section 7, I will discuss Green’s functions (vacuum expectation
values of time-ordered products) in quantum mechanics (where, to my knowledge, they are
not particularly useful), and will construct the generating functional for these objects. This
groundwork will be put to good use in the following section, where the generating functional
for Green’s functions in field theory (which are useful!) will be elucidated. In Section 9, I
will discuss instantons in quantum mechanics, and will at least pay lip service to important
applications in field theory. I will finish with a summary and a list of embarrassing omissions.
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I will conclude with a few apologies. First, an educated reader might get the impression
that the outline given above contains for the most part standard material. S/he is likely
correct: the only original content to these lectures is the errors.2

Second, I have made no great effort to give complete references (I know my limitations);
at the end of this article I have listed some papers and books from which I have learned the
subject. Some are books or articles wholly devoted to path integrals; the majority are books
for which path integrals form only a small (but interesting!) part. The list is hopelessly
incomplete; in particular, virtually any quantum field theory book from the last decade or
so has a discussion of path integrals in it.

Third, the subject of path integrals can be a rather delicate one for the mathematical
purist. I am not one, and I have neither the interest nor the expertise to go into detail about
whether or not the path integral exists, in a strict sense. My approach is rather pragmatic:
it works, so let’s use it!

2Even this joke is borrowed from somewhere, though I can’t think of where.



2 Path Integrals in Quantum Mechanics

2.1 General discussion

Consider a particle moving in one dimension, the Hamiltonian being of the usual form:

H =
p2

2m
+ V (q).

The fundamental question in the path integral (PI) formulation of quantum mechanics is:
If the particle is at a position q at time t = 0, what is the probability amplitude that it will
be at some other position q′ at a later time t = T ?

It is easy to get a formal expression for this amplitude in the usual Schroedinger formu-
lation of quantum mechanics. Let us introduce the eigenstates of the position operator q̂,
which form a complete, orthonormal set:

q̂ |q〉 = q |q〉 , 〈q′| q〉 = δ(q′ − q),
∫

dq |q〉 〈q| = 1.

(When there is the possibility of an ambiguity, operators will be written with a “hat”;
otherwise the hat will be dropped.) Then the initial state is |ψ(0)〉 = |q〉. Letting the state
evolve in time and projecting on the state |q′〉, we get for the amplitude A,

A = 〈q′|ψ(T )〉 ≡ K(q′, T ; q, 0) = 〈q′| e−iHT |q〉 . (1)

(Except where noted otherwise, h̄ will be set to 1.) This object, for obvious reasons, is known
as the propagator from the initial spacetime point (q, 0) to the final point (q′, T ). Clearly,
the propagator is independent of the origin of time: K(q′, T + t; q, t) = K(q′, T ; q, 0).

We will derive an expression for this amplitude in the form of a summation (integral,
really) over all possible paths between the initial and final points. In so doing, we derive the
PI from quantum mechanics. Historically, Feynman came up with the PI differently, and
showed its equivalence to the usual formulations of quantum mechanics.

Let us separate the time evolution in the above amplitude into two smaller time evolu-
tions, writing e−iHT = e−iH(T−t1)e−iHt1 . The amplitude becomes

A = 〈q′| e−iH(T−t1)e−iHt1 |q〉 .

Inserting a factor 1 in the form of a sum over the position eigenstates gives

A = 〈q′| e−iH(T−t1)
∫

dq1 |q1〉 〈q1|
︸ ︷︷ ︸

=1

e−iHt1 |q〉

=
∫

dq1K(q′, T ; q1, t1)K(q1, t1; q, 0). (2)

This formula is none other than an expression of the quantum mechanical rule for combining
amplitudes: if a process can occur a number of ways, the amplitudes for each of these ways
add. A particle, in propagating from q to q′, must be somewhere at an intermediate time t1;
labelling that intermediate position q1, we compute the amplitude for propagation via the
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point q1 [this is the product of the two propagators in (2)] and integrate over all possible
intermediate positions. This result is reminiscent of Young’s double slit experiment, where
the amplitudes for passing through each of the two slits combine and interfere. We will look
at the double-slit experiment in more detail when we discuss the Aharonov-Bohm effect in
Section 4.

We can repeat the division of the time interval T ; let us divide it up into a large number
N of time intervals of duration δ = T/N . Then we can write for the propagator

A = 〈q′|
(

e−iHδ
)N |q〉 = 〈q′| e−iHδe−iHδ · · · e−iHδ

︸ ︷︷ ︸

N times

|q〉 .

We can again insert a complete set of states between each exponential, yielding

A = 〈q′| e−iHδ
∫

dqN−1 |qN−1〉 〈qN−1| e−iHδ
∫

dqN−2 |qN−2〉 〈qN−2| · · ·

· · ·
∫

dq2 |q2〉 〈q2| e−iHδ
∫

dq1 |q1〉 〈q1| e−iHδ |q〉

=
∫

dq1 · · · dqN−1 〈q′| e−iHδ |qN−1〉 〈qN−1| e−iHδ |qN−2〉 · · ·

· · · 〈q1| e−iHδ |q〉
≡

∫

dq1 · · · dqN−1KqN ,qN−1
KqN−1,qN−2

· · ·Kq2,q1
Kq1,q0

, (3)

where we have defined q0 = q, qN = q′. (Note that these initial and final positions are not
integrated over.) This expression says that the amplitude is the integral of the amplitude of
all N -legged paths, as illustrated in Figure 1.

3

q
2

q
N-2

q
N-1

q
1

δ(N-1)

q

.  .  .  .

tTδ δ δ2 3

q’=q

0
q=q

N

q

Figure 1: Amplitude as a sum over all N -legged paths.

Apart from mathematical details concerning the limit when N → ∞, this is clearly going
to become a sum over all possible paths of the amplitude for each path:

A =
∑

paths

Apath,

where
∑

paths

=
∫

dq1 · · ·dqN−1, Apath = KqN ,qN−1
KqN−1,qN−2

· · ·Kq2,q1
Kq1,q0

.
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Let us look at this last expression in detail.
The propagator for one sub-interval is Kqj+1,qj

= 〈qj+1| e−iHδ |qj〉. We can expand the
exponential, since δ is small:

Kqj+1,qj
= 〈qj+1|

(

1 − iHδ − 1

2
H2δ2 + · · ·

)

|qj〉

= 〈qj+1| qj〉 − iδ 〈qj+1|H |qj〉 + o(δ2). (4)

The first term is a delta function, which we can write3

〈qj+1| qj〉 = δ(qj+1 − qj) =
∫
dpj

2π
eipj(qj+1−qj). (5)

In the second term of (4), we can insert a factor 1 in the form of an integral over momentum
eigenstates between H and |qj〉; this gives

−iδ 〈qj+1|
(

p̂2

2m
+ V (q̂)

)
∫
dpj

2π
|pj〉 〈pj| qj〉

= −iδ
∫
dpj

2π

(

pj
2

2m
+ V (qj+1)

)

〈qj+1| pj〉 〈pj | qj〉

= −iδ
∫
dpj

2π

(

pj
2

2m
+ V (qj+1)

)

eipj(qj+1−qj), (6)

using 〈q| p〉 = exp ipq. In the first line, we view the operator p̂ as operating to the right,
while V (q̂) operates to the left.

The expression (6) is asymmetric between qj and qj+1; the origin of this is our choice of
putting the factor 1 to the right of H in the second term of (4). Had we put it to the left
instead, we would have obtained V (qj) in (6). To not play favourites, we should choose some
sort of average of these two. In what follows I will simply write V (q̄j) where q̄j = 1

2
(qj +qj+1).

(The exact choice does not matter in the continuum limit, which we will take eventually;
the above is a common choice.) Combining (5) and (6), the sub-interval propagator is

Kqj+1,qj
=

∫
dpj

2π
eipj(qj+1−qj)

(

1 − iδ

(

pj
2

2m
+ V (q̄j)

)

+ o(δ2)

)

=
∫ dpj

2π
eipj(qj+1−qj)e−iδH(pj ,q̄j)(1 + o(δ2)). (7)

There are N such factors in the amplitude. Combining them, and writing q̇j = (qj+1− qj)/δ,
we get

Apath =
∫ N−1∏

j=0

dpj

2π
exp iδ

N−1∑

j=0

(pj q̇j −H(pj, q̄j)), (8)

where we have neglected a multiplicative factor of the form (1 + o(δ2))N , which will tend
toward one in the continuum limit. Then the propagator becomes

K =
∫

dq1 · · · dqN−1Apath

=
∫ N−1∏

j=1

dqj

∫ N−1∏

j=0

dpj

2π
exp iδ

N−1∑

j=0

(pj q̇j −H(pj, q̄j)). (9)

3Please do not confuse the delta function with the time interval, δ.
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Note that there is one momentum integral for each interval (N total), while there is one
position integral for each intermediate position (N − 1 total).

If N → ∞, this approximates an integral over all functions p(t), q(t). We adopt the
following notation:

K ≡
∫

Dp(t)Dq(t) exp i
∫ T

0
dt (pq̇ −H(p, q)) . (10)

This result is known as the phase-space path integral. The integral is viewed as over all
functions p(t) and over all functions q(t) where q(0) = q, q(T ) = q′. But to actually perform
an explicit calculation, (10) should be viewed as a shorthand notation for the more ponderous
expression (9), in the limit N → ∞.

If, as is often the case (and as we have assumed in deriving the above expression), the
Hamiltonian is of the standard form, namely H = p2/2m+ V (q), we can actually carry out
the momentum integrals in (9). We can rewrite this expression as

K =
∫ N−1∏

j=1

dqj exp−iδ
N−1∑

j=0

V (q̄j)
∫ N−1∏

j=0

dpj

2π
exp iδ

N−1∑

j=0

(

pj q̇j − pj
2/2m

)

.

The p integrals are all Gaussian, and they are uncoupled. One such integral is
∫
dp

2π
eiδ(pq̇−p2/2m) =

√
m

2πiδ
eiδmq̇2/2.

(The careful reader may be worried about the convergence of this integral; if so, a factor
exp−ǫp2 can be introduced and the limit ǫ→ 0 taken at the end.)

The propagator becomes

K =
∫ N−1∏

j=1

dqj exp−iδ
N−1∑

j=0

V (q̄j)
N−1∏

j=0

(√
m

2πiδ
exp iδ

mq̇2
j

2

)

=
(
m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp iδ
N−1∑

j=0

(

mq̇2
j

2
− V (q̄j)

)

. (11)

The argument of the exponential is a discrete approximation of the action of a path passing
through the points q0 = q, q1, · · · , qN−1, qN = q′. As above, we can write this in the more
compact form

K =
∫

Dq(t)eiS[q(t)]. (12)

This is our final result, and is known as the configuration space path integral. Again, (12)
should be viewed as a notation for the more precise expression (11), as N → ∞.

2.2 Examples

To solidify the notions above, let us consider a few explicit examples. As a first example,
we will compute the free particle propagator first using ordinary quantum mechanics and
then via the PI. We will then mention some generalizations which can be done in a similar
manner.
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2.2.1 Free particle

Let us compute the propagator K(q′, T ; q, 0) for a free particle, described by the Hamiltonian
H = p2/2m. The propagator can be computed straightforwardly using ordinary quantum
mechanics. To this end, we write

K = 〈q′| e−iHT |q〉

= 〈q′| e−iT p̂2/2m
∫ dp

2π
|p〉 〈p| q〉

=
∫ dp

2π
e−iTp2/2m 〈q′| p〉 〈p| q〉

=
∫
dp

2π
e−iT (p2/2m)+i(q′−q)p. (13)

The integral is Gaussian; we obtain

K =
(

m

2πiT

)1/2

eim(q′−q)2/2T . (14)

Let us now see how the same result can be attained using PIs. The configuration space
PI (12) is

K = lim
N→∞

(
m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp i
mδ

2

N−1∑

j=0

(
qj+1 − qj

δ

)2

= lim
N→∞

(
m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp i
m

2δ

[

(qN − qN−1)
2 + (qN−1 − qN−2)

2 + · · ·

+(q2 − q1)
2 + (q1 − q0)

2
]

,

where q0 = q and qN = q′ are the initial and final points. The integrals are Gaussian,
and can be evaluated exactly, although the fact that they are coupled complicates matters
significantly. The result is

K = lim
N→∞

(
m

2πiδ

)N/2 1√
N

(

2πiδ

m

)(N−1)/2

eim(q′−q)2/2Nδ

= lim
N→∞

(
m

2πiNδ

)1/2

eim(q′−q)2/2Nδ.

