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Abstract

Lévy flights representation is proposed to describe earthquake characteristics like the

distribution of waiting times and position of hypocenters in a seismic region. Over 7500

microearthquakes and earthquakes from 1985 to 1994 were analyzed to test that its

spatial and temporal distributions are such that can be described by a Lévy flight with

anomalous diffusion (in this case in a subdiffusive regime). Earthquake behavior is well

described through Lévy flights and Lévy distribution functions such as results show.
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Introduction

According to current plate tectonics, (Kanamori and Boschi, 1983) it is believed that

lithospheric-plate motions, induced by mantlewide convection, create on-going plate-

collisions and thus stresses which accumulate at the borders of the plates. This can be

viewed as an incoming stress flux at the border of the system (we considered here a

single lithospheric plate). When the plate, which is stressed, is deformed so strongly that

the deformation exceeds a certain limit (which may change from place to place), a

rupture occurs and an earthquake follows. An image of earthquake occurrence is that of

sliding of two fractional brownian profiles. An earthquake occurs when there is an

overlapping of the two profiles representing the two fault faces (Hallgass et al, 1996).

The current research about earthquakes exhibits some important concepts recently

introduced in Physics: Self-organised criticality (SOC). This SOC is perhaps one of the

concepts recently most used in this field. Fractal geometry, hierarchical models,



depinning and Lévy distributions are probably less used though intimately connected

with SOC. Bak, Tang and Wiesenfeld (1987) proposed that spatio-temporal non-linear

dynamical system, with quasi-static incoming and outcoming fluxes localized, for

instance, at the borders, evolve spontaneously towards a stationary self-organised

critical state. Neither length nor time scales others than those deduced from the size of

the system and that of the elementary cell appear in the system. Subsequently it has

been proposed that earthquakes may be an important natural phenomenon exhibiting

SOC (Takayasu and Matsuzaki, 1988; Sornette and Sornette, 1989; Bak and Tang,

1989). These developments revived interest in much earlier work in which seismicity

was modeled with blocks and springs. For instance, with a one dimension chain

(Burridge and Knopoff, 1967), spawning a series of studies involving numerical models

of block-spring systems of various types (Carlson and Langer, 1989a, 1989b;

Nakanishi, 1990; Brown, Scholz and Rundle, 1991). Scholz (1991) has argued that

earth’s entire crust is in a state of self-organised criticality. Thus the crust is everywhere

on the brink of failure. Sornette (1991) has given similar arguments. Earthquakes may

be the cleanest and most direct example of a self-organised critical phenomenon in

Nature, and this is widely recognized. Another important characteristic of earthquakes,

i.e., the migration of hypocenters and its description in terms of anomalous diffusion

has not received enough attention, in spite of it is closely related with criticality. This is

the main goal of our paper. The hypothesis of SOC for earthquakes leads to a power law

for the temporal fluctuations for earthquake occurrence, which rationalize many

observations. The Gutenberg-Richter law can be interpreted as a manifestation of the

Self-organised critical behavior of the earth dynamics (Bak and Tang, 1988). Bak

(1991) found that the powers may differ from different models, but there is also the

distinct possibility, known from equilibrium critical phenomena as universality that

power depends only on geometrical and topological features such as the spatial

dimension. Several groups have suggested that self-organised criticality is a natural

explanation for the Gutenberg-Richter law (Sornette and Sornette, 1989; Bak and Tang,



1989; Ito and Matzusaki, 1990; Correig et al, 1997). On the other hand, anomalous

diffusion processes generally occur in disordered systems, i.e., electronic conduction in

amorphous semiconductors, atomic diffusion in glass like materials and others. The

description of this phenomenon in terms of Lévy flights has shown to be adequate.

(Vázquez, Sotolongo-Costa and Brouers, 1998). This kind of diffusion is usually

modeled through a probability density of waiting times between successive steps in the

walk, Continuous Time Random Walks (CTRW). The theory of CTRW has been

extensively developed (Bouchaud and Georges, 1990 and references therein). The

existence of a wide distribution of waiting times leads to a subdiffusive regime where

the mean square displacement grows slower than time. As we will show in this paper,

hypocenters are well described by a model of CTRW with a subdiffusive regime.

