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We look for the properties of empty space-time proceeding from the general relativity princi-
ple. An infinite number of the so-called covariant ether theories (CETs) has been found, 
which, like the special relativity theory (SRT), satisfy all known experimental facts in the 
physics of empty space-time. In this connection a new approach to the problem of experimen-
tal testing of SRT is discussed. In particular, we show that covariant ether theories predict a 
dependence of Thomas-Wigner angle on an “absolute” velocity of a reference frame of obser-
vation. Hence, a measurement of this dependence is capable to distinguish SRT and CETs. It 
has been shown that the Lorentz ether theory is one of CETs, corresponding to the admissible 
Galilean transformations in physical space-time. Hence, we conclude that SRT and Lorentz 
ether theory can be distinguished experimentally, at least in principle. A crucial experiments, 
based on the Mössbauer effect, has been proposed. 
 
 
1. Introduction 
 
Modern physics accepts two relativity principles: the special relativity principle (SRP) assert-
ing that fundamental physical equations do not change (they are form-invariant) under trans-
formations between inertial reference frames in an empty space, and the general relativity 
principle (GRP) stating that fundamental physical equations do not change their form (they 
are covariant) under transformations between any frames of references. Strictly speaking, the 
GRP requires a covariance of physical equations with respect to "admissible" space-time 
transformations, which keep the requirements g00>0, gijdxidxj<0, where g is the metric tensor, 
and i, j=1...3.  
 Both relativity principles were introduced by Einstein at the beginning of 20th century: 
SRP lied on the basis of special relativity, while GRP in combination with the equivalence 
principle gave rise to general relativity theory.  
 The GRP is one of the deepest principles of physics and it means that any phenome-
non can be described from any reference frame, which can be realized in nature [1-3]. A prob-
lem of experimental test of GRP has no further meaning than a problem of experimental test-
ing of space-time homogeneity, causality principle, etc. The mentioned principles constitute 
the corner stones of modern knowledge, and we simply accept their validity: otherwise the 
whole of modern physics would be destroyed. 
 A fundamental physical consequence of SRP is an impossibility to reveal an absolute 
velocity of an inertial reference frame. There is a widespread opinion that SRP is a direct con-
sequence of GRP in the case of inertial motion in an empty space. If it were actually so there 
would be no meaning to testing SRP experimentally. Indeed, in such a case an experimental 
test of SRP would mean simultaneously a test of GRP, and such experiments seem to be im-
practical. However, the SRP in not, in general, a consequence of GRP; it represents an inde-
pendent physical assumption. Only in the case when empty space-time has a pseudo-
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Euclidean geometry with Minkowskian metric1 in any inertial frame (which special relativity 
theory demands) can we derive a form-invariance of physical equations with respect to the 
Lorentz transforms as the special inference from the covariance principle. At the same time, 
from the viewpoint of formal logic we may introduce into consideration ether theories, where 
a metric in an arbitrary inertial frame depends on its velocity in the ether. If, nevertheless, the 
metric coefficients in such a co-ordinate geometry continue to be “admissible”, such a theory 
would be in agreement with GRP, but in contradiction with SRP. 
  The present paper has a goal to inspect more closely the relationship between SRP and 
GRP, as well as to analyze the experimental facts from this point of view. Section 2 derives 
some important consequences of GRP when applied to empty space. Section 3 investigates 
the properties of hypothetical empty space-time with metrics that differ from Minkowskian, 
and Section 4 describes the covariant ether theories (CETs), which are developed on the basis 
of GRP and symmetries of an empty space-time. Section 5 presents possible experiments for 
verification of CETs, based on the Mössbauer effect. Finally, Section 6 contains some conclu-
sions.  
 
2. About some consequences of GRP for the case of inertial motion in an empty space 
 
Let us write for an empty space a space-time transformation between two inertial reference 
frames in the general form 

β
αβα 'xAx = ,            (1) 

where α,β=0...3, and x, x′ are four-vectors in the inertial frames. It is known that the principle 
of space-time homogeneity ensures linearity of this transformation [4]. The GRP requires that 
the transformations A constitute a group of Lee with ten parameters: four initial space-time 
coordinates, three Eulerian angles, and three projections of a relative velocity [4]. Further, let 
us exclude the trivial space translations and rotations. In such a case the transformation de-
pends upon a single vectorial parameter - relative velocity vr , i.e. 