But Nδ is the total time interval T , resulting in

K =
(

m

2πiT

)1/2

eim(q′−q)2/2T ,

in agreement with (14).
A couple of remarks are in order. First, we can write the argument of the exponential as

T · 1
2
m((q′ − q)/T )2, which is just the action S[qc] for a particle moving along the classical

path (a straight line in this case) between the initial and final points.
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Secondly, we can restore the factors of h̄ if we want, by ensuring correct dimensions. The
argument of the exponential is the action, so in order to make it a pure number we must
divide by h̄; furthermore, the propagator has the dimension of the inner product of two
position eigenstates, which is inverse length; in order that the coefficient have this dimension
we must multiply by h̄−1/2. The final result is

K =
(

m

2πih̄T

)1/2

eiS[qc]/h̄. (15)

This result typifies a couple of important features of calculations in this subject, which we
will see repeatedly in these lectures. First, the propagator separates into two factors, one of
which is the phase exp iS[qc]/h̄. Second, calculations in the PI formalism are typically quite
a bit more lengthy than using standard techniques of quantum mechanics.

2.2.2 Harmonic oscillator

As a second example of the computation of a PI, let us compute the propagator for the
harmonic oscillator using this method. (In fact, we will not do the entire computation, but
we will do enough to illustrate a trick or two which will be useful later on.)

Let us start with the somewhat-formal version of the configuration-space PI, (12):

K(q′, T ; q, 0) =
∫

Dq(t)eiS[q(t)].

For the harmonic oscillator,

S[q(t)] =
∫ T

0
dt
(

1

2
mq̇2 − 1

2
mω2q2

)

.

The paths over which the integral is to be performed go from q(0) = q to q(T ) = q′. To do
this PI, suppose we know the solution of the classical problem, qc(t):

q̈c + ω2qc = 0, qc(0) = q, qc(T ) = q′.

We can write q(t) = qc(t) + y(t), and perform a change of variables in the PI to y(t),
since integrating over all deviations from the classical path is equivalent to integrating over
all possible paths. Since at each time q and y differ by a constant, the Jacobian of the
transformation is 1. Furthermore, since qc obeys the correct boundary conditions, the paths
y(t) over which we integrate go from y(0) = 0 to y(T ) = 0. The action for the path qc(t)+y(t)
can be written as a power series in y:

S[qc(t) + y(t)] =
∫ T

0
dt
(

1

2
mq̇2

c −
1

2
mω2qc

2
)

+ (linear in y)
︸ ︷︷ ︸

=0

+
∫ T

0
dt
(

1

2
mẏ2 − 1

2
mω2y2

)

.

The term linear in y vanishes by construction: qc, being the classical path, is that path for
which the action is stationary! So we may write S[qc(t) + y(t)] = S[qc(t)] + S[y(t)]. We
substitute this into (12), yielding

K(q′, T ; q, 0) = eiS[qc(t)]
∫

Dy(t)eiS[y(t)]. (16)
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As mentioned above, the paths y(t) over which we integrate go from y(0) = 0 to y(T ) = 0:
the only appearance of the initial and final positions is in the classical path, i.e., in the
classical action. Once again, the PI separates into two factors. The first is written in terms
of the action of the classical path, and the second is a PI over deviations from this classical
path. The second factor is independent of the initial and final points.

This separation into a factor depending on the action of the classical path and a second
one, a PI which is independent of the details of the classical path, is a recurring theme,
and an important one. Indeed, it is often the first factor which contains most of the useful
information contained in the propagator, and it can be deduced without even performing a
PI. It can be said that much of the work in the game of path integrals consists in avoiding
having to actually compute one!

As for the evaluation of (16), a number of fairly standard techniques are available. One
can calculate the PI directly in position space, as was done above for the harmonic oscillator
(see Schulman, chap. 6). Alternatively, one can compute it in Fourier space (writing y(t) =
∑

k ak sin(kπt/T ) and integrating over the coefficients {ak}). This latter approach is outlined
in Feynman and Hibbs, Section 3.11. The result is

K(q′, T ; q, 0) =
(

mω

2πi sinωT

)1/2

eiS[qc(t)]. (17)

The classical action can be evaluated straightforwardly (note that this is not a PI problem,
nor even a quantum mechanics problem!); the result is

S[qc(t)] =
mω

2 sinωT

(

(q′
2
+ q2) cosωT − 2q′q

)

.

We close this section with two remarks. First, the PI for any quadratic action can be
evaluated exactly, essentially since such a PI consists of Gaussian integrals; the general
result is given in Schulman, Chapter 6. In Section 6, we will evaluate (to the same degree
of completeness as the harmonic oscillator above) the PI for a forced harmonic oscillator,
which will prove to be a very useful tool for computing a variety of quantities of physical
interest.

Second, the following fact is not difficult to prove, and will be used below (Section 4.2.).
K(q′, T ; q, 0) (whether computed via PIs or not) is the amplitude to propagate from one
point to another in a given time interval. But this is the response to the following question:
If a particle is initially at position q, what is its wave function after the elapse of a time T ?
Thus, if we consider K as a function of the final position and time, it is none other than
the wave function for a particle with a specific initial condition. As such, the propagator
satisfies the Schroedinger equation at its final point.



3 The Classical Limit: “Derivation” of the Principle

of Least Action

Since the example calculations performed above are somewhat dry and mathematical, it is
worth backing up a bit and staring at the expression for the configuration space PI, (12):

K =
∫

Dq(t)eiS[q(t)]/h̄.

This innocent-looking expression tells us something which is at first glance unbelievable, and
at second glance really unbelievable. The first-glance observation is that a particle, in going
from one position to another, takes all possible paths between these two positions. This
is, if not actually unbelievable, at the very least least counter-intuitive, but we could argue
away much of what makes us feel uneasy if we could convince ourselves that while all paths
contribute, the classical path is the dominant one.

However, the second-glance observation is not reassuring: if we compare the contribution
of the classical path (whose action is S[qc]) with that of some other, arbitrarily wild, path
(whose action is S[qw]), we find that the first is exp iS[qc] while the second is exp iS[qw].
They are both complex numbers of unit magnitude: each path taken in isolation is equally
important. The classical path is no more important than any arbitrarily complicated path!

How are we to reconcile this really unbelievable conclusion with the fact that a ball thrown
in the air has a more-or-less parabolic motion?

The key, not surprisingly, is in how different paths interfere with one another, and by
considering the case where the rough scale of classical action of the problem is much bigger
than the quantum of action, h̄, we will see the emergence of the Principle of Least Action.

Consider two neighbouring paths q(t) and q′(t) which contribute to the PI (Figure 2).
Let q′(t) = q(t) + η(t), with η(t) small. Then we can write the action as a functional Taylor
expansion about the classical path:4

S[q′] = S[q + η] = S[q] +
∫

dt η(t)
δS[q]

δq(t)
+ o(η2).

The two paths contribute exp iS[q]/h̄ and exp iS[q′]/h̄ to the PI; the combined contribution
is

A ≃ eiS[q]/h̄

(

1 + exp
i

h̄

∫

dt η(t)
δS[q]

δq(t)

)

,

where we have neglected corrections of order η2. We see that the difference in phase be-
tween the two paths, which determines the interference between the two contributions, is
h̄−1 ∫ dt η(t)δS[q]/δq(t).

We see that the smaller the value of h̄, the larger the phase difference between two
given paths. So even if the paths are very close together, so that the difference in actions
is extremely small, for sufficiently small h̄ the phase difference will still be large, and on
average destructive interference occurs.

4The reader unfamiliar with manipulation of functionals need not despair; the only rule needed beyond
standard calculus is the functional derivative: δq(t)/δq(t′) = δ(t − t′), where the last δ is the Dirac delta
function.
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t

q’(t)

q

q(t)

Figure 2: Two neighbouring paths.

However, this argument must be rethought for one exceptional path: that which extrem-
izes the action, i.e., the classical path, qc(t). For this path, S[qc + η] = S[qc] + o(η2). Thus
the classical path and a very close neighbour will have actions which differ by much less than
two randomly-chosen but equally close paths (Figure 3). This means that for fixed closeness

cl
paths interfere

constructively

paths interfere

destructively

q

t

q

Figure 3: Paths near the classical path interfere constructively.

of two paths (I leave it as an exercise to make this precise!) and for fixed h̄, paths near the
classical path will on average interfere constructively (small phase difference) whereas for
random paths the interference will be on average destructive.

Thus heuristically, we conclude that if the problem is classical (action ≫ h̄), the most
important contribution to the PI comes from the region around the path which extremizes
the PI. In other words, the particle’s motion is governed by the principle that the action is
stationary. This, of course, is none other than the Principle of Least Action from which the
Euler-Lagrange equations of classical mechanics are derived.



4 Topology and Path Integrals in Quantum Mechanics:

Three Applications

In path integrals, if the configuration space has holes in it such that two paths between
the same initial and final point are not necessarily deformable into one another, interesting
effects can arise. This property of the configuration space goes by the following catchy name:
non-simply-connectedness. We will study three such situations: the Aharonov-Bohm effect,
particle statistics, and magnetic monopoles and the quantization of electric charge.

4.1 Aharonov-Bohm effect

The Aharonov-Bohm effect is one of the most dramatic illustrations of a purely quantum
effect: the influence of the electromagnetic potential on particle motion even if the particle is
perfectly shielded from any electric or magnetic fields. While classically the effect of electric
and magnetic fields can be understood purely in terms of the forces these fields create on
particles, Aharonov and Bohm devised an ingenious thought-experiment (which has since
been realized in the laboratory) showing that this is no longer true in quantum mechanics.
Their effect is best illustrated by a refinement of Young’s double-slit experiment, where
particles passing through a barrier with two slits in it produce an interference pattern on a
screen further downstream. Aharonov and Bohm proposed such an experiment performed
with charged particles, with an added twist provided by a magnetic flux from which the
particles are perfectly shielded passing between the two slits. If we perform the experiment

Impenetrable
shield

Interference
pattern shifts

Φ

Figure 4: Aharonov-Bohm effect. Magnetic flux is confined within the shaded area; particles
are excluded from this area by a perfect shield.

first with no magnetic flux and then with a nonzero and arbitrary flux passing through the
shielded region, the interference pattern will change, in spite of the fact that the particles are
perfectly shielded from the magnetic field and feel no electric or magnetic force whatsoever.
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Classically we can say: no force, no effect. Not so in quantum mechanics. PIs provide a very
attractive way of understanding this effect.

Consider first two representative paths q1(t) and q2(t) (in two dimensions) passing
through slits 1 and 2, respectively, and which arrive at the same spot on the screen (Figure
5). Before turning on the magnetic field, let us suppose that the actions for these paths are
S[q1] and S[q2]. Then the interference of the amplitudes is determined by

eiS[q1]/h̄ + eiS[q2]/h̄ = eiS[q1]/h̄
(

1 + ei(S[q2]−S[q1])/h̄
)

.

The relative phase is φ12 ≡ (S[q2]− S[q1])/h̄. Thus these two paths interfere constructively
if φ12 = 2nπ, destructively if φ12 = (2n + 1)π, and in general there is partial cancellation
between the two contributions.

2 (t)

q
1
(t)

q

Figure 5: Two representative paths contributing to the amplitude for a given point on the
screen.

How is this result affected if we add a magnetic field, B? We can describe this field by
a vector potential, writing B = ∇× A. This affects the particle’s motion by the following
change in the Lagrangian:

L(q̇,q) → L′(q̇,q) = L(q̇,q) − e

c
v · A(q).

Thus the action changes by

−e
c

∫

dtv · A(q) = −e
c

∫

dt
dq(t)

dt
· A(q(t)).

This integral is
∫

dq · A(q), the line integral of A along the path taken by the particle. So
including the effect of the magnetic field, the action of the first path is

S ′[q1] = S[q1] −
e

c

∫

q1(t)
dq ·A(q),

and similarly for the second path.
Let us now look at the interference between the two paths, including the magnetic field.

eiS′[q1]/h̄ + eiS′[q2]/h̄ = eiS′[q1]/h̄
(

1 + ei(S′[q2]−S′[q1])/h̄
)

= eiS′[q1]/h̄
(

1 + eiφ′

12

)

, (18)
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where the new relative phase is

φ′
12 = φ12 −

e

h̄c

(
∫

q2(t)
dq ·A(q) −

∫

q1(t)
dq ·A(q)

)

. (19)

But the difference in line integrals in (19) is a contour integral:

∫

q2(t)
dq · A(q) −

∫

q1(t)
dq · A(q) =

∮

dq · A(q) = Φ,

Φ being the flux inside the closed loop bounded by the two paths. So we can write

φ′
12 = φ12 −

eΦ

h̄c
.

