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Quadrupole Contribution in Semiclassical Radiation Theory
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Within the frame-work of semiclassical theory two-level approximation in atomic system has
been considered. Model proposed by M.D. Crisp and E.T. Jaynes has been modified. It has been
shown that the time-dependent frequency shift depends on the higher multipole moments, retained
in the Taylor expansion of electromagnetic field.
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Issues, related to the problem of interaction of photon and micro-particle, in their full length are beyond the scope
of quantum mechanics. They cannot be considered without invoking additional principles concerning the laws of
occurrence and disappearance of electromagnetic field. According to quantum mechanics atom should remain in
excited state for long in absence of external field, whereas experiment shows that atom transforms into normal state
emitting photon. This contradiction can be explained if we take into account the fact that the moving electron creates
electromagnetic field which acts on the electron. Several authors tried to consider this reverse action of field on
electron several ways. One of these methods was proposed by Jaynes and Cummings [1] in 1963 that was further
developed by Jaynes and Co and many others [2–7].

In classical electrodynamics the radiative process are calculated from self-energy of the electron in external fields.
In contrast, in quantum electrodynamics, the self-energy is first thrown away and one begins with bare particles; then
the self-energy is put back in photon by photon, hence the use of perturbation theory. Recently, Barut and coauthors
developed a quantum electrodynamics based on self-energy [8,9].

Authors of the papers mentioned previously mainly confined their study within electric dipole moment. Here
we make an attempt to enlarge this study taking into account the moments of higher order, particularly electric
quadrupole moment.

Let us consider a nonrelativistic, spinless particle in external magnetic field. It can be described by the Hamiltonian

Ĥ =
1

2m

[

p̂−
e

c
A

]2
−
e2

r
(1)

Varying this Hamiltonian with respect to A and using the continuity equation ∂ρ
∂t

+ divj = 0 one finds

j =
ieh̄

2m
{Ψ∇Ψ∗ − Ψ∗∇Ψ} −

e2

mc
AΨΨ∗ (2)

ρ = eΨ∗Ψ (3)

Taking the field to be weak one we further neglect the diamagnetic term in the Hamiltonian and current density.
Now, any state of atomic system may be expressed as

Ψ(r, t) =
∑

α

aα(t)ψα(r) (4)

where ψ(r) is the eigen functions of Ĥ0 = −(h̄2/2m)∇2 − e2/r, i.e.,

Ĥ0ψα(r) = Eαψα(r)

Putting (4) into (3) we obtain

j(t, r) =
eh̄

2mi

∑

α,β

[

ραβψ
∗

β∇ψα − ρβαψβ∇ψ
∗

α

]

, (5)

where
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ρβα(t) = aα(t)a∗β(t) = ραβ(t)∗ (6)

is the βα density matrix element of the atom in the Schroediger picture that evolves according to

ih̄ρ̇αβ(t) =
∑

γ

[Ĥαγργβ − ραγĤγβ] (7)

Since the magnetic field obeys the Maxwell equations, for A in Coulomb gauge (divA = 0) we can write

∇2A−
1

c2
∂2A

∂t2
= −

4π

c
j⊥ (8)

Here j⊥ is the transverse current density and defines as

j⊥ =
1

4π
∇×∇×

∫

j(t,x′)

|x − x′|
d3x′

Further we denote j⊥ = j. The solution to the Maxwell equation can be written as

A(x, t) =
1

c

∫

j(x′, t− |x − x′|/c)

|x − x′|
d3x′. (9)

Taylor expanding the expression for j one gets

A(x, t) ≈

∫

j(x′, t)

|x − x′|
d3x′ −

1

c

∫

∂j(x′, t)

∂t
d3x′ +

1

2c2

∫

∂2j(x′, t)

∂t2
|x− x′|d3x′ + · · · (10)

Further expanding |x − x′| for x′ << x one finds

A(x, t) ≈

∫

j(x′, t)

|x − x′|
d3x′ −

1

c

∫

∂j(x′, t)