β
αβα ')( dxvAx r

= .          (2) 
The GRP also requires validity of the reciprocity principle [5]: the mutual velocities of two 
inertial reference frames should differ only by sign 
A-1( vr )=A( vr− ).          (3) 
In its turn, the reciprocity principle ensures that detA=1 [5]. Thus, the transformations A are 
special orthogonal. 

In fact, this is all that we can say about the properties of the matrix A proceeding from 
GRP and the principles of symmetry of empty space-time. In order to determine A in closed 
form, it is necessary to define a model of an inertial reference frame and to make some addi-
tional physical assumptions. (For example, under Einstein's postulates, the matrix A is equal 
to the Lorentz matrix L in Cartesian inertial reference frames). For these reasons nobody tried 
to pursue an analysis of the properties of empty space-time within GRP. However, as we will 
see below, poor information already obtained on the basis of GRP about the matrix A be-
comes nevertheless sufficient to determine a number of general laws of inertial motion. Such 
an analysis seems important for a better understanding of the experimental basis of SRT. In-
deed, often an experiment dealing with inertial motion in empty space is unambiguously con-
sidered as a test of SRP. However, if we show that the result of this or that experiment can be 
explained by the GRP solely, that it means a test of GRP, not SRP, then such an experiment 
becomes useless for physics. 
                                         
1 By definition, the Minkowskian metric tensor has the form ,1,1 33221100 −==== gggg  and all others 

0=αβg , where α, β=0…3. 
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In order to continue this consideration further, let us take a hypothetical assumption 
about existence of an “absolute space”, which has pseudo-Euclidean geometry with a Min-
kowskian metric. We designate a preferred frame, attached to the “absolute space”, as K0. We 
look for a possibility to measure the absolute velocity vr  within a moving frame K for space-
time transformation A in Eq. (2) with the properties defined above. 
 Consider two inertial frames K1 and K2 initially both resting in the absolute frame K0. 
The frame K1 contains some device D to measure the absolute velocity of that frame (by 
means of internal measuring procedures). Initially, v=0, and hence, the above mentioned de-
vice D stays in some state corresponding to v=0. Let us imagine that the frame K2 acquires 
some constant absolute velocity vr− , see Fig. 1, a. Such an operation does not influence our 
device D in K1, and thus, it remains in the original state. According to Eqs. (2), (3) one can 
denote a transformation from K1 to K2 as A-1( vr− )=A( vr ) and to conclude that A( vr ) has no 
effect on the device D. 

 Fig. 1: a – the frame К1 remains at rest in К0, while the frame К2 acquires a constant velocity vr−  in К0; 
b – the frame К2 rests in К0, and К1 moves at constant "absolute" velocity vr+  in К0. 
 
 One can consider now a different case. Namely, the frame K2 remains at rest in the 
absolute frame K0, while the frame K1 containing the device D acquires a constant velocity 

vr+  in the frame K0 (see, Fig. 1, b). For such a case, a transformation from K1 to K2 (and K0 
as well) takes on the same form A( vr ), as for Fig. 1, a. On the other hand, it has been found 
that the A( vr ) has no effect on the state of the device D. Thus, according to the GRP, an abso-
lute velocity is not observable in this kind of experiments. One can easily see that such a kind 
of experiments corresponds to a case where all inertial parts of the device D rest in the (labo-
ratory) frame K1. 
 Thus, we get the first general inference of GRP with respect to inertial motion in an 
empty space: no absolute motion with a constant velocity could be detected by a device 
having all inertial parts resting with respect to one another. This theorem explains the null 
results of all interference experiments searching for “ether wind”, beginning with Michelson-
Morley. 
 Let us consider now a device having inertial parts moving at constant non-zero relative 
velocities one versus another in the frame K1. Each part having a different constant velocity 
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iur  in K1 could be attached to its own proper inertial frame Ki. Then for the first motion dia-
gram (K1 at rest in K0, K2 moving at the constant velocity vr−  in the absolute frame K0, Fig. 
2, a), a transformation from each Ki to K2 takes on the form A-1( vr− )A( iur )=A( vr )A( iur ). Due 
to the fact, that a motion of the frame K2 has no effect on the D (belonging to K1) one can 
conclude that this transformation leaves all parts of the device D in the original state, regard-
less of the value of the index i, details of the transformation itself and particular construction 
of the device. In order to find the indication of D for the second motion diagram (K2 at rest in 
K0, K1 moving at the constant velocity vr+  in K0, Fig. 2, b), one can assume, in general, two 
kinds of transformations from each Ki to K2 (and K0 as well): A( vr )A( iur ) and A( iuv rr