It is important to note that the change of relative phase due to the magnetic field is
independent of the details of the two paths, as long as each passes through the corresponding
slit. This means that the PI expression for the amplitude for the particle to reach a given
point on the screen is affected by the magnetic field in a particularly clean way. Before the
magnetic field is turned on, we may write A = A1 + A2, where

A1 =
∫

slit 1
Dq eiS[q]/h̄,

and similarly for A2. Including the magnetic field,

A′
1 =

∫

slit 1
Dq ei(S[q]−(e/c)

∫
dq·A)/h̄ = e−ie

∫

1
dq·A/h̄cA1,

where we have pulled the line integral out of the PI since it is the same for all paths passing
through slit 1 arriving at the point on the screen under consideration. So the amplitude is

A = e−ie
∫

1
dq·A/h̄cA1 + e−ie

∫

2
dq·A/h̄cA2

= e−ie
∫

1
dq·A/h̄c

(

A1 + e−ie
∮

dq·A/h̄cA2

)

= e−ie
∫

1
dq·A/h̄c

(

A1 + e−ieΦ/h̄cA2

)

.

The overall phase is irrelevant, and the interference pattern is influenced directly by the
phase eΦ/h̄c. If we vary this phase continuously (by varying the magnetic flux), we can
detect a shift in the interference pattern. For example, if eΦ/h̄c = π, then a spot on the
screen which formerly corresponded to constructive interference will now be destructive, and
vice-versa.

Since the interference is dependent only on the phase difference mod 2π, as we vary the
flux we get a shift of the interference pattern which is periodic, repeating itself when eΦ/h̄c
changes by an integer times 2π.
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4.2 Particle Statistics

The path integral can be used to see that particles in three dimensions must obey either Fermi
or Bose statistics, whereas particles in two dimensions can have intermediate (or fractional)
statistics. Consider a system of two identical particles; suppose that there is a short range,
infinitely strong repulsive force between the two. We might ask the following question: if at
t = 0 the particles are at q1 and q2, what is the amplitude that the particles will be at q′

1

and q′
2 at some later time T ? We will first examine this question in three dimensions, and

then in two dimensions.

4.2.1 Three dimensions

According to the PI description of the problem, this amplitude is

A =
∑

paths

eiS[q1(t),q2(t)],

where we sum over all two-particle paths going from q1,q2 to q′
1,q

′
2.

However there is an important subtlety at play: if the particles are identical, then there
are (in three dimensions!) two classes of paths (Figure 6).

1
q

2

q’
1 q’

2

q
1

q q
2

q’
1

q’
2

Figure 6: Two classes of paths.

Even though the second path involves an exchange of particles, the final configuration is
the same due to the indistinguishability of the particles.

It is more economical to describe this situation in terms of the centre-of-mass position
Q = (q1 +q2)/2 and the relative position q = q2 −q1. The movement of the centre of mass
is irrelevant, and we can concentrate on the relative coordinate q. We can also assume for
simplicity that the final positions are the same as the initial ones. Then the two paths above
correspond to the paths in relative position space depicted in Figure 7.

The point is, of course, that the relative positions q and −q represent the same configu-
ration: interchanging q1 and q2 changes q → −q.

We can elevate somewhat the tone of the discussion by introducing some amount of
formalism. The configuration space for the relative position of two identical particles is not
R3−{0},5 as one would have naively thought, but (R3−{0})/Z2. The division by the factor

5Recall that we have supposed that the particles have an infinite, short-range repulsion; hence the sub-
traction of the origin (which represents coincident points).
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Z2 indicates that opposite points in the space R3 − {0}, namely any point q and the point
diametrically opposite to it −q, are to be identified: they represent the same configuration.
We must keep this in mind when we attempt to draw paths: the second path of Figure 7 is
a closed one.

A topological space such as our configuration space can be characterized as simply con-
nected or as non-simply connected according to whether all paths starting and finishing at
the same point can or cannot be contracted into the trivial path (representing no relative
motion of the particles). It is clear from Figure 7 that the first path can be deformed to the
trivial path, while the second one cannot, so the configuration space is not simply connected.
Clearly any path which does not correspond to an exchange of the particles (a “direct” path)
is topologically trivial, while any “exchange” path is not; we can divide the space of paths
on the configuration space into two topological classes (direct and exchange).

Our configuration space is more precisely described as doubly-connected, since any two
topologically nontrivial (exchange) paths taken one after the other result in a direct path,
which is trivial. Thus the classes of paths form the elements of the group Z2 if we define
the product of two paths to mean first one path followed by the other (a definition which
extends readily to the product of classes).

One final bit of mathematical nomenclature: our configuration space, as noted above, is
(R3 − {0})/Z2, which is not simply connected. We define the (simply connected) covering
space as the simply connected space which looks locally like the original space. In our case,
the covering space is just R3 − {0}.

At this point you might well be wondering: what does this have to do with PIs? We
can rewrite the PI expression for the amplitude as the following PI in the covering space
R3 − {0}:

A(q, T ;q, 0) =
∑

direct

eiS[q] +
∑

exchange

eiS[q]

= Ā(q, T ;q, 0) + Ā(−q, T ;q, 0). (20)

The notation Ā is used to indicate that these PIs are in the covering space, while A is a PI
in the configuration space. The first term is the sum over all paths from q to q; the second
is that for paths from q to −q.

q x

q y

q z
-q

q x

q y

q z

q q

Figure 7: Paths in relative coordinate space.
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Notice that each sub-path integral is a perfectly respectable PI in its own right: each
would be a complete PI for the same dynamical problem but involving distinguishable parti-
cles. Since the PI can be thought of as a technique for obtaining the propagator in quantum
mechanics, and since (as was mentioned at the end of Section 2) the propagator is a solution
of the Schroedinger equation, either of these sub-path integrals also satisfies it. It follows
that we can generalize the amplitude A to the following expression, which still satisfies the
Schroedinger equation:

A(q, T ;q, 0) → Aφ(q, T ;q, 0) =
∑

direct

eiS[q] + eiφ
∑

exchange

eiS[q]

= Ā(q, T ;q, 0) + eiφĀ(−q, T ;q, 0). (21)

This generalization might appear to be ad hoc and ill-motivated, but we will see shortly that
it is intimately related to particle statistics.

There is a restriction on the added phase, φ. To see this, suppose that we no longer insist
that the path be a closed one from q to q. Then (21) generalizes to

Aφ(q′, T ;q, 0) = Ā(q′, T ;q, 0) + eiφĀ(−q′, T ;q, 0). (22)

If we vary q′ continuously to the point −q′, we have

Aφ(−q′, T ;q, 0) = Ā(−q′, T ;q, 0) + eiφĀ(q′, T ;q, 0). (23)

But since the particles are identical, the new final configuration −q′ is identical to old one
q′. (22) and (23) are expressions for the amplitude for the same physical process, and can
differ at most by a phase:

Aφ(q′, T ;q, 0) = eiαAφ(−q′, T ;q, 0).

Combining these three equations, we see that

Ā(q′, T ;q, 0) + eiφĀ(−q′, T ;q, 0) = eiα
(

Ā(−q′, T ;q, 0) + eiφĀ(q′, T ;q, 0)
)

.

Equating coefficients of the two terms, we have α = φ (up to a 2π ambiguity), and

ei2φ = 1.

This equation has two physically distinct solutions: φ = 0 and φ = π. (Adding 2nπ results
in physically equivalent solutions.)

If φ = 0, we obtain

A(q, T ;q, 0) = Ā(q, T ;q, 0) + Ā(−q, T ;q, 0), (24)

the naive sum of the direct and exchange amplitudes, as is appropriate for Bose statistics.
If, on the other hand, φ = π, we obtain

A(q, T ;q, 0) = Ā(q, T ;q, 0) − Ā(−q, T ;q, 0). (25)

The direct and exchange amplitudes contribute with a relative minus sign. This case de-
scribes Fermi statistics.

In three dimensions, we see that the PI gives us an elegant way of seeing how these two
types of quantum statistics arise.
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4.2.2 Two dimensions

We will now repeat the above analysis in two dimensions, and will see that the difference is
significant.

Consider a system of two identical particles in two dimensions, again adding a short-
range, infinitely strong repulsion. Once again, we restrict ourselves to the centre of mass
frame, since centre-of-mass motion is irrelevant to the present discussion. The amplitude
that two particles starting at relative position q = (qx, qy) will propagate to a final relative
position q′ = (q′x, q

′
y) in time T is

A(q′, T ;q, 0) =
∑

paths

eiS[q1(t),q2(t)],

the sum being over all paths from q to q′ in the configuration space.
Once again, the PI separates into distinct topological classes, but there are now an

infinity of possible classes. To see this, consider the three paths depicted in Figure 8, where
for simplicity we restrict to the case where the initial and final configurations are the same.
It is important to remember that drawing paths in the plane is somewhat misleading: as
in three dimensions, opposite points are identified, so that a path from any point to the
diametrically opposite point is closed.

x q x q x

q y q y q y

q

q qq

-q

Figure 8: Three topologically distinct paths in two dimensions.

The first and second paths are similar to the direct and exchange paths of the three-
dimensional problem. The third path, however, represents a distinct class of path in two
dimensions. The particles circle around each other, returning to their starting points.

It is perhaps easier to visualize these paths in a three-dimensional space-time plot, where
the vertical axis represents time and the horizontal axes represent space (Figure 9).

It is clear that in the third path the particle initially at q1 returns to q1, and similarly
for the other particle: this path does not involve a permutation of the particles. It is also
clear that this path cannot be continuously deformed into the first path, so it is in a distinct
topological class. (It is critical here that we have excised the origin in relative coordinates –
i.e., that we have disallowed configurations where the two particles are at the same point in
space.)
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The existence of this third class of paths generalizes in an obvious way, and we are led
to the following conclusion: the paths starting and finishing at relative position q can be
divided into an infinite number of classes of paths in the plane (minus the origin); a class is
specified by the number of interchanges of the particles (keeping track of the sense of each
interchange). This is profoundly different from the three-dimensional case, where there were
only two classes of paths: direct and exchange.

If we characterize a path by the polar angle of the relative coordinate, this angle is nπ
in the nth class, where n is an integer. (For the three paths shown above, n = 0, 1, and 2,
respectively.)

We can write

A(q, T ;q, 0) =
∞∑

n=−∞

Ān(q, T ;q, 0),

where Ān is the covering-space PI considering only paths of change of polar angle nπ.
This path integral can again be generalized to

A(q, T ;q, 0) =
∞∑

n=−∞

CnĀn(q, T ;q, 0),

Cn being phases. Since each Ān satisfies the Schroedinger equation, so does this generaliza-
tion.

Again, a restriction on the phases arises, as can be seen by the following argument. Let
us relax the condition that the initial and final points are the same; let us denote the final
point q′ by its polar coordinates (q′, θ′). Writing A(q′, θ′) ≡ A(q′, T ;q, 0), we have

A(q′, θ′) =
∞∑

−∞

CnĀn(q′, θ′).

Now, we can change continuously θ′ → θ′ + π, yielding

A(q′, θ′ + π) =
∞∑

n=−∞

CnĀn(q′, θ′ + π). (26)
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Figure 9: Spacetime depiction of the 3 paths in Figure 8.
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Two critical observations can now be made. First, the final configuration is unchanged, so
A(q′, θ′ + π) can differ from A(q′, θ′) by at most a phase:

A(q′, θ′ + π) = e−iφA(q′, θ′).

Second, Ān(q′, θ′+π) = Ān+1(q
′, θ′), since this is just two different ways of expressing exactly

the same quantity. Applying these two observations to (26),

e−iφ
∞∑

n=−∞

CnĀn(q′, θ′) =
∞∑

−∞

CnĀn+1(q
′, θ′)

=
∞∑

−∞

Cn−1Ān(q′, θ′). (27)

Equating coefficients of Ān(q′, θ′), we get

Cn = eiφCn−1.

Choosing C0 = 1, we obtain for the amplitude

A =
∞∑

−∞

einφĀn, (28)

which is the two-dimensional analog of the three-dimensional result (21).
The most important observation to be made is that there is no longer a restriction on

the angle φ, as was the case in three dimensions. We see that, relative to the “naive” PI
(that with φ = 0), the class corresponding to a net number n of counter-clockwise rotations
of one particle around the other contributes with an extra phase exp inφ. If φ = 0 or π,
this collapses to the usual cases of Bose and Fermi statistics, respectively. However in the
general case the phase relation between different paths is more complicated (not determined
by whether the path is “direct” or “exchange”); this new possibility is known as fractional
statistics, and particles obeying these statistics are known as anyons.

Anyons figure prominently in the accepted theory of the fractional quantum Hall effect,
and were proposed as being relevant to high-temperature superconductivity, although that
possibility seems not to be borne out by experimental results. Perhaps Nature has other
applications of fractional statistics which await discovery.

4.3 Magnetic Monopoles and Charge Quantization

All experimental evidence so far tells us that all particles have electric charges which are
integer multiples of a fundamental unit of electric charge, e.6 There is absolutely nothing
wrong with a theory of electrodynamics of particles of arbitrary charges: we could have
particles of charge e and

√
17e, for example. It was a great mystery why charge was quantized

in the early days of quantum mechanics.
In 1931, Dirac showed that the quantum mechanics of charged particles in the presence of

magnetic monopoles is problematic, unless the product of the electric and magnetic charges

6The unit of electric charge is more properly e/3, that of the quarks; for simplicity, I will ignore this fact.
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is an integer multiple of a given fundamental value. Thus, the existence of monopoles
implies quantization of electric charge, a fact which has fueled experimental searches for and
theoretical speculations about magnetic monopoles ever since.