∂t
d3x′ +

x

2c2

∫

∂2j(x′, t)

∂t2
d3x′ −

x

2c3r

∫

j̈x′d3x′ − · · · (11)

Putting Ψ =
∑

α aα(t)ψα(x, t), where ψ: H0ψα = Eαψα into the equation above and retaining the electric dipole and
quadrupole moments we find

A(x, t) ≈
∑

αβ

ραβ(t)
[ −ieh̄

2π2mc

∞
∫

0

dk

∫

dΩ(β|e−ik·x′

∇|α)⊥e
ik·x

+
( 2

3c2
Ωαβ +

ir

3c3
Ω3

αβ

)

D
(1)
αβ −

ixα

2c3r
Ω3

αβD
(2)
αβ

]

+ A0(x, t) (12)

where the transition frequencies and the electric dipole and quadrupole moments are defined, respectively, as

Ωαβ = (Eα − Eβ)/h̄, (13a)

Dαβ =

∫

ψαexψ
∗

βdx, or in components D
(i)
αβ =

∫

ψαex
iψ∗

βdx (13b)

Q
(ij)
αβ =

∫

ψαer
ijψ∗

βdx, rij =
1

2
(xixj −

1

3
r2δij), r = |x|, (13c)

Here A0 is an externally applied field. Putting the expression for A into (7), for density matrix we find

ρ̇αβ = −iΩαβραβ − i
∑

κ

(Γακ − Γκβ)ρκκραβ

−
∑

κ

[1

2
(Aακ + Aβκ) − (Bακ + Bβκ) + (Cακ + Cβκ)

]

ρκκραβ (14)

−
A0(0, t)

h̄c

∑

κ

[

ΩακDακρκβ − ΩκβDκβρακ

]

,

where we define
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Γαβ ≡ −
e2h̄

2π2m2c2

∞
∫

0

∫

dΩ(α|eik·x′

|β)⊥(β|e−ik·x|α)⊥ = Γβα, (15a)

Aαβ ≡
4

3
(DαβDβα/h̄c

3)Ω3
αβ = −Aβα, Einstein coefficient (15b)

Bαβ ≡ (Dαβ∆αβ/h̄c
4)Ω3

αβ ≡,−Bβα, ∆αβ =

∫

rJ̄αβ(x)dx, (15c)

Cαβ ≡ (Qij
αβδ

k
αβ/h̄c

4)Ω3
αβ ≡ −Cβα, δk

αβ =

∫

xk

r
J̄αβ(x)dx. (15d)

Here we denote J̄αβ = (eh̄/2mi)
[

ψ∗

β∇ψα − ψβ∇ψ
∗
α

]

.

The equation (14) can be written in the following way where the repeating index denotes summation

ρ̇αβ = −iΩαβργτMαβγτ − i(Γακ − Γκβ)ρκκργτMαβγτ

−
[1

2
(Aακ + Aβκ) − (Bακ + Bβκ) + (Cακ + Cβκ)

]

ρκκργτMαβγτ (16)

−
A0(0, t)

h̄c

[

ΩακD
(1)
γκ ρκτ − ΩκβD

(1)
κτ ργκ

]

Mαβγτ ,

where Mαβγτ = δαγδβτ .
As one sees from (14) or (16), the off-diagonal density matrix elements oscillate at frequencies Ωαβ +δΩαβ(t), where

the time-dependent frequency-shift is

δΩαβ(t) = −
∑

κ

(Γακ − Γκβ)ρκκ(t) (17)

Now the expectation of dipole moment of the atom

< µ >=

∫

Ψ∗(x, t)exΨ(x, t)dx

in account of (4) can be written as

< µ >=
∑

αβ

Dαβρβα(t).