⊕ ). 
These transformations, generally, are not equal to each other, since orthogonal transforma-
tions are not commutative (the group of space-time transformations is non-Abelian). We al-
ready proved above that the first A( vr )A( iur ) transformation does not change the state of D. 
Simultaneously we conclude that the other transformation A( iuv rr

⊕ ), being different from 
A( vr )A( iur ), changes the state of the measuring device D. Therefore, it is able to describe the 
difference of indications of D under “absolute rest” and “absolute motion” of the inertial ref-
erence frame K1. This again shows that the GRP and SRP (where such a situation is impossi-
ble) represent two independent physical assumptions: generally speaking, the GRP does not 
forbid the existence of absolute space. 

 Fig. 2: a – the frame К1 rests in К0, and the frame К2 acquires a constant "absolute" velocity vr− in К0; 
b – the frame К2 remains at rest in К0, while К1 moves at a constant "absolute" velocity vr+  in К0. A measuring 
instrument D contains the moving elements to be attached with the inertial reference frames Кi. 
 
 There is only one particular case ( vr  is collinear to all iur ) where 
A( vr )A( iur )=A( iuv rr

⊕ ), and the state of the device D does not depend on the absolute velocity 
vr  of the frame K1 regardless of the particular construction of D.  
 Hence, we get the second general implication of GRP with respect to inertial motion 
in an empty space: no absolute motion with a constant velocity could be detected by a de-
vice whose inertial parts move parallel (or opposite) to the absolute velocity.  
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 One can show that two general inferences of GRP obtained above, taken together, ex-
plain the null results of all experiments searching for “ether wind” velocity, performed up to 
date [6]. 
 We stress that the first and second inferences of GRP were obtained in quite general 
form, and they do not depend on a specific construction of the device D, as well as a specific 
choice of the transformation A.  
 Independence of the obtained inferences from any specific structure of the device 
D has a principal importance. It means that a device D can be constructed on the basis of any 
known form of interaction, and it can be either macroscopic or microscopic. Hence, both in-
ferences obtained above belong not only to relativistic kinematics, but remain valid for any 
other area of physics. 

Independence of the obtained inferences from a particular choice of the trans-
formation A in Eq. (2) seems to contradict the mainstream opinion that the Lorentz transfor-
mations L exclusively describe phenomena with non-observable absolute velocity in an 
empty space-time. However, our consideration of general motion diagrams in Figs. 1 and 2 
indicates that such an opinion is erroneous. Further we will actually show that all available 
experimental facts in the physics of empty space can be explained under any admissible trans-
formation A. A concurrent problem is to understand the physical meaning of ether space-time 
theories with different transformations A, as well as different successions of their actions for 
the motion diagram in Fig. 2, b. In order to solve these problems, it is necessary to analyze 
more closely the properties of empty space-time under an ether hypothesis. 
 
3. Pseudo-Euclidean empty space-time with oblique-angled metrics 
 
We will further analyze the ether theories, which adopt pseudo-Euclidean geometry with 
Minkowskian metrics for “absolute space”. Since the motion of an arbitrary inertial frame 
does not influence geometry of absolute space, it continues to be pseudo-Euclidean for any 
moving inertial observer. However, due to possible dependence of space and time intervals on 
the absolute velocity, admitted in the ether theories, the metric coefficients also depend on the 
absolute velocity, and the metric tensor g in moving frames is no longer Minkowskian. This 
means for pseudo-Euclidean geometry that physical space-time four-vectors in an arbitrary 
inertial frame should be linear functions of Minkowskian four-vectors Lx : 
( ) ( )β

αβα Lph xBx = ,           (4) 
where the coefficients Bαβ do not depend on space-time coordinates of a moving inertial 
frame; they depend only on its absolute velocity vr . (This statement follows from the space-
time homogeneity [6]). Such a kind of pseudo-Euclidean geometry has the so-called oblique-
angled metric. Here Lx  obey the Lorentz transformation L: 

β
αβα LL 'xLx = .            (5) 

In analysis of space-time with an oblique-angled metric, there is an essential methodological 
feature that has to be taken into account. Although this feature was stressed many years ago 
by Reichenbach (e.g., [7]), present ether theories do not take it into account explicitly.  