We will now recast Dirac’s argument into a modern form in terms of PIs. A monopole
of charge g positioned at the origin has magnetic field

B = g
êr

r2
.

As is well known, this field cannot be described by a normal (smooth, single-valued) vector
potential: writing B = ∇ × A implies that the magnetic flux emerging from any closed
surface (and thus the magnetic charge contained in any such surface) must be zero. This
fact makes life difficult for monopole physics, for several reasons. Although classically the
Maxwell equations and the Lorentz force equation form a complete set of equations for
particles (both electrically and magnetically charged, with the simple addition of magnetic
source terms) and electromagnetic fields, their derivation from an action principle requires
that the electromagnetic field be described in terms of the electromagnetic potential, Aµ.
Quantum mechanically, things are even more severe: one cannot avoid Aµ, because the
coupling of a particle to the electromagnetic field is written in terms of Aµ, not the electric
and magnetic fields.

Dirac suggested that if a monopole exists, it could be described by an infinitely-thin and
tightly-wound solenoid carrying a magnetic flux equal to that of the monopole. The solenoid
is semi-infinite in length, running from the position of the monopole to infinity along an
arbitrary path. The magnetic field produced by such a solenoid can be shown to be that of
a monopole plus the usual field produced by a solenoid, in this case, an infinitely intense,
infinitely narrow tube of flux running from the monopole to infinity along the position of
the solenoid (Figure 10). Thus except inside the solenoid, the field produced is that of the
monopole. The field inside the solenoid is known as the “Dirac string”. The flux brought

πg=4solenoidΦ

er

r2
B =g

Figure 10: Monopole as represented by a semi-infinite, infinitely tightly-wound solenoid.



4 TOPOLOGY AND PATH INTEGRALS 24

into any closed surface including the monopole is now zero, because the solenoid brings in a
flux equal to that flowing out due to the monopole. Thus, the combined monopole-solenoid
can be described by a vector potential.

However, in order for this to be a valid description of the monopole, we must somehow
convince ourselves that the solenoid can be made invisible to any electrically charged particle
passing by it. We can describe the motion of such a particle by a PI, and two paths passing
on either side of the Dirac string can contribute to the PI (Figure 11). But the vector
potential of the Dirac string will affect the action of each of these paths differently, as we
have seen in the Aharonov-Bohm effect.

q
2

q
1

Figure 11: Paths contributing to the propagator in the presence of a monopole. The paths
form a loop encircling the Dirac string.

In order that the interference of these paths be unaffected by the presence of the Dirac
string, the relative phase must be an integral multiple of 2π. This phase is

− e

h̄c

∮

dq ·A = −eΦ
h̄c

= −4πeg

h̄c
.

Setting this to 2πn, in order for the motion of a particle of charge e to be unaffected by the
presence of the Dirac string, the electric charge must be

e =
2πh̄c

4πg
n =

h̄c

2g
n. (29)

Thus, the existence of magnetic monopoles requires the quantization of electric charge; the
fundamental unit of electric charge is 2πh̄c/g.

In modern theories of fundamental physics, Grand Unified Theories also imply quanti-
zation of electric charge, apparently avoiding the necessity for magnetic monopoles. But
any Grand Unified Theory actually has magnetic monopoles as well (though they are of a
nature quite different to the “Dirac monopole”), so the intimate relation between magnetic
monopoles and the quantization of electric charge is preserved, albeit in a form quite different
from that suggested by Dirac.



5 Statistical Mechanics via Path Integrals

The path integral turns out to provide an elegant way of doing statistical mechanics. The
reason for this is that, as we will see, the central object in statistical mechanics, the partition
function, can be written as a PI. Many books have been written on statistical mechanics
with emphasis on path integrals, and the objective in this lecture is simply to see the relation
between the partition function and the PI.

The definition of the partition function is

Z =
∑

j

e−βEj , (30)

where β = 1/kBT and Ej is the energy of the state |j〉. We can write

Z =
∑

j

〈j| e−βH |j〉 = Tre−βH .

But recall the definition of the propagator:

K(q′, T ; q, 0) = 〈q′| e−iHT |q〉 .

Suppose we consider T to be a complex parameter, and consider it to be pure imaginary, so
that we can write T = −iβ, where β is real. Then

K(q′,−iβ; q, 0) = 〈q′| e−iH(−iβ) |q〉
= 〈q′| e−βH

∑

j

|j〉 〈j|
︸ ︷︷ ︸

=1

|q〉

=
∑

j

e−βEj 〈q′| j〉〈j |q〉

=
∑

j

e−βEj〈j |q〉 〈q′| j〉.

Putting q′ = q and integrating over q, we get
∫

dq K(q,−iβ; q, 0) =
∑

j

e−βEj 〈j|
∫

dq |q〉 〈q|
︸ ︷︷ ︸

=1

|j〉 = Z. (31)

This is the central observation of this section: that the propagator evaluated at negative
imaginary time is related to the partition function.

We can easily work out an elementary example such as the harmonic oscillator. Recall
the path integral for it, (17):

K(q′, T ; q, 0) =
(

mω

2πi sinωT

)1/2

exp
{

i
mω

2 sinωT

(

(q′
2
+ q2) cosωT − 2q′q

)}

.

We can put q′ = q and T = −iβ:

K(q,−iβ; q, 0) =

(

mω

2π sinh(βω)

)1/2

exp

{

− mωq2

sinh(βω)
(cosh(βω) − 1)

}

.
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The partition function is thus

Z =
∫

dq K(q,−iβ; q, 0) =

(

mω

2π sinh(βω)

)1/2√
π

mω
sinh(βω)

(cosh(βω) − 1)

= [2(cosh(βω) − 1)]−1/2 =
[

eβω/2(1 − e−βω)
]−1

=
e−βω/2

1 − e−βω
=

∞∑

j=0

e−β(j+1/2)ω.

Putting h̄ back in, we get the familiar result

Z =
∞∑

j=0

e−β(j+1/2)h̄ω.

The previous calculation actually had nothing to do with PIs. The result for K was
derived via PIs earlier, but it can be derived (more easily, in fact) in ordinary quantum
mechaincs. However we can rewrite the partition function in terms of a PI. In ordinary
(real) time,

K(q′, T ; q, 0) =
∫

Dq(t) exp i
∫ T

0
dt

(

mq̇2

2
− V (q)

)

,

where the integral is over all paths from (q, 0) to (q′, T ). With q′ = q, T → −iβ,

K(q,−iβ; q, 0) =
∫

Dq(t) exp i
∫ −iβ

0
dt

(

mq̇2

2
− V (q)

)

.

where we now integrate along the negative imaginary time axis (Figure 12).

-i β

Im t

Re t

Figure 12: Path in the complex time plane.

Let us define a real variable for this integration, τ = it. τ is called the imaginary time,
since when the time t is imaginary, τ is real. (Kind of confusing, admittedly, but true.) Then
the integral over τ is along its real axis: when t : 0 → −iβ, then τ : 0 → β. We can write q
as a function of the variable τ : q(t) → q(τ); then q̇ = idq/dτ . The propagator becomes

K(q,−iβ; q, 0) =
∫

Dq(τ) exp−
∫ β

0
dτ




m

2

(

dq

dτ

)2

+ V (q)



 . (32)
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The integral is over all functions q(τ) such that q(0) = q(β) = q.
The result (32) is an “imaginary-time” or “Euclidean” path integral, defined by asso-

ciating to each path an amplitude (statistical weight) exp−SE , where SE is the so-called
Euclidean action, obtained from the usual (“Minkowski”) action by changing the sign of the
potential energy term.

The Euclidean PI might seem like a strange, unphysical beast, but it actually has many
uses. One will be discussed in the next section, where use will be made of the fact that at low
temperatures the ground state gives the dominant contribution to the partition function. It
can therefore be used to find the ground state energy. We will also see the Euclidean PI in
Section 9, when discussing the subject of instantons, which are used to describe phenomena
such as quantum mechanical tunneling.



6 Perturbation Theory in Quantum Mechanics

We can use the Euclidean PI to compute a perturbation expansion for the ground state energy
(among other things). This is not terribly useful in and of itself (once again, conventional
techniques are a good deal easier), but the techniques used are very similar to those used in
perturbation theory and Feynman diagrams in field theory. For this reason, we will discuss
corrections to the ground state energy of an elementary quantum mechanical system in some
detail.

From Z it is quite easy to extract the ground state energy. (This is a well-known fact of
statistical mechanics, quite independent of PIs.) From the definition of Z,

Z(β) =
∑

j

e−βEj ,

we can see that the contribution of each state decreases exponentially with β. However, that
of the ground state decreases less slowly than any other state. So in the limit of large β (i.e.,
low temperature), the ground state contribution will dominate. (This is mathematically
straightforward, and also physically reasonable.) One finds

E0 = − lim
β→∞

1

β
logZ. (33)

In fact, we can extract E0 from something slightly easier to calculate than Z. Rather
than integrating over the initial (= final) position, as with Z, let us look at the Euclidean
propagator from q = 0 to q′ = 0 (the choice of zero is arbitrary).

KE(0, β; 0, 0) = 〈q′ = 0| e−βH |q = 0〉 .

We can insert a complete set of eigenstates of H :

KE(0, β; 0, 0) = 〈q′ = 0| e−βH
∑

j

|j〉 〈j| q = 0〉

=
∑

j

e−βEjφj(0)φ∗
j(0),

where φj are the wave functions of H . Again the ground state dominates as β → ∞, and

E0 = − lim
β→∞

1

β
logKE(0, β; 0, 0). (34)

(As β → ∞, the difference between β−1 logZ and β−1 logKE goes to zero.)
So let us see how we can calculate KE(0, β; 0, 0) perturbatively via the PI. The starting

point is

KE(0, β; 0, 0) =
∫

Dq e−SE(q̇,q),

where the paths over which we integrate start and finish at q = 0, and where the Euclidean
action is

SE =
∫ β

0
dτ

(

mq̇2

2
+ V (q)

)

,
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and with q̇ = dq/dτ . As an example, consider the anharmonic oscillator, with quadratic and
quartic terms in the potential:

KE(0, β; 0, 0) =
∫

Dq exp−
∫

dτ

(

1

2
mq̇2 +

1

2
mω2q2 +

λ

4!
q4

)

. (35)

Clearly it is the quartic term which complicates life considerably; we cannot do the PI
exactly.7 But we can use the following trick to evaluate it perturbatively in λ. (This trick is
far more complicated than necessary for this problem, but is a standard – and necessary! –
trick in quantum field theory.) Define K0

E[J ], the PI for a harmonic oscillator with a source
term (which describes the action of an external force) added to the Lagrangian:

K0
E[J ] =

∫

Dq exp−
∫

dτ
(

1

2
mq̇2 +

1

2
mω2q2 − J(τ)q(τ)

)

. (36)

Unlike (35), this PI can be evaluated exactly; we will do this (as much as is necessary, at
least) shortly. Once we have evaluated it, how does it help us to compute (35)? To see the
use of K0

E [J ], acting on it with a derivative has the effect of putting a factor q in the PI: for
any time τ1,

δK0
E[J ]

δJ(τ1)
=
∫

Dq q(τ1) exp−
∫

dτ
(

1

2
mq̇2 +

1

2
mω2q2 − J(τ)q(τ)

)

.

A second derivative puts a second q in the PI:

δ2K0
E [J ]

δJ(τ1)δJ(τ2)
=
∫

Dq q(τ1)q(τ2) exp−
∫

dτ
(

1

2
mq̇2 +

1

2
mω2q2 − J(τ)q(τ)

)

.

In fact, we can generalize this to an arbitrary functional F :

F

[

δ

δJ

]

K0
E [J ] =

∫

Dq F [q]e−S0
E [J ], (37)

where S0
E[J ] is the Euclidean action for the harmonic oscillator with source. (To prove (37),

bring F [δ/δJ ] inside the PI; each δ/δJ in F operating on exp−S0
E [J ] gives rise to a q in

front of the exponential.)
Now, if we choose F [q] = exp− ∫ dτ λ

4!
q4, we get:

e−
∫

dτ λ
4!(

δ
δJ )

4

K0
E [J ] =

∫

Dq exp

{

−
∫

dτ
λ

4!
q4

}

e−S0
E [J ]

=
∫

Dq exp−
∫

dτ

(

1

2
mq̇2 +

1

2
mω2q2 +

λ

4!
q4 − J(τ)q(τ)

)

.