Lévy Flight. Distribution of Hypocenters

Arguments have been presented about the fractal character of the geographic

distribution of hypocenters (Nakanishi et al, 1992) in the seismic region (we prefer to

speak about the Levy distribution of hypocenters). This kind of distribution could be

modeled by some type of anomalous diffusion determined by some dynamics based on

waiting times. Earthquakes can be considered as a relaxation mechanism of the earth

crust loaded with inhomogeneous stresses, which accumulate at lithospheric-plate

borders. This inhomogeneity determines an irregular distribution of hypocenters. Once

an earthquake occurs, the whole landscape of the stresses on the earth crust redistributes

itself, and a new event will occur when the accumulated stresses surpass again the

threshold somewhere else (incidentally, these arguments remind the punctuated

equilibrium behavior in evolution and many other natural phenomena). The new place

of occurrence will be considered here as the new position of a random walk, which has

to wait for a time τw on each site before the next jump. Once an earthquake has occurred

somewhere, we can assume that the random walk has to wait until the redistribution of

stresses leads to a new earthquake somewhere else, at a distance x from the place of the

former seism. This jump occurs suddenly, so that the waiting time τx for the walker to



go from one point to another is much less than the waiting time τw in the place where

the last earthquake has occurred. The waiting time is a random variable distributed

according to a given law p(τw). We also assume that the waiting time is not correlated to

the length of the jump x, distributed as p(x). The distributions p(τw) and p(x) for a given

seismic region should differ. Indeed, since earthquakes occur mainly in some limited

regions (seismic regions), a size effect is imposed to the geographic distribution of

hypocenters. Then )(xp  must have finite variance. Assuming that the tail of p(x) is

described by a power law ( xxxp α−≈)( ) then 2≥xα  to ensure finite variance. If we

limit our analysis to a seismic region then we can imagine the hypocenter as a random

walk confined in a given region with a wide distribution of waiting times. We adopt the

CTRW model to describe the migration of earthquakes in a given seismic region. This

standpoint is supported by the representation of earthquakes as the slipping between

asperities, where displacements between blocks of a fault occur leading to the seism.

This model is a good tool to represent the migration of hypocenters in a seismic region

as a problem of the diffusion of a random walk in a comb-like structure. So, CTRW

analysis is directly applicable and has well known results for the distribution of waiting

times and mean square displacement (Buochaud and Georges, 1990). The diffusion

process is characterized by the scattering function ),( tkF , the Fourier transform of the

diffusion front. Properties like the mean square displacement can be derived from this

function, i.e.:

0
222 / =∂∂>=< kkFx (1)

Let N  be the number of steps performed by a walker during time t . N  is, in general, a

random variable, which depends on the duration of the jumps and waiting times. The

scattering function can thus be expressed as a sum over all possible jumps during time:

∫= dNtNPNkFtkF ),(),(),( (2)

where ),( NkF  is the scattering function of the same problem, but considering regular

duration of the jumps and no waiting time, and ),( TNP  stands for the probability



distribution of N  jumps at a fixed time t . The total displacement after N  steps is given

by:
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In the right hand side we have a sum of mutually independent random variables with the

common distribution p(x), with zero mean. The limit distribution for large N  will be a

stable Lévy distribution (Feller, 1966; Gnedenko, 1954), i.e.:

uNlX x
N
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where the symbol ≈ denotes that random variables in both sides have the same

distribution and u  follows the symmetric Lévy distribution )(0, uLα . If p(x) has finite

variance then σ=*l  and αx =2, while if p(x) ∼ 
µα −−1

0 xl  with 0<µ<2 then *l ~ 0l  and αx

=µ. The canonical (Fourier transform) representation of Lévy stable laws is (for α ≠ 1):
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where α and β  are real numbers defined in the intervals 0<α=2 and -1=β=1. The case

α= 2 and β=0 corresponds with the Gaussian distribution, which decays faster than any

power law for large arguments. On the contrary, all Lévy distributions, except the

Gaussian, have the asymptotic behavior for u >>1 (Feller, 1966; Gnedenko, 1954):

α
αβ
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Then, from equations (4) and (5), it follows that:
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On the other hand, the number of steps after time t  is given by (assuming τw  >> τx):

∑
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N
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(8)

where τwi are the waiting times between earthquakes. In the right hand side of equation

(8) we have a sum of independent random variables, with distribution p(τw). The limit



distributions for large N  will follow Lévy distributions (Feller, 1966; Gnedenko,

1954):

uNNt w
w

αττ /1*+≈ (9)

where u  follows the Lévy distribution )(1 uLα . The first term in the right hand side

appears only if p(τw) has finite mean, and τ is given by the sum of the finite means. If

p(τw) has finite variance ( then *
wα =σ and αw=2, while if p(τw)~τ0

αwτw
-1-µ  (0<µ<2) then

τw~τ0 and αw=µ. Let us assume that the distribution of waiting times obeys a very wide

distribution function so that αw can be assumed to be αw=1 and the first term in

equation (9) does not appear. The restriction of earthquakes to some regions of the earth

crust is an argument to support the hypothesis that αx>>αw. From equations (2), (7) and

(9) it follows that:
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where the functional dependence of N  with u  and t  is determined from equation (9).