It may be natural to believe that in any inertial reference frame we are able to con-
struct a method for measurement of space and time intervals such that the result of measure-
ment directly gives the physical magnitude of the corresponding interval. But strictly speak-
ing, this is a property exclusive to pseudo-Euclidean geometry with Minkowskian metrics. 
Only in this kind of geometry can we omit a distinction between physical space-time four-
vectors and four-vectors, obtained via measurements [3, 6, 8, 9]. That is, in general, we have 
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“measured” xex and physical xph four-vectors, and only in pseudo-Euclidean geometry with 
Minkowskian metrics do we have 

Lexph xxx == .           (6) 
The essential property of space-time with oblique-angled metrics is the difference between 
measured and physical space-time four-vectors in arbitrary inertial reference frames: 

exph xx ≠ . The necessity to distinguish them can be easily demonstrated with the Fitzgerald-
Lorentz contraction hypothesis, which was first invoked to explain the null result of the 
Michelson-Morley experiment. According to this hypothesis, if a rod initially at rest in the 
absolute frame has the length l, then under motion at a constant absolute speed v along its 
axis, the length of the rod becomes 221 cvl − . However, due to proportional contraction of 
the unit scale in an attached inertial reference frame, an experimenter in this frame measures 
the same length l as in the case v=0: Fitzgerald-Lorentz contraction is not observable. Thus, 
we see that the length of the rod in physical space-time is lph= 221 cvl − , while the meas-
ured length is equal to lex=l, and lph≠lex. One can easy demonstrate that the same conclusion is 
valid for time intervals in an empty space-time with the oblique-angled metrics: tph≠tex. Thus, 
the four-vectors in physical space-time (hereinafter “physical” four-vectors) are not equal to 
the four-vectors, whose components were obtained via a measurement of corresponding space 
and time intervals (hereinafter “measured” four-vectors). Hence, in any alternative to SRT 
theory we have to derive separately the transformation rules for both kinds of four-vectors, 
when the condition (6) remains valid only for absolute space: 
( ) ( ) ( )ααα Lexph ''' xxx == && .          (7) 
(Hereinafter the primed four-vectors belong to the absolute frame). This problem will be con-
sidered in the next Section. 
 
4. Covariant ether theories 
 
First of all, we notice that Eq. (4) under the condition (7) means that the matrix B becomes 
equal to the unit matrix when v=0, and 
( ) ( ) )0(phL == vxx

αα .          (8) 
This allows one to rewrite Eq. (4) in the form 
( ) ( ) )0()()( phph == vxvBvx β

αβα

rr ,         (9) 
which clearly indicates a physical meaning of the matrix B: it describes a dependence of 
physical space and time intervals in a moving inertial frame on its absolute velocity vr . 

Further, let us write a relationship between time components of the four-vectors phx  
and Lx , proceeding from Eq. (4): 
( ) ( ) ( )i

i xBxBx L0
0

L000ph +=          (10) 

(i=1..3). For two events at a fixed spatial point ( ( )ixph =0) 

( ) ( ) ( ) )0()( 0
ph00

0
L000ph === vxBxBvx r .       (11) 

Hence, the coefficient 00B  describes the change of clock rate at a fixed spatial point under its 
motion at the constant absolute velocity vr . Such a change takes place for both standard and 
physical time intervals. Therefore, the measured time interval at a fixed spatial point is  



 7 

( ) ( ) 00
0

ph0ex Bxx = .          (12) 
For time intervals at two different spatial points, separated by the distance ( )

i
xph , one should 

write 
( ) ( ) ( )[ ] 000ph0ph0ex Bxxx ∆+= .        (13) 

where ( )
0phx∆  is the error of synchronization of clocks separated by the distance ( )

i
xph  in 

oblique-angled space-time. (It appears due to possible anisotropy of light velocity at different 
directions under Einstein’s synchronization of distant clocks). The value of ( )

0phx∆  can be 
found from the equality 
( ) ( ) 2

01ph02ph xx =           (14) 