7In fact, the situation is exactly like the evaluation of the ordinary integral

I =

∫ ∞

−∞

dx exp−(
1

2
x2 +

λ

4!
x4),

which looks innocent enough but which cannot be evaluated exactly. The technique which we will develop
to evaluate (35) can also be used for this ordinary integral – an amusing and recommended exercise.
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If we now put J = 0, we have the PI we started with. So the final result is:

KE(0, β; 0, 0) =



exp






−
∫

dτ
λ

4!

(

δ

δJ

)4





K0

E [J ]





∣
∣
∣
∣
∣
∣
J=0

. (38)

We can, and will, calculate K0
E[J ] as an explicit functional of J . If we then expand the

exponential which operates on it in (38), we get a power series in λ:

KE(0, β; 0, 0) =









1 −
∫

dτ
λ

4!

(

δ

δJ(τ)

)4

+
1

2!

∫

dτ
λ

4!

(

δ

δJ(τ)

)4 ∫

dτ ′
λ

4!

(

δ

δJ(τ ′)

)4

+ · · ·


K0
E [J ]







∣
∣
∣
∣
∣
∣
J=0

= K0
E [J ] − λ

4!





∫

dτ

(

δ

δJ(τ)

)4

K0
E [J ]





∣
∣
∣
∣
∣
∣
J=0

+ o(λ2).

Let us now evaluate K0
E[J ],

K0
E[J ] =

∫

Dq exp−
∫

dτ
(

1

2
mq̇2 +

1

2
mω2q2 − J(τ)q(τ)

)

.

To do this, suppose that we can find the classical path qcJ(τ), the solution of

mq̈ = mω2q − J(τ), q(0) = q(β) = 0. (39)

Once we have done this, we can perform a change of variables in the PI: we define q(τ) =
qcJ(τ) + y(τ), and integrate over paths y(τ). This is useful because

∫

dτ
(

1

2
mq̇2 +

1

2
mω2q2 − J(τ)q(τ)

)

=
∫

dτ
(

1

2
mq̇2

cJ +
1

2
mω2q2

cJ − J(τ)qcJ (τ)
)

+ (linear in y)
︸ ︷︷ ︸

=0

+
∫

dτ
(

1

2
mẏ2 +

1

2
mω2y2

)

.

The linear term vanishes because qcJ satisfies the equation of motion. So the PI becomes

K0
E[J ] = e−SEc[J ]

∫

Dy exp−
∫

dτ
(

1

2
mẏ2 +

1

2
mω2y2

)

.

The crucial observation is that the resulting PI is independent of J : it is an irrelevant
constant; call it C. (In fact, C is neither constant [it depends on β], nor entirely irrelevant
[it is related to the unperturbed ground state energy, as we will see]. Crucial for the present
purposes is that C is independent of J .)

K0
E[J ] = C e−SEc[J ],

where

SEc[J ] =
∫

dτ
(

1

2
mq̇2

cJ +
1

2
mω2q2

cJ − J(τ)qcJ(τ)
)

.
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This can be simplified by integrating the first term by parts, yielding

SEc[J ] =
∫

dτ qcJ

(

−1

2
mq̈cJ +

1

2
mω2qcJ − J(τ)

)

.

Using the classical equation of motion (39), we get

SEc[J ] = −1

2

∫

dτ J(τ)qcJ(τ).

We must still solve the classical problem, (39). The solution can be written in terms of
the Green’s function for the problem. Let G(τ, τ ′) be the solution of

m

(

d2

dτ 2
− ω2

)

G(τ, τ ′) = δ(τ − τ ′),

G(0, τ ′) = G(β, τ ′) = 0.

Then we can immediately write

qcJ(τ) =
∫ β

0
dτ ′G(τ, τ ′)J(τ ′),

which can be proven by substution into (39). We can now write

K0
E[J ] = C exp

1

2

∫

dτdτ ′ J(τ)G(τ, τ ′)J(τ ′). (40)

We can find the Green’s function easily in the limit β → ∞. It is slightly more convenient
to treat the initial and final times more symmetrically, so let us choose the time interval to
be (−β/2,+β/2); in the limit β → ∞ we go from −∞ to ∞. Then we have

m

(

d2

dτ 2
− ω2

)

G(τ, τ ′) = δ(τ − τ ′).

By taking the Fourier transform, we see that

G(τ, τ ′) = − 1

m

∫ ∞

−∞

dk

2π

1

(k2 + ω2)
eik(τ−τ ′). (41)

We can now compute the first-order correction to KE (from which we get the first-order
correction to the ground state energy). We have

KE = K0
E [0] − λ

4!

∫

dτ

(

δ

δJ(τ)

)4

K0
E [J ]

∣
∣
∣
∣
∣
∣
J=0

. (42)

Since in the second term we take four derivatives of K0
E[J ] and then set J = 0, only the

piece of K0
E[J ] which is quartic in J is relevant: fewer than four J ’s will be killed by the
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derivatives; more than four will be killed when setting J = 0.

K0
E[J ] = C exp

1

2

∫

dτdτ ′ J(τ)G(τ, τ ′)J(τ ′)

= irrelevant + C · 1

2

(
1

2

∫

dτdτ ′ J(τ)G(τ, τ ′)J(τ ′)
)2

=
C

8
〈J1G12J2〉〈J3G34J4〉, (43)

where we have used the compact notation 〈J1G12J2〉 =
∫

dτ1dτ2 J(τ1)G(τ1, τ2)J(τ2).
Substituting (43) into (42),

KE = C



1 − λ

4!

1

8

∫

dτ

(

δ

δJ(τ)

)4

〈J1G12J2〉〈J3G34J4〉 + o(λ2)



 . (44)

To ensure that we understand the notation and how functional differentiation works, let
us work out a slightly simpler example than the above. Consider

X ≡
(

δ

δJ(τ)

)2

〈J1G12J2〉 =

(

δ

δJ(τ)

)2 ∫

dτ1dτ2 J(τ1)G(τ1, τ2)J(τ2).

The first derivative can act either on J1 or J2. In either case, it gives a delta function, which
will make one of the integrals collapse:

X =
δ

δJ(τ)

∫

dτ1dτ2 (δ(τ − τ1)G(τ1, τ2)J(τ2) + J(τ1)G(τ1, τ)δ(τ − τ2))

=
δ

δJ(τ)

(∫

dτ2G(τ, τ2)J(τ2) +
∫

dτ1J(τ1)G(τ1, τ)
)

In each term the remaining derivative acts similarly and kills the remaining integral; the
result is

X = 2G(τ, τ).

The functional derivatives in (44) are a straightforward generalization of this; we find

KE = C

(

1 − 1

8

λ

4!

∫

dτ 4!G(τ, τ)2

)

.

From (41) G(τ, τ) = −1/2mω; the τ integral is just the time interval β, and finally we get

KE(0, β; 0, 0) = C

(

1 − βλ

32m2ω2
+ o(λ2)

)

= Ce−βλ/32m2ω2

(45)

to order λ.
Now we can put this expression to good use, extracting the ground state energy from

(34):

E0 = − lim
β→∞

1

β
logKE(0, β; 0, 0) = − lim

β→∞

1

β

(

logC − βλ

32m2ω2

)

.
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Recall that the constant C in (45) depends on β; this dependence must account for the
ground state energy; the term linear in λ gives the first correction to the energy. Thus

E0 =
1

2
h̄ω +

h̄2λ

32m2ω2
+ o(λ2)

where we have reintroduced h̄. We can check this result against standard perturbation theory
(which is considerably easier!); the first-order correction to the ground state energy is

∫ ∞

−∞
dqφ∗

0(q)

(

λ

4!
q4

)

φ0(q) = · · · =
h̄2λ

32m2ω2
,

as above.
One’s sanity would be called into question were it suggested that the PI calculation is a

serious competitor for standard perturbation theory, although the latter itself gets rapidly
more and more messy at higher orders. The technique above also gets messier, but it may
well be that its messiness increases less quickly than that of standard perturbation theory. If
so, the PI calculation could become competitive with standard perturbation theory at higher
orders. But really the main motivation for discussing the above method is that it mimics in
a more familiar setting standard perturbation techniques in quantum field theory.

To summarize this long and somewhat technical section, let us recall the main features
of the above method. We express the ground state energy as an expression involving the
propagator, (34). We separate the Lagrangian into a “free” (i.e., quadratic) part and an
“interacting” (beyond quadratic) part. Via the PI, we write the interacting propagator in
terms of a free propagator with source term added, (38); this expression is amenable to a
perturbation expansion. The free propagator can be evaluated explicitly, (40); then (38) can
be computed to any desired order. From this we obtain directly the ground state energy to
the same order.



7 Green’s Functions in Quantum Mechanics

In quantum field theory we are interested in objects such as

〈0|T φ̂(x1)φ̂(x2) · · · φ̂(xn) |0〉 ,

the vacuum expectation value of a time-ordered product of Heisenberg field operators. This
object is known as a Green’s function or as a correlation function. The order of the operators
is such that the earliest field is written last (right-most), the second earliest second last, etc.
For example,

T φ̂(x1)φ̂(x2) =

{

φ̂(x1)φ̂(x2) x0
1 > x0

2

φ̂(x2)φ̂(x1) x0
2 > x0

1

Green’s functions are related to amplitudes for physical processes such as scattering and
decay processes. (This point is explained in most quantum field theory books.)

Let us look at the analogous object in quantum mechanics:

G(n)(t1, t2, · · · , tn) = 〈0|T q̂(t1)q̂(t2) · · · q̂(tn) |0〉 .

We will develop a PI expression for this.
First, we must recast the PI in terms of Heisenberg representation objects. The operator

q̂(t) is the usual Heisenberg operator, defined in terms of the Schroedinger operator q̂ by
q̂(t) = eiHtq̂e−iHt. The eigenstates of the Heisenberg operator are |q, t〉: q̂(t) |q, t〉 = q |q, t〉.
The relation with the time-independent eigenstates is |q, t〉 = eiHt |q〉.8 Then we can write
the PI:

K = 〈q′| e−iHT |q〉 = 〈q′, T | q, 0〉 =
∫

Dq eiS.

We can now calculate the “2-point function” G(t1, t2), via the PI. We will proceed in two
steps. First, we will calculate the following expression:

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 .

We will then devise a method for extracting the vacuum contribution to the initial and final
states.

Suppose first that t1 > t2. Then

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 = 〈q′, T | q̂(t1)q̂(t2) |q, 0〉
=

∫

dq1dq2〈q′, T |q1, t1〉 〈q1, t1| q̂(t1)
︸ ︷︷ ︸

〈q1,t1|q1

q̂(t2) |q2, t2〉
︸ ︷︷ ︸

q2|q2,t2〉

〈q2, t2| q, 0〉

=
∫

dq1dq2 q1q2〈q′, T |q1, t1〉 〈q1, t1| q2, t2〉 〈q2, t2| q, 0〉.
8There is a possible point of confusion here. We all know that Heisenberg states are independent of time,

yet the eigenstates of q̂(t) depend on time. Perhaps the best way to view these states |q, t〉 is that they
form, for any fixed time, a complete set of states. Just like the usual (time-independent) Heisenberg state
|q〉 describes a particle which is localized at the point q at time t = 0, the state |q, t〉 describes a particle
which is localized at the point q at time t.
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Each of these matrix elements is a PI:

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 =
∫

dq1dq2 q1q2

∫ q′,T

q1,t1
Dq eiS

∫ q1,t1

q2,t2
Dq eiS

∫ q2,t2

q,0
Dq eiS.

This expression consists of a first PI from the initial position q to an arbitrary position q2,
a second one from there to a second arbitrary position q1, and a third one from there to the
final position q′. So we are integrating over all paths from q to q′, subject to the restriction
that the paths pass through the intermediate points q1 and q2. We then integrate over the
two arbitrary positions, so that in fact we are integrating over all paths: we can combine
these three path integrals plus the integrations over q1 and q2 into one PI. The factors q1
and q2 in the above integral can be incorporated into this PI by simply including a factor
q(t1)q(t2) in the PI. So

〈q′, T | q̂(t1)q̂(t2) |q, 0〉 =
∫ q′,T

q,0
Dq q(t1)q(t2)eiS (t1 > t2).

An identical calculation shows that exactly this same final expression is also valid for
t2 < t1: magically, the PI does the time ordering automatically. Thus for all times

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 =
∫ q′,T

q,0
Dq q(t1)q(t2)eiS.

As for how to obtain vacuum-to-vacuum matrix elements, our work on statistical mechan-
ics provides us with a clue. We can expand the states 〈q′, T | and |q, 0〉 in terms of eigenstates
of the Hamiltonian. If we evolve towards a negative imaginary time, the contribution of all
other states will decay away relative to that of the ground state. We have (resetting the
initial time to −T for convenience)

〈q′, T | q,−T 〉 ∝ 〈0, T | 0,−T 〉,

where on the right the “0” denotes the ground state. The proportionality involves the ground
state wave function and an exponential factor exp 2iE0T = exp−2E0|T |.