If, as assumed, the distribution of waiting times is wide, the second term of the r.h.s. is

dominant and  wwutN ατ )/(= . To use this result and equation (1) in (10) to obtain the

mean square displacement, we must perform a realistic evaluation taking into account

that the total displacement at time t  cannot be larger than vt , where v is the velocity of

displacement of the hypocenter and therefore there is a cut-off 1~ −tkc  for small values

of k . Thus we evaluate equation (1) in ckk =  instead of in 0=k . We obtain:

22 ~ +−>< xwtx αα (11)

As we have supposed that the geographic distribution of hypocenters has finite variance,

we put, in a rough approximation, αx ≅ 2, obtaining:

wt~ α>< 2x (12)

This corresponds to a subdiffusive behavior since the wide character of waiting times

implies small values for αw. To gain insight in the allowed values for αw its is helpful to

relate the nature of the rough profile of faults with the known problem of CTRW in



comb-like structures. In that model the waiting time distribution function is (Bouchaud

and Georges, 1990):

1.5)(1 t~t~)( wατ +Ψ (13)

If diffusion occurs in a comb-like structure as that evoked by the fault profile, this then

implies 0.52 t~>< x for the mean square displacement. To check the validity of this

assumption in the next section we will analyze the diffusion of hypocenters in the

Central Betics zone.

Data from South Spain Earthquakes

The Andalusian Seismic Network (Alguacil, 1986) (located in Southern Spain) includes

18 stations for microearthquake detection, 10 accelerographs for strong and weak

motions and 6 Broad-Band sets. This network, belonging to the Andalusian Geophysics

Institute, provide us a wide seismic catalogue that involve thousands of earthquakes and

microearthquakes. The location feasibility of the network allow us to have high

precision hypocenter determination (Serrano, 1999). The area under study has a high

activity microearthquakes with hypocenters shallower than 20 km. However also

intermediate and deep seismic activity is detected (Vidal, 1986; Morales et al, 1997).

From the point of view of seismic activity, Southern Spain is the region with the highest

hazard level in Spain due to it is located in the interaction zone between the Euroasian

and African plates. The area under study is situated in the central part of the Betic

Cordilleras (Southern Spain) (figure 1). The structure of the crust is characterized by a

rougly  flat Moho (∼38 km) with a suddely change in the Moho depth in the transition to

the Alboran sea domain (Galindo-Zaldivar et al, 1997; Serrano, 1999) .The faulting

present in the zone created a set of blocks that are structured at different levels that

allow independent movements of them. There are also compressive and extensional

coeval deformations (Galindo-Zaldivar et al, 1999; Morales et al, 1999). These features

fit into a general compressive (Morales et al, 1999) framework, which produces

contemporary extensional and compressive deformations. The seismogenetic areas are

concentrated in three fracture systems having N10-30E, N30-60W and N70-100E



directions and all the fracture systems are embedded in the Betic Area (Vidal, 1986;

Peña et al, 1991; Posadas et al, 1993a; Posadas et al, 1993b).

Results and conclusions

Over 7500 microearthquakes and earthquakes from 1985 to 1994 (figure 1) were

analyzed to test that its spatial and temporal distributions are such that can be described

by a Lévy flight with anomalous diffusion (in this case in a subdiffusive regime). Figure

2 shows the result after to apply Lévy Flight Model to the present data. Normalized

distance vs time were used to depict units: D is the average distance between

earthquakes and τ was chosen to be the average time between two consecutively

earthquakes. It has been found that data can be modeled with a potential law

cbxay += , with parameters a ≅ -0.4, b ≅ 2 and c ≅ 0.5, indicating its subdiffusive

behavior. The correlation factor was R2=0.9974 although it necessary to understand that

because of the cumulative curves include non-negative variables, such procedure

Figure 1. The area under study is located in the interaction zone between Europe and Africa plates. More than 7500
epicenters were studied. Longitude and Latitude are, respectively, East Longitude and North Latitude. Data
belonging to the Andalusian Institute of Geophysics are recollected by the Andalusian Seismic Network.



overestimate R2 value. High correlation factor shows that we have found a very good

confirmation of equation (12) with αw predicted by equation (13). Correspondingly,

figure 3 shows the waiting time distribution function, i.e., the normalized time

distribution between earthquakes for all the former processed events. The graph shows a

logarithmic plot with a slope  around 1.7. This fact corroborates in a satisfactory

measure our standpoint.