(Einstein’s synchronization method), where ( )
01phx  stands for the time for light propagation 

from the first clock Cl1 (at the origin of coordinates) to the second clock Cl2 (at the point 
( )

i
xph ) and back according to Cl1, while ( )

02phx  is the reading of Cl2 at the moment of arrival 
of the light pulse. For oblique-angled space-time the propagation time of light from Cl1 to Cl2 
( )

+0phx  is not equal, in general, to the propagation time in the reverse direction ( )
−0phx . Hence, 

an implementation of the equality (14) is possible only in the case where the readings of both 
clocks at the initial moment of time differ by the value ( )

0phx∆ , and  

( ) ( ) ( )[ ]
−+

+=
0ph0ph01ph xxx , ( ) ( ) ( )[ ]

0ph0ph02ph xxx ∆+=
+

,     (15) 
Hence, with account of Eq. (14), we obtain: 

( ) ( ) ( )[ ]
+−

−=∆
0ph0ph0ph 2

1 xxx .        (16) 

Expressions for +0ph )(x  and −0ph )(x  can be found from Eq. (4): 

( ) ( ) ( ) ,L0
0

L000ph
i

i xBxBx +=
+

 ( ) ( ) ( ) .L0
0

L000ph
i

i xBxBx −=
−

    (17) 
Substituting Eq. (17) into Eq. (16), one gets: 

( ) ( )i
i xBx L00ph −=∆ .          (18) 

Further substitution of Eqs. (18) and (10) into Eq. (13) gives: 
( ) ( )0L0ex xx = .           (19) 
 Thus, we have derived an important result: for any ether theory, adopting a Min-
kowskian metric of absolute space, the measured time intervals always obey the Lorentz 
transformations.  
 Looking at Eq. (19), we may ask the following question: does this equality continue to 
be valid for space intervals, too? In another words, would we get the equality 
( ) ( )ii xx Lex =            (20) 
for arbitrary admissible matrix B in Eq. (4)? In general, it is not. Let us show that Eq. (20) is 
realized only in the case where the coefficients Bi0=0. Indeed, write a relationship between 
space components of the four-vectors phx  and Lx , proceeding from Eq. (4): 

( ) ( ) ( ) ( ) j
ijiii

xBxBxBx L
0

L0Lph +== α
α .       (21) 

Introducing a unit scale ( )
i

xphu  in physical space-time, we can write the similar relation: 

( ) ( ) ( ) j
ijii

xBxBx Lu
0

L0phu += ,        (22) 

where ( )ixLu  is the corresponding unit scale in Minkowskian space. Dividing (21) by (22), 
one obtains: 
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( )
( )

( ) ( )
( ) ( )k
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j
iji

i

i

xBxB

xBxB
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x

Lu
0

L0

L
0
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phu

ph

+

+
= . 

Taking into account the obvious equality for Minkowskian space 
( ) ( ) ( ) ( )ijij xxxx LuLuLL = , 
we get after manipulations: 
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+
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Obtained Eq. (23) proves our statement. Indeed, under Bi0=0 it transforms to 

i

i

i

i

x
x

x
x

Lu

L

phu

ph
= , 

which is equivalent to Eq. (20): the measured scale in oblique-angled space-time coincides 
with its value in Minkowskian space-time. Then Eqs. (19), (20) are written simultaneously as 
( ) ( )αα

Lex xx = ,          (24) 
which means that a distinction of oblique-angled metrics in moving inertial frames from Min-
kowskian metrics is not experimentally observable. In another words, an observer in any iner-
tial frame moving in absolute space sees the world, almost as in SRT, for an infinite set of 
ether space-time theories with Bi0=0. (However, this does not yet mean that SRT and all ether 
theories cannot be distinguished experimentally. This problem will be analyzed below).  
 Now let us determine a physical meaning of the equality Bi0=0 in Eq. (4). For this pur-
pose we combine Eqs. (1), (5), (7) and derive: 
( ) ( )β

γβ
γ
αα L

1
ph )()( xvLvAx rr −= .          (25) 

Comparing Eq. (25) with Eq. (4), we find 
).()()( 1 vLvAvB rrr −= γβ

γ
ααβ          (26) 

Substituting into Eq. (26) the known form of the matrix L (see, e.g. [1]), denoting 
2211 cv−=γ , and using Eq. (3), one gets: 

0000 AB γ= ,           (27a) 
00 =iB ,           (27b) 

)]1()11([ 22
00

20000 −−+×+= γγ
v
v

Ac
vAAB ii

ii ,      (27c) 

)11(20 γ
−+=

v

v
AAB j

iijij .         (27d) 

We see that the coefficient 0iB  is equal to zero for any matrix A. One can show that an adop-
tion of the reciprocity principle (3) is essential for vanishing of 0iB . 
 Thus, we conclude that the equality 0iB =0 represents an equivalent form of the 
reciprocity principle, resulted from GRP. 