We could perform all calculations in a Euclidean theory and analytically continue to real
time when computing physical quantities (many books do this), but to be closer to physics
we can also consider T not to be pure imaginary and negative, but to have a small negative
imaginary phase: T = |T |e−iǫ (ǫ > 0). In what follows, I will simply write T , but please keep
in mind that it has a negative imaginary part! With this,

〈0, T | 0,−T 〉 ∝ 〈q′, T | q,−T 〉 =
∫

Dq eiS.

To compute the Green’s functions, we must simply add T q̂(t1)q̂(t2) · · · q̂(tn) to the matrix
element, and the corresponding factor q(t1)q(t2) · · · q(tn) inside the PI:

〈0, T |T q̂(t1)q̂(t2) · · · q̂(tn) |0,−T 〉 ∝
∫

Dq q(t1)q(t2) · · · q(tn)eiS.
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The proportionality sign is a bit awkward; fortunately, we can rid ourselves of it. To do this,
we note that the left hand expression is not exactly what we want: the vacua |0,±T 〉 differ
by a phase. We wish to eliminate this phase; to this end, the Green’s functions are defined

G(n)(t1, t2, · · · , tn) = 〈0|T q̂(t1)q̂(t2) · · · q̂(tn) |0〉

≡ 〈0, T |T q̂(t1)q̂(t2) · · · q̂(tn) |0,−T 〉
〈0, T | 0,−T 〉

=

∫ Dq q(t1)q(t2) · · · q(tn)eiS

∫ Dq eiS
,

with no proportionality sign. The wave functions and exponential factors in the numerator
and denominator cancel.

To compute the numerator, we can once again use the trick we used in perturbation
theory in quantum mechanics, namely, adding a source to the action. We define

Z[J ] =

∫ Dq ei(S+
∫

dt J(t)q(t))

∫ Dq eiS
=

〈0| 0〉J
〈0| 0〉J=0

.

If we operate on Z[J ] with i−1δ/δJ(t1), this gives

(

1

i

δ

δJ(t1)
Z[J ]

)∣
∣
∣
∣
∣
J=0

=





∫ Dq q(t1)ei(S+
∫

dt J(t)q(t))

∫ Dq eiS





∣
∣
∣
∣
∣
∣
J=0

=

∫ Dq q(t1)eiS

∫ Dq eiS

=
〈0, T | q̂(t1) |0,−T 〉

〈0, T | 0,−T 〉 = 〈0| q̂(t1) |0〉

(The expectation values are evaluated in the absence of J .)
Repeating this procedure, we obtain a PI with several q’s in the numerator. This ordinary

product of q’s in the PI corresponds, as discussed earlier in this section, to a time-ordered
product in the matrix element. So we make the following conclusion:

(

1

i

δ

δJ(t1)
· · · 1

i

δ

δJ(tn)
Z[J ]

)∣
∣
∣
∣
∣
J=0

=

∫ Dq q(t1) · · · q(tn)eiS

∫ Dq eiS
= 〈0|T q̂(t1) · · · q̂(t1) |0〉 .

For obvious reasons, the functional Z[J ] is called the generating functional for Green’s func-
tions; it is a very handy tool in quantum field theory and in statistical mechanics.

How do we calculate Z[J ]? Let us examine the numerator:

N ≡
∫

Dq ei(S+
∫

dt J(t)q(t)).

Suppose initially that S is the harmonic oscillator action (denoted S0):

S0 =
∫

dt
(

1

2
mq̇2 − 1

2
mω2q2

)

,
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Then the corresponding numerator, N0, is the non-Euclidean (i.e., real-time) version of the
propagator K0

E[J ] we used in Section 6. We can calculate N0[J ] in the same way as K0
E [J ].

Since the calculation repeats much of that of K0
E[J ], we will be succinct.

By definition,

N0 =
∫

Dq(t) exp i
∫

dt
(

1

2
mq̇2 − 1

2
mω2q2 + Jq

)

.

We do the path integral over a new variable y, defined by q(t) = qc(t) + y(t), where qc is
the classical solution. Then the PI over y is a constant (independent of J) and we can avoid
calculating it. (It will cancel against the denominator in Z[J ].) Calling it C, we have

N0 = CeiS0J [qc],

where

S0J [qc] =
∫

dt
(

1

2
mq̇2

c −
1

2
mω2q2

c + Jqc

)

=
1

2

∫

dtJ(t)qc(t),

using the fact that qc satisfies the equation of motion. We can write the classical path in
terms of the Green’s function (to be determined shortly), defined by

(

d2

dt2
+ ω2

)

G(t, t′) = −iδ(t− t′). (46)

Then
qc(t) = −i

∫

dt′G(t, t′)J(t′).

We can now write

N0 = C exp
1

2

∫

dtdt′ J(t)G(t, t′)J(t′).

Dividing by the denominator merely cancels the factor C, giving our final result:

Z[J ] = exp
1

2

∫

dtdt′ J(t)G(t, t′)J(t′).

We can solve (46) for the Green’s function by going into momentum space; the result is

G(t, t′) = G(t− t′) =
∫ dk

2π

i

k2 − ω2
e−ik(t−t′).

However, there are poles on the axis of integration. (This problem did not arise in Euclidean
space; see (41).) The Green’s function is ambiguous until we give it a “pole prescription”,
i.e., a boundary condition. But remember that our time T has a small, negative imaginary
part. We require that G go to zero as T → ∞. The correct pole prescription then turns out
to be

G(t− t′) =
∫
dk

2π

i

k2 − ω2 + iǫ
e−ik(t−t′). (47)

We could at this point do a couple of practice calculations to get used to this formalism.
Examples would be to compute perturbatively the generating functional for an action which
has terms beyond quadratic (for example, a q4 term), or to compute some Green’s function in
either the quadratic or quartic theory. But since these objects aren’t really useful in quantum
mechanics, without further delay we will go directly to the case of interest: quantum field
theory.



8 Green’s Functions in Quantum Field Theory

It is easy to generalize the PI to many degrees of freedom; we have in fact already done so in
Section 4, where particles move in two or three dimensions. It is simply a matter of adding
a new index to denote the different degrees of freedom (be they the different coordinates
of a single particle in more than one dimension or the particle index for a system of many
particles).

One of the most important examples of a system with many degrees of freedom is a field
theory: q(t) → φ(x, t) = φ(x). Not only is this a system of many degrees of freedom, but
one of a continuum of degrees of freedom. The passage from a discrete to continuous system
in path integrals can be done in the same way as in ordinary classical field theory: we can
discretize the field (modeling it by a set of masses and springs, for instance), do the usual
path integral manipulations on the discrete system, and take the continuum limit at the
end of the calculation. The final result is a fairly obvious generalization of the one-particle
results, so I will not dwell on the mundane details of discretization and subsequent taking
of the continuum limit.

The analog of the quantum mechanical propagator is the transition amplitude to go from
one field configuration φ(x) at t = 0 to another φ′(x′) at t = T :

K(φ′(x′), T ;φ(x), 0) =
∫

DφeiS[φ], (48)

where S is the field action, for instance

S[φ] =
∫

d4x
(

1

2
(∂µφ)2 − 1

2
m2φ2

)

(49)

for the free scalar field. In (48) the integral is over all field configurations φ(x) obeying the
stated initial and final conditions.

In field theory, we are not really interested in this object. Rather (as mentioned earlier),
we are interested in Green’s functions. Most of the work required to translate (48) into an
expression for a Green’s function (generating functional of Green’s functions, more precisely)
has already been done in the last section, so let us study a couple of cases.

8.1 Free scalar field.

For the free scalar field, whose action is given by (49), the generating functional is

Z0[J ] =
〈0| 0〉J
〈0| 0〉J=0

.

Both numerator and denominator can be written in terms of PIs. The numerator is

N0 =
∫

Dφ exp i
∫

d4x
(

1

2
(∂µφ)2 − 1

2
m2φ2 + Jφ

)

.

We write φ = φc + ϕ, where φc is the classical field configuration, and integrate over the
deviation from φc. The action can be written

S[φc + ϕ] =
∫

d4x
(

1

2
(∂µφc)

2 − 1

2
m2φ2

c + Jφc

)

+
∫

d4x
(

1

2
(∂µϕ)2 − 1

2
m2ϕ2

)

,
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where as usual there is no term linear in ϕ since φc by definition extremizes the classical
action. So

N0 = C exp i
∫

d4x
(

1

2
(∂µφc)

2 − 1

2
m2φ2

c + Jφc

)

,

where

C =
∫

Dϕ exp i
∫

d4x
(

1

2
(∂µϕ)2 − 1

2
m2ϕ2

)

.

C is independent of J and will cancel in Z. (Indeed, the denominator is equal to C.)
Using the fact that φc obeys the classical equation

(∂2 +m2)φc = J,

we can write

N0 = C exp
i

2

∫

d4x J(x)φc(x).

Finally, we can write φc in terms of the Klein-Gordon Green’s function, defined by

(∂2 +m2)∆F (x, x′) = −iδ4(x− x′).

It is
φc(x) = i

∫

d4x∆F (x, x′)J(x′),

so

Z0 =
N0

C
= exp−1

2

∫

d4xd4x′ J(x)∆F (x, x′)J(x′).

The Green’s function is found by solving its equation in 4-momentum space; the result is

∆F (x, x′) =
∫

d4k

(2π)4

i

k2 −m2 + iǫ
e−ik·(x−x′) = ∆F (x− x′),

adopting the same pole prescription as in (47). Note that ∆F is an even function, ∆F (x −
x′) = ∆F (x′ − x).

Let us calculate a couple of Green’s functions. These calculations are reminiscent of those
at the end of Section 6. As a first example, consider

G
(2)
0 (x1, x2) = 〈0|T φ̂(x1)φ̂(x2) |0〉 =

1

i2

(

δ2

δJ(x1)δJ(x2)
Z0[J ]

)∣
∣
∣
∣
∣
J=0

.

Expanding Z0 in powers of J ,

Z0[J ] = 1 − 1

2

∫

d4xd4x′ J(x)∆F (x− x′)J(x′) + o(J4).

The term quadratic in J is the only one that survives both differentiation (which kills the
“1”) and the setting of J to zero (which kills all higher-order terms). So

G
(2)
0 (x1, x2) =

1

i2
δ2

δJ(x1)δJ(x2)

(

−1

2

∫

d4xd4x′ J(x)∆F (x− x′)J(x′)
)

.
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There arise two identical terms, depending on which derivative acts on which J . The result
is

G
(2)
0 (x1, x2) = ∆F (x1 − x2).

So the Green’s function (or two-point function) in the quantum field theory sense is also the
Green’s function in the usual differential-equations sense.

As a second example, the four-point Green’s function is

G
(4)
0 (x1, x2, x3, x4) =

1

i4

(

δ

δJ(x1)
· · · δ

δJ(x4)
exp−1

2

∫

d4xd4x′ J(x)∆F (x, x′)J(x′)

)∣
∣
∣
∣
∣
J=0

.

This time the only part of the exponential that contributes is the term with four J ’s.

G
(4)
0 (x1, x2, x3, x4) =

δ

δJ(x1)
· · · δ

δJ(x4)

1

2

(

−1

2

∫

d4xd4x′ J(x)∆F (x, x′)J(x′)
)2

.

There are 4! = 24 terms, corresponding to the number of ways of associating the derivatives
with the J ’s. In 8 of them, the Green’s functions which arise are ∆F (x1 − x2)∆F (x3 − x4),
and so on. The result is

G
(4)
0 (x1, x2, x3, x4) = ∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)

+∆F (x1 − x4)∆F (x2 − x3), (50)

which can be represented diagramatically as in Figure 13.

4

x 1 x 3

x 2 x 4

x 1 x 3

x 2x

+

x 4

x 1 x 3

x 2

G
0

(4)
= +

Figure 13: Diagrammatic representation of (50). Each line counts as a factor ∆F with
argument corresponding to the endpoints of the line.

8.2 Interacting scalar field theory.

Usually, if the Lagrangian has a term beyond quadratic we can no longer evaluate exactly the
functional integral, and we must resort to perturbation theory. The generating functional
method is tailor-made to do this in a systematic fashion. To be specific, consider φ4 theory,
defined by the Lagrangian density

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4.

Then the generating functional is (up to an unimportant constant: we will normalize ulti-
mately so that Z[J = 0] = 1)

Z[J ] = C
∫

Dφ exp i
∫

d4x

(

1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 + Jφ

)

.
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Because of the quartic term, we cannot evaluate the functional integral exactly. But we
can use a trick we first saw when discussing perturbation theory in quantum mechanics:
replacing the higher-order term by a functional derivative with respect to J :

Z[J ] = C
∫

Dφ exp

{

−i λ
4!

∫

d4xφ4

}

exp i
∫

d4x
(

1

2
(∂µφ)2 − 1

2
m2φ2 + Jφ

)

= C
∫

Dφ exp






−i λ

4!