Figure 2. Applying Lévy Flight Model to the present data, normalized
distance versus time were used to despict units. Thin line represents
results from actual data; wide line is the fitted curve. It has been found

that data can be modeled with a potential law cbxay += , with

c ≅ 0.5, indicating its subdiffusive behavior.

Figure 3. The waiting time distribution function, i.e., the
normalized time distribution between earthquakes for all the
former processed events. The graph shows a logarithmic plot
with a slope  around 1.7.



The concept of SOC provides a very stimulating framework within which to tackle the

problem of defining and understanding the mechanics of the Lithosphere, i.e., the

connection between rupture at short time scale to that at large time scales and the

geometric characteristics (scaling, Lévy distributions, etc.) essentially linked with it.

We have found an anomalous diffusive behavior (subdiffusive behavior) in the

description of hypocenter migration. This indicates that the system (crust in the Central

Betic Area) follows a non-equilibrium dynamics. The migration of earthquakes can be

described as the diffusion of a walker in a comb-like structure, i.e., it can be described

with the CTRW model. A Lévy flight description was used to characterize spatial and

temporal distribution of earthquakes. Moreover, the exponent of the model for the mean

square displacement has been quantitatively determined from observations and its value

is 0.5184 with correlation factor equal to 0.9974. This value determines the temporal

occurrence of earthquakes, as was here shown applying the results of CTRW model.

Acknowledgements

This work was partially supported by the CICYT projects AMB97-1113-CO2-02,

AMB99-1015-CO2-02, the DGESIC project AMB1999-0129 (Almería University,

Spain) and the Alma Mater prize given by the  Havana University.

References

Alguacil, G.; (1986); Los instrumentos de una red telemétrica para microterremotos. La

Red Sísmica de la Universidad de Granada. PhD. Thesis. 228 pp. University of

Granada.

Bak, P.; (1991); Self-organised criticality and the perception of large events. In “

Spontaneous formation of space-time structures and criticality”. Riste, T;

Sherrintong, D. Eds. Kluwer Academic Publishers.

Bak, P.; Tang, C.; Wiesenfeld, K.; (1987);” Self-organised criticality: an explanation of

1/f noise”. Phys. Rev. Lett., 59, 381-384.



Bak, P.; Tang, C.; Wiesenfeld, K.; (1988); Self-organised criticality. Phys. Rev. A, 38,

364-374.

Bak, P.; Tang, C.; (1989); Earthquakes as a Self-organised critical phenomenon. J.

Geophys. Res., 94, 15635-15637.

Bouchaud, J. P. and Georges, A. (1990); Anomalous diffusion in disordered media:

Statistical mechanisms, models and physical applications. Physics Reports 195

Nos. 4 & 5, 127-293.

Brown, S.; Scholz, C.; Rundle, J.; (1991); A simplified spring-block model of

earthquakes. Geophys. Res. Lett., 18, 215-218.

Burridge, R.; Knopoff, L.; (1967); Model and theoretical seismicity. Bull. Seism. Soc.

Am, 57, 341-371.

Carlson, J.M.; Langer, J.S.; (1989a); Properties of earthquakes generated by fault

dynamics. Phys. Rev. Lett., 62, 2632-2635.

Carlson, J.M.; Langer, J.S.; (1989b); Mechanical model of an earthquake fault. Phys.

Rev. A, 40, 6470-6484.

Correig, A.; Urquizú, M.; Vila, J.; (1997); Aftershocks series of event February 18,

1996: an interpretation in terms of Self-organised criticality. J. Geophys. Res.

102, B12, 27407-27420.

Feller, W.; (1966); An Introduction to Probability Theory and Applications. Vol. 2.

Wiley, New York, 1966.

Galindo-Zaldivar, J., A. Jabaloy, I. Serrano, J. Morales, F. Gonzalez-Lodeiro & F.