Thus we see that the off-diagonal matrix elements are directly connected with the expectation of dipole moment.
In what follows we take into account only two of these levels. We choose the zero from which we measure the

energies to be midway between the two active levels, so that

E2 = −E1 (18)

The equation (16) can then be written as

ρ̇11 = −2qρ11ρ22 (19a)

ρ̇22 = 2qρ11ρ22 (19b)

ρ̇12 = −i
[

Ω12 + Γ11ρ11 − Γ22ρ22 − Γ12(ρ11 − ρ22)
]

ρ12 + q(ρ11 − ρ22)ρ12 (19c)

ρ̇21 = −i
[

Ω21 − Γ11ρ11 + Γ22ρ22 + Γ12(ρ11 − ρ22)
]

ρ21 + q(ρ11 − ρ22)ρ21 (19d)

where we denote 2q = A12 − 2B12 + 2C12.
Let us now rewrite ραβ in the form [10,11]

ραβ =
1

2

(

δαβ + Pjσ
j
αβ

)

(20)

where σj are the Pauli matrices and P = (Px, Py, Pz) is a unit vector of three-dimensional Poincaré representation.
From (20) follow:
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ρ11 =
1

2

(

1 + Pz), ρ12 =
1

2

(

Px − iPy),

(21)

ρ22 =
1

2

(

1 − Pz), ρ21 =
1

2

(

Px + iPy)

or equivalently,

ρ11 + ρ22 = 1, ρ11 − ρ22 = Pz, ρ12 + ρ21 = Px, ρ12 − ρ21 = −iPy (22)

In account of (21) and (22) from (19) we find the following system of equations

Ṗx = qPzPx + (Ω12 + τ + λPz)Py (23a)

Ṗy = qPzPy − (Ω12 + τ + λPz)Px (23b)

Ṗz = q(P 2
z − 1) (23c)

where we denote τ = (Γ11 −Γ22)/2 and λ = (Γ22 +Γ11)/2−Γ12. The solutions to the system of equations (23) read

Px = cos [Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)] sech q(t− t0) (24a)

Py = sin [Ω12(t− t0) + τ(t − t0) + (λ/q)ln cosh q(t− t0)] sech q(t− t0) (24b)

Pz = −tanh q(t− t0) (24c)

Rewriting (24) in terms of ρ we find

ρ11 = 1/
[

exp [2q(t− t0)] + 1
]

, (25a)

ρ22 = 1/
[

exp [−2q(t− t0)] + 1
]

, (25b)

ρ12 =
[

exp
(

−i[Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)]
)]

sech q(t− t0), (25c)

ρ21 =
[

exp
(

i[Ω12(t− t0) + τ(t − t0) + (λ/q)ln cosh q(t− t0)]
)]

sech q(t− t0). (25d)

For the expectation value of the energy in account of (18) we find

< H0 > = E1ρ11(t) + E2ρ22(t) = −
h̄

2
Ω21(ρ22 − ρ11)

= −
h̄

2
Ω21tanh[q(t− t0)]. (26)

where as, for the expectation of the dipole moment we obtain

< µ > = D21(ρ12 + ρ21) = D21Px

= D21 sech q(t− t0) cos [Ω21t+ ϑ(t)], (27)

where we define

ϑ(t) = ϑ0 − τt− (λ/q)ln coshq(t− t0), ϑ0 = [(Γ11 − Γ22)/2 − Ω21]t0 (28)

and corresponds to a time-dependent frequency shift

δΩ21(t) = dϑ/dt = −τ − λtanhq(t− t0) (29)

Comparing (29) with those obtained in [2] one finds the additional frequency shift as

∆(δΩ21(t)) = λ
tanh[(C21 − B21)(t− t0)]sech

2[A21(t− t0)/2]

1 + tanh[A21(t− t0)/2]tanh[(C21 − B21)(t− t0)]
(30)

Thus we see that beside Einstein A coefficient, higher multipole moments, in particular quadrupole one, contribute
to the spontaneous decay of the atom from an exited state.
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