∫

d4x

(

1

i

δ

δJ(x)

)4





exp i

∫

d4x
(

1

2
(∂µφ)2 − 1

2
m2φ2 + Jφ

)

.

We can pull the first exponential out of the integral; the functional integral which remains
is that for Z0. Adjusting the constant C so that Z[J = 0] = 0, we get

Z[J ] =
exp

{

−i λ
4!

∫

d4x
(

1
i

δ
δJ(x)

)4
}

exp−1
2

∫

d4xd4x′ J(x)∆F (x, x′)J(x′)
(

exp
{

−i λ
4!

∫

d4x
(

1
i

δ
δJ(x)

)4
}

exp−1
2

∫

d4xd4x′ J(x)∆F (x, x′)J(x′)
)∣
∣
∣
∣
J=0

.

This expression now enables us to compute a perturbative expansion for any Green’s function
we desire. This is a rather mechanical job, and the only way to learn it is by doing lots of
examples. To illustrate the method, let us look at G(2)(x1, x2) to the first nontrivial order in
λ.

We have

G(2)(x1, x2) =

(

1
i2

δ2

δJ(x1)δJ(x2)
exp

{

−i λ
4!

∫

d4x
(

1
i

δ
δJ(x)

)4
}

exp−1
2
〈Ja∆FabJb〉

)∣
∣
∣
∣
J=0(

exp
{

−i λ
4!

∫

d4x
(

1
i

δ
δJ(x)

)4
}

exp−1
2
〈Ja∆FabJb〉

)∣
∣
∣
∣
J=0

,

where as in Section 6 〈· · ·〉 implies integration over the positions of the J ’s. In both numerator
and denominator, we can expand both exponentials. The only terms that survive are those
that have the same total number of derivatives and J ’s. Let us look at the term linear in
λ in the numerator. There are six derivatives, so we need the term from the expansion of
the second exponential with six J ’s. For this term, we get the following expression for the
numerator:

− δ2

δJ(x1)δJ(x2)

(

−i λ
4!

)
∫

d4x

(

δ

δJ(x)

)4
1

3!

(

−1

2

)3

〈Ja∆FabJb〉〈Jc∆FcdJd〉〈Je∆FefJf〉.

There are now a total of 6! = 720 terms! However, only two distinct analytical expressions
result. The first of these arises if the derivatives at x1 and x2 act on different 〈· · ·〉’s. A little
combinatorial head-scratching tells us that there are 576 such terms, yielding the following
expression:

− iλ

2

∫

d4x∆F (x1 − x)∆F (x− x)∆F (x− x2), (51)

which can be represented pictorially as in Figure 14 (a).
The only other expression arises when the derivatives at x1 and x2 act on the same 〈· · ·〉.

This accounts for the remaining 144 terms; the analytic form which results is

− iλ

8
∆F (x1 − x2)

∫

d4x∆F (x− x)2, (52)
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x x x x

x

x
1 12 2

(a) (b)

Figure 14: Diagrammatic representation of (a) (51) and (b) (52). Intersection points repre-
sent vertices, and count as a factor −iλ ∫ d4x. Symmetry factors complete the association of
an analytic expression with each diagram.

corresponding to the diagram in Figure 14(b).
The denominator can be evaluated in a similar fashion; the Green’s function to order λ

is

G(2)(x1, x2) =

{

∆F (x1 − x2) − iλ
2

∫

d4x∆F (x1 − x)∆F (x− x)∆F (x− x2)

− iλ
8
∆F (x1 − x2)

∫

d4x∆F (x− x)2 + o(λ2)
}

1 − iλ
8

∫

d4x∆F (x− x)2 + o(λ2)
.

Since we have only computed the numerator and denominator to order λ, we can rewrite
this expression in the following way:

G(2)(x1, x2) =





{

∆F (x1 − x2) − iλ
2

∫

d4x∆F (x1 − x)∆F (x− x)∆F (x− x2) + o(λ2)
}

×
{

1 − iλ
8

∫

d4x∆F (x− x)2 + o(λ2)
}





1 − iλ
8

∫

d4x∆F (x− x)2 + o(λ2)
.

We can now cancel the second factor in the numerator against the denominator, to order λ,
resulting in

G(2)(x1, x2) = ∆F (x1 − x2) −
iλ

2

∫

d4x∆F (x1 − x)∆F (x− x)∆F (x− x2) + o(λ2).

This factorization of the numerator into a part containing no factors independent of the
external position times the denominator occurs to all orders, as can be proven fairly cleanly
via a combinatoric argument. The conclusion is that so-called disconnected parts (parts of
diagrams not connected to any external line) cancel from Green’s functions, a fact which
simplifies greatly the calculation of these objects.

It cannot be overemphasized that there are only three ways to get accustomed to this
formalism: practice, practice, and practice. Other reasonable exercises are the calculation
of G(2) to order λ2 and the calculation of G(4) to order λ2. φ3 theory is also a useful testing
ground for the techniques discussed in this section.



9 Instantons in Quantum Mechanics

9.1 General discussion

It has already been briefly mentioned that in quantum mechanics certain aspects of a problem
can be overlooked in a perturbative treatment. One example occurs if we have a harmonic
oscillator with a cubic anharmonic term: V (q) = 1

2
mω2q2 + λq3 (Figure 15).

V(q)

q

Figure 15: V (q) = 1
2
mω2q2 + λq3.

We can calculate corrections to harmonic oscillator wave functions and energies pertur-
batively in λ, to any desired order, blissfully ignorant of a serious pathology in the model.
As can be seen from Figure 15, this model has no ground state: the potential energy is
unbounded as q → −∞, a point completely invisible to perturbation theory.

A second example is the double-well potential, V (q) = λ
4!

(q2 − a2)2 (Figure 16). There

-a

V(q)

a q

Figure 16: V (q) = λ
4!

(q2 − a2)2.

are two classical ground states. We can ignore this fact and expand V about one of the
minima; it then takes the form of a harmonic oscillator about that minimum plus anharmonic
terms (both cubic and quartic). We can then compute perturbative corrections to the wave
functions and energies, and never see any evidence of the other minimum. Were we to expand
about the other minimum, we would produce an identical set of perturbative corrections. By
symmetry the ground state energies calculated perturbatively to any order will be the same
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for the expansions about the two minima, so it appears that we have degenerate ground
states. But in fact the ground state is not degenerate: a nonperturbative energy splitting
separates the true ground state (an even function of q) from the first excited state (an odd
function); this splitting is not seen in perturbation theory.

We will examine this second example using PIs, the main goal being to calculate the
energy splitting between the two candidate ground states.

Let us first recall the PI expression for the Euclidean propagator:

KE(q′,
β

2
; q,−β

2
) = 〈q′| e−βH/h̄ |q〉 =

∫

Dq e−SE/h̄,

where

SE =
∫ β/2

−β/2
dτ
(

1

2
mq̇2 + V (q)

)

.

Henceforth, we will set m→ 1. KE is useful because we can write it as

KE =
∑

n

〈q′|n〉〈n |q〉 e−βEn/h̄; (53)

in the limit β → ∞, this term will be dominated by the lowest-energy states. I say “states”
here rather than “state” because we must calculate the two lowest-energy eigenvalues to
get the splitting of the (perturbatively degenerate) lowest-energy states in the double-well
potential.

We will evaluate the PI using an approximation known as the semiclassical approxi-
mation, or alternatively as the method of steepest descent. To illustrate it, consider the
following integral

I =
∫ ∞

−∞
dx e−S(x)/h̄,

where S(x) is a function with several local minima (Figure 17).

1 x 2 x 3x

S(x)

x

Figure 17: Potential with several minima.

Suppose we are interested in this integral as h̄→ 0. Then the integral will be dominated
by the minima of S; we can approximate it by a series of Gaussian integrations, one for each
minimum of S. If xi is such a minimum, then in its vicinity S(x) ≃ S(xi)+ 1

2
(x−xi)

2S ′′(xi);
we can write

I ≃ I1 + I2 + I3 + · · · , (54)
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where

Ii =
∫ ∞

−∞
dx exp−[S(xi) +

1

2
(x− xi)

2S ′′(xi)]/h̄

= e−S(xi)/h̄

√

2πh̄

S ′′(xi)
.

Anharmonicities of S appear as corrections of order h̄ to I. (This can be easily seen, for
example, by considering a specific case such as S(x) = ax2 + bx4.)

We will compute the PI (53) in the semi-classical approximation, where the analog of the
xi in the above example will be classical paths (extremum of the action SE[q]).

Suppose, then, that qc(τ) is the classical solution to the problem

d2

dτ 2
q =

∂V (q)

∂q
, q(−β/2) = q, q(β/2) = q′.

We can write q(τ) = qc(τ) + y(τ); the action is

SE[qc + y] =
∫ β/2

−β/2
dτ
(

1

2
q̇c + ẏ2 + V (qc + y)

)

=
∫ β/2

−β/2
dτ
(

1

2
q̇2
c + V (qc)

)

+ (linear in y)

+
∫ β/2

−β/2
dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

+ · · · . (55)

The term linear in y vanishes for the usual reason, and the higher order terms not written
down are of cubic or higher order in y. Neglecting these (which give order h̄ corrections to
the PI), the propagator becomes

KE =
∫

Dq e−SE/h̄ = e−SE [qc]/h̄
∫

Dy exp−
∫

dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

/h̄.

The functions y(τ) over which we integrate satisfy the boundary conditions y(−β/2) =
y(β/2) = 0. The PI, being Gaussian, can be done exactly; it is not as straightforward as the
harmonic oscillator PI since V ′′(qc) depends on τ . While we have often managed to avoid
evaluating PIs, here we must evaluate it. (Unfortunately, this is rather difficult.)

To this end, we can use a generalization of the Fourier expansion technique mentioned
in Section 2.2.2. We can rewrite the action as

SE =
∫

dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

=
1

2

∫

dτ y

(

− d2

dτ 2
+ V ′′(qc)

)

y. (56)

The Schroedinger-like equation

(

− d2

dτ 2
+ V ′′(qc)

)

y = λy, y(−β/2) = y(β/2) = 0



9 INSTANTONS 46

has a complete, orthonormal set of solutions; let the solutions and eigenvalues be yk(τ) and
λk, respectively. The orthonormality relation is

∫ β/2

−β/2
dτyk(τ)yl(τ) = δkl.

Then we can substitute y(τ) =
∑

k akyk(τ) in (56), giving

SE =
1

2

∫

dτ
∑

k

akyk

(

− d2

dτ 2
+ V ′′(qc)

)
∑

l

alyl =
1

2

∑

k,l

akalλl

∫

dτykyl =
1

2

∑

k

a2
kλk.

The PI can now be written as an integral over all possible values of the coefficients {ak}.
This gives

KE = J ′
∫
∏

k

dak e
−
∑

k
a2

k
λk/2h̄, (57)

where J ′ is the Jacobian of the transformation from y(τ) to {ak}. (57) is a product of
uncoupled Gaussian integrals; the result is

KE = J ′
∏

k

(

2πh̄

λk

)1/2

= J ′
∏

k

(2πh̄)1/2(
∏

k

λk)
−1/2 = J ′

∏

k

(2πh̄)1/2det−1/2

(

− d2

dτ 2
+ V ′′(qc)

)

,

where we have written the product of eigenvalues as the determinant of the Schroedinger
operator on the space of functions vanishing at ±β/2.

We can write J = J ′∏

k(2πh̄)
1/2, giving

KE = Jdet−1/2

(

− d2

dτ 2
+ V ′′(qc)

)

(1 + o(h̄)),

where the o(h̄) corrections can in principle be computed from the neglected beyond-quadratic
terms in (55). We will not be concerned with these corrections, and henceforth we will drop
the (1 + o(h̄)).

9.2 Single Well in the Semiclassical Approximation

Before looking at the double well, it is worthwhile examining the single well, defined be

V (q) =
1

2
ω2q2 +

λ

4!
q4.

The classical equation is
d2

dτ 2
q = V ′(q).

Note that this is the equation of motion for a particle moving in a potential −V (q). If we
choose the initial and final points q = q′ = 0, then the classical solution is simply qc(τ) = 0;
furthermore, V ′′(qc) = V ′′(0) = ω2, and

KE = Jdet−1/2

(

− d2

dτ 2
+ ω2

)

.
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The evaluation of the determinant is not terribly difficult (the eigenvalues can be easily
found; their product can be found in a table of mathematical identities); the result, for large
β, is

KE =
(
ω

πh̄

)1/2

e−βω/2.

From (53), we can extract the ground state energy since, for large β, KE ∼ exp−E0β/h̄. We
find E0 = h̄ω/2 up to corrections of order λh̄2. We have discovered an incredibly complicated
way of calculating the ground state energy of the harmonic oscillator!