Torcal (1999). Recent and present-day stresses in the Granada basin (Betic

Cordilleras: Example of a late Miocene-present-day extensional basin in a

convergent plate boundary. Tectonics,vol 18, 686-702.

Galindo-Zaldívar, J., Jabaloy, A., González-Lodeiro, F., and Aldaya, F., 1997, Crustal

structure of the central sector of the Betic Cordillera (SE Spain): Tectonics, v. 16,

p. 18-37.



Gnedenko, B.V. and A. N. Kolmogorov; (1954); Limit distributions for sums of

Independent Random Variables. Addison Wesley Reading, MA.

Hallgass, R., Loreto, V., Mazzella, O., Paladin, G., Pietronero, L.; (1996); Earthquake

statistics and fractal faults. cond-mat/9606153.

Ito, K.; Matsuzaki, M.; (1990); Earthquakes as Self-organised critical phenomena. J.

Geophys. Res. 95, B5, 6853-6860.

Kagan, Y.; Knopoff, L.; (1980); The spatial distribution of earthquakes: the two-point

correlation function. Geophys. J. R. Astron. Soc. 62, 303-320.

Kanamori, H.; Boschi, E. (Editors); (1983); Earthquakes, observation, theory and

interpretation. North-Holland, Amsterdam.

Morales, J., I. Serrano, F. Vidal & F. Torcal (1997).The depth of the earthquake activity

in the Central Betics (Southern Spain).Geophys. Res. Lett. 24:3289-3292.

Morales, J.,  I. Serrano,  A.  Jabaloy,  J. Galindo-Zaldivar, D. Zhao, F. Torcal, F. Vidal

& F. Gonzalez-Lodeiro (1999). Active continental subduction beneath the Betic

Cordillera and Alborán Sea. Geology Vol. 27: 735-738.

Nakanishi, H.; (1990); Cellular automation model of earthquakes with deterministic

dynamics. Phys. Rev. A, 41, 7086-7089.

Nakanishi, H., Sahimi, M., Robertson, M. C., Sammis, C. C., Rintoul M. D.; (1992);

Fractal properties of the distribution of earthquake hypocenters. J. de Physique,

3, 733-739.

Peña, J.; Vidal, F.; Posadas, A.; Morales, J.; Alguacil, G.; De Miguel, F.; Ibáñez, J.;

Romacho, M.; López-Linares, A.; (1993); Space clustering properties of the

Betic-Alboran earthquakes in the period 1962-1989. Tectonophysics, 221, 125-

134.

Posadas, A.M.; F. Vidal; F. De Miguel; G. Alguacil; J. Peña; J.M. Ibañez; J. Morales;

(1993a); "Spatial-temporal analysis of a seismic series using the Principal

Components Method. The Antequera Series (Spain), 1989. J. Geophys. Res., 98,

1923-1932.



Posadas, A.M.; F. Vidal; J. Morales; J.A. Peña; J. Ibañez; F. Luzon; (1993b); "Spatial

and temporal analysis of a seismic series using a new version of three point

method. Application to Antequera (Spain) 1989 earthquakes". Physics of the

Earth and Planetary Interiors, 80, (1993), pp. 159-168.

Scholz, C.; (1991); Earthquakes and faulting: Self-organised critical phenomena with

characteristic dimension. In Spontaneous Formation of space-time Structures

and Criticality. Riste, T. And Sherrington, D. Eds. Kluwer Academic Publishers.

The Netherlands.

Serrano, I. (1999); Distribución espacial de la sismicidad en las Cordilleras Béticas-Mar

de Alborán. PhD thesis. Universidad de Granada. 231 pp.

Sornette, D.; (1991); Self-organised Criticality in Plate Tectonics. In Spontaneous

formation of space-time structures and criticality. Riste, T; Sherrintong, D. Eds.

Kluwer Academic Publishers.

Sornette, A.; Sornette, S.; (1989); Self-organised criticality and earthquakes. Europhys.

Lett. 9, 197-202.

Takayasu, H.; Matsuzaki, M.; (1988); Dynamical phase transition in threshold elements.

Phys. Lett. A, 131, 244-247.

Vazquez, A., Sotolongo-Costa, O., Brouers, F. (1998); Diffusion regimes in Lévy

flights with trapping.  Physica A 264 424-431.

Vidal, F.; (1986); Sismotectónica de la región Béticas-Mar de Alborán. PhD Thesis.

Universidad de Granada. 450 pp.