9.3 Instantons in the Double Well Potential

Let us now study a problem of much greater interest: the double well. We will see that
configurations known as “instantons” make a non-perturbative correction to the energies.
We wish to evaluate the PI

KE =
∫ q′,β/2

q,−β/2
Dq e−SE ,

where

SE =
∫

dτ

(

1

2
q̇2 +

λ

4!
(q2 − a2)2

)

,

for β → ∞. As explained above, the PI is dominated by minima of SE, i.e., by classical
solutions. The classical equation corresponds to a particle moving in the potential −V (q)
(Figure 18); the “energy” E = 1

2
q̇2 − V (q) is conserved.

-a

-V(q)

a q

Figure 18: Inverted double-well potential.

Let us examine classical solutions, taking the boundary values q, q′ of the classical solution
corresponding to the maxima of −V , ±a. In the limit β → ∞, these will be solutions of zero
“energy”, since as τ → ±∞ both the kinetic and potential “energy” vanish.

First, if q = q′ = a (an identical argument applies if q = q′ = −a), the obvious classical
solution is q(τ) = a; a quadratic approximation about this constant solution would be
identical to the single-well case discussed above.

But what if q = −a and q′ = a (or vice-versa)? Then the obvious classical solution
corresponds to the particle initially sitting atop the maximum of −V at −a, rolling towards
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q = 0 after a very long (infinite, in the limit β → ∞) time, and ending up at rest at the
other maximum of −V as τ → ∞ (Figure 19).

)τq(

τ

a

-a

Figure 19: Instanton in the double-well potential.

We can get the analytical form of this solution: setting E → 0, we have

1

2
q̇2 = V (q), or

dq

dτ
= ±

√

λ

12
(q2 − a2).

There are a family of solutions interpolating between −a and a:

q(τ) = a tanh
ω

2
(τ − τ0), (58)

where ω =
√

λa2/3 and where τ0 is an integration constant which corresponds to the time
at which the solution crosses q = 0.

This solution is much like a topological soliton in field theory, except that it is localized in
time rather than in space. One could argue that the solution doesn’t appear to be localized:
q goes to different values as τ → ±∞. But these are just different, but physically equivalent,
ground states, so we can say that the instanton is a configuration which interpolates between
two ground states; the system is in a ground state except for a brief time – an “instant”.
For this reason, the solution is known as an instanton.

I called the two solutions q(τ) = a and q(τ) = a tanh ω
2
(τ − τ0) the obvious classical

solutions because there are an infinite number of approximate classical solutions which are
potentially important in the PI. Since the instanton is localized in time, and since the total
time interval β is very large (in particular, much larger than the instanton width), a series
of widely-separated instantons and anti-instantons (configurations interpolating between +a
and −a) is also a solution, up to exponentially small interactions between neighbouring
instantons and anti-instantons. Such a configuration is shown in Figure 20, where the hor-
izontal scale has been determined by the duration of imaginary time β; on this scale the
instanton and anti-instanton appear as step functions.

It is clear than an instanton must be followed by an anti-instanton, and that if the
asymptotic values of the position are +a and +a the classical solution must contain anti-
instanton-instanton pairs whereas if they are −a and +a we need an extra instanton at the
beginning.
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Let us choose first limiting values q(−β/2) = q(+β/2) = +a. Then we are interested in

KE =
∫ a,β/2

a,−β/2
Dq e−SE .

In the spirit of (54), in the steepest-descent approximation KE is equal to the sum of PIs
evaluated about all classical solutions. The classical solutions are: qc(τ) = a; qc =anti-
instanton-instanton≡ AI; qc = AIAI; etc., where the positions of the As and Is are not
determined, and must be integrated over. Schematically, we may write

KE = K0
E +K2

E +K4
E + · · · , (59)

where the superscript denotes the total number of Is or As. Let us discuss the first couple
of contributions in some detail.
qc = a: This case is essentially equivalent to the single-well case discussed above, and we get

K0
E =

√
ω

πh̄
e−βω/2,

where ω = (λa2/3)1/2 is the frequency of small oscillations about the minimum of V .
qc = AI: This case is rather more interesting (that is to say, complicated!). Let us suppose
that the classical solution around which we expand consists of an anti-instanton at time τ1
and an instanton at τ2 (Figure 21); clearly τ2 > τ1.

Then we can write q = qc + y, and

SE [q] = SE [qc] + Squad
E [y].

We can evaluate SE[qc]: it is twice the action of a single instanton (assuming the I and A are
sufficiently far apart that any interaction is negligible): SE [qc] = 2S inst

E . The one-instanton
action S inst

E is

S inst
E =

∫

dτ
(

1

2
q̇2 + V (q)

)∣
∣
∣
∣
inst

= 2
∫

dτV (q)
∣
∣
∣
∣
inst

.

)τ
a

-a

q(

τβ/2−β/2

Figure 20: Multi-instanton configuration.
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With the instanton profile given by (58), the result is

S inst
E =

√

λ

3

2a3

3
.

To evaluate the PI with the action Squad
E [y], let us divide the imaginary time interval into

two semi-infinite regions I and II, where the boundary between the two regions is between
and well away from the A and the I (Figure 22).

Then we can write

K2
E =

β2

2
e−2Sinst

E

∫

I+II
Dy e−Squad

E
/h̄. (60)

Here the first factor represents integration over the positions of the A and I (remember that
the A must be to the left of the I!). The quadratic action can be written

Squad
E = Squad

E I + Squad
E II ,

where Squad
E I is the quadratic action in the presence of an anti-instanton and Squad

E II is that
in the presence of an instanton.

Then the PI separates into two factors:
∫

I+II
Dy e−Squad

E /h̄ =
∫

I
Dy e−Squad

E I
/h̄ ·

∫

II
Dy e−Squad

E II
/h̄, (61)

where there is an implied integration over the intermediate position at the boundary of the
two regions. The quadratic no-instanton PI also separates into two factors:

∫

Dy e−Squad,0
E /h̄ =

∫

I
Dy e−Squad,0

E I
/h̄ ×

∫

II
Dy e−Squad,0

E II
/h̄, (62)

where the superscript “0” denotes that this is the PI about a no-instanton (constant) back-
ground. We can combine (61) and (62) to give:

∫

I+II
Dy e−Squad

E
/h̄ =

∫

Dy e−Squad,0
E

/h̄

∫

I Dy e−Squad

E I
/h̄

∫

I Dy e−Squad,0
E I

/h̄

∫

II Dy e−Squad

E II
/h̄

∫

II Dy e−Squad,0
E II

/h̄
. (63)

q( )τ

τ

a

-a

Figure 21: Anti-instanton-instanton.
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But
∫

I Dy e−Squad

E I
/h̄

∫

I Dy e−Squad,0
E I

/h̄
=

∫ Dy e−Squad

E
/h̄

∫ Dy e−Squad,0
E /h̄

(64)

and similarly for the last factor in (63), so we obtain

∫

I+II
Dy e−Squad

E /h̄ =

√
ω

πh̄
e−βω/2R2,

where R is the ratio of the PI in the presence and absence of an instanton (or, equivalently,
anti-instanton) given in (64). Substituting this into (60),

K2
E = e−2Sinst

E /h̄

√
ω

πh̄
e−βω/2R2β

2

2
.

A similar argument gives

K4
E = e−4Sinst

E /h̄

√
ω

πh̄
e−βω/2R4β

4

4!
,

and so on for subsequent terms in the expansion (59).
Summing these contributions, we get

KE =

√
ω

πh̄
e−βω/2




1 +

(

βRe−Sinst
E /h̄

)2

2!
+

(

βRe−Sinst
E /h̄

)4

4!
+ · · ·






=

√
ω

πh̄
e−βω/2 cosh

(

βRe−Sinst
E /h̄

)

=
1

2

√
ω

πh̄
e−βω/2

(

eβRe
−Sinst

E
/h̄

+ e−βRe
−Sinst

E
/h̄
)

.

Now we must recall why we’re calculating this object in the first place. The propagator can
be written as in (53):

KE =
∑

n

〈a|n〉〈n |a〉 e−βEn/h̄.

τ

Region I Region II

Figure 22: Division of imaginary time into two regions, one containing the anti-instanton,
the other containing the instanton.
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By comparing these two expressions we see that the lowest two energies are

h̄ω

2
− h̄Re−Sinst

E /h̄ and
h̄ω

2
+ h̄Re−Sinst

E /h̄.

So the energy splitting is given by

∆E = 2h̄Re−Sinst
E /h̄. (65)

∆E is clearly non-perturbative: it cannot be expanded as a power series in h̄ (or, equivalently,
in λ).

In principle, we should calculate the ratio

R =
(instanton background PI)

(constant background PI)
∼ ratio of determinants,

but I don’t know how to compute it other than by doing a very arduous, technical calculation;
luckily, time will not permit it. The interested reader can consult the book by Sakita for a
discussion of this calculation.

As a final note, we have calculated the PI with q = q′ = a; a good exercise is to do the
analogous calculation for q = −a, q′ = a.

9.4 Instantons in a Periodic Potential

Consider a particle moving in a one-dimensional periodic potential (Figure 23).

q

V(q)

Figure 23: One-dimensional periodic potential.

With two minima, as we have seen, instantons enable us to calculate the energy splitting
between the lowest-energy states of even and odd parity. In a periodic potential, we will see
that a continuum of energies arise.

Let us label the classical minima of V by an integer, j. Clearly this model will have
solutions analogous to the instantons above, going from any minimum of V to the adjacent
minimum. We define an instanton as the classical solution going from any j to j + 1, and
an anti-instanton as that going from j to j − 1. Then the Euclidean PI to go from j = 0 to
j = 0, for instance, can be computed in a manner similar to the calculation of the previous
section. This time any number and any order of instantons and anti-instantons are possible,
subject to the constraint that nI = nA.



9 INSTANTONS 53

A calculation similar to that of the previous section results in the following expression
for the propagator:

KE(0, β/2; 0,−β/2) =

√
ω

πh̄
e−βω/2

∞∑

n=0

1

n!2




e−Sinst

E /h̄Rβ
︸ ︷︷ ︸

≡Q






2n

=

√
ω

πh̄
e−βω/2

∞∑

n,n′=0

Qn

n!

Qn′

n′!

∫ 2π

0

dθ

2π
eiθ(n−n′)

=

√
ω

πh̄
e−βω/2

∫ 2π

0

dθ

2π

∞∑

n=0

(Qeiθ)n

n!

∞∑

n′=0

(Qe−iθ)n′

n′!

=

√
ω

πh̄
e−βω/2

∫ 2π

0

dθ

2π
exp{Qeiθ} exp{Qe−iθ}

=

√
ω

πh̄
e−βω/2

∫ 2π

0

dθ

2π
exp

{

2βRe−Sinst
E /h̄ cos θ

}

.

The derivation of this is a worthwhile exercise. From it, we can read the energies:

E(θ) =
h̄ω

2
− 2h̄Re−Sinst

E /h̄ cos θ.

The second factor is an expression of the well-known result that the degeneracy is broken
nonperturbatively; the energies form a continuum, depending on the value of θ.

Another application of instantons in quantum mechanics is the phenomenon of tunneling
(barrier penetration). The instanton method can be used to calculate the lifetime of a
metastable state in a potential of the form depicted in Figure 15. We will not discuss this
application.

Instantons also appear in (and are by far most useful in) field theory. In certain field
theories the space of finite-Euclidean-action configurations separates into distinct topological
classes. An instanton is a nontrivial configuration of this type. The necessary topological
requirements for this to occur are not hard to satisfy, and the list of theories that have
instantons includes the Abelian Higgs model in 1+1 dimensions, the O(3) nonlinear σ-
model in 1+1 dimensions, the Skyrme model in 2+1 dimensions, and (most significantly)
QCD. Instantons give rise to a host of interesting phenomena depending on the model,
including confinement (not in QCD though!), θ-vacua, a solution of the U(1) problem in
strong interactions, and the decay of a metastable vacuum. Unfortunately time does not
permit discussion of these fascinating phenomena.



10 Summary and Gross Omissions

In this set of lectures the subject of path integrals has been covered starting from scratch,
emphasizing explicit calculations in quantum mechanics. This emphasis has its price: I have
not had time to cover several things I would have liked to discuss. My hope is that having
been subjected to calculations in gory detail for the most part in the relatively familiar
context of quantum mechanics, you will be able to study more complicated and interesting
applications on your own.

Here is a list of some of the important aspects and applications of this subject which I
didn’t have time to discuss:

1. Fermi fields and Grassmann functional integration;

2. Gauge theories (gauge fixing and ghosts arise in a particularly elegant way);

3. Feynman’s variational method and application to the polaron (electron moving in a
crystal environment);

4. Derivation of the Landau-Ginsburg theory, including application to superconductivity;

5. Instantons in field theory;

6. Critical phenomena.

I hope that, in spite of these unforgivable omissions, these lectures have been worthwhile.
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