Therefore, for any admissible transformation B, satisfying the GRP, an experimenter 
will not detect a distinction of oblique-angled metrics of his coordinate geometry from Min-



 9 

kowskian metrics. That is why all the experiments for verification of Lorentz transforms (be-
ginning with the Michelson-Morley experiment and finishing with the modern experiments 
for search of ether velocity [10-12]) find an infinite number of alternative explanations of 
their results. This conclusion is in full accordance with the implications of GRP obtained in 
Section 2 for the case of inertial motion in empty space-time.  

We name the acceptable theories “covariant ether theories” (CETs). The exclusive 
place of SRT among all such CETs is defined by the fact that it directly asserts the equality of 
measured and physical space-time four-vectors, i.e., the equality of the matrices A and L, 
which means a Minkowskian metric of physical space-time in any inertial reference frame. In 
the alternative assumption A≠L, metric of physical space-time is, in general, oblique-angled, 
and we must distinguish space-time transformations for physical and measured four-vectors: 
( ) ( )β

αβα phph 'xAx = , ( ) ( )β
αβα exex 'xLx = ,       (28)  

where the primed four-vectors, as before, belong to the absolute frame K0. This means that 
these transformations do not yet solve the main kinematical problem (determination of space-
time transformations between two arbitrary inertial frames): they act only in the special case, 
where one of the frames is absolute. In order to find a transformation between two arbitrary 
inertial frames K and K”, we should write 
( ) ( ) ( ) ( )β

αβα
β

αβα ex2exex1ex ')(";')( xvLxxvLx rr
== ,      (29) 

( ) ( ) ( ) ( ) ,')(";')( ph2phph1ph
β

αβα
β

αβα
xvAxxvAx rr

==       (30) 

where 21 ,vv rr  are the absolute velocities of the frames K and K”, respectively. Eliminating 
four-vector β

ex'x  from Eqs. (29), and β
ph'x  from Eq. (30), we obtain general transformations 

for measured and physical space-time four-vectors in two arbitrary inertial frames: 
( ) ( )γ

βγ
αβα ex2

1
1ex ")]()[( xvLvLx rr −= ,        (31) 

( ) ( )
γ

βγ
αβα ph2

1
1ph ")]()[( xvAvAx rr −= ,        (32) 

where the matrix A can be taken in arbitrary admissible form. Thus in contrast to SRT, under 
the hypothesis A≠L, Nature does not “know” a direct relative velocity of two arbitrary inertial 
frames K and K”: it is always composed as a sum 21 vv rr

⊕ , where 1vr  and 2vr  are the corre-
sponding velocities of K and K” in the absolute frame K0. This means, in particular, that di-
rect rotation-free Lorentz transformation between measured space-time four-vectors in K and 
K” is impossible: according to general group properties of these transformations, an additional 
rotation of the coordinate axes of the frames K and K” appears at the Thomas-Wigner angle 
Ω, depending on 1vr  and 2vr . It is quite important that such a rotation occurs in measured 
space-time coordinates, i.e., it can be really detected. It defines a principal possibility to ex-
perimentally distinguish the hypotheses A=L and A≠L. We also notice that for collinear 1vr  
and 2vr , Ω=0, and the absolute velocity is not observable. This result corresponds to the sec-
ond implication of GRP, obtained in section 2. Hence, in corresponding experiments, testing 
CETs, these velocities should be non-collinear. 

Among admissible space-time theories that assume A≠L, the simplest case corre-
sponds to the choice A=G, where G is the matrix of Galilean transformation: Gαα=1, Gi0=-vi, 
and all others Gαβ =0. Substituting matrix G in place of matrix A in Eqs. (27), one gets the 
following coefficients of matrix B: 

( )γδγγ 11,,0, 220000 −====
v
vv

B
c
v

BBB ji
ijij

i
ii       (33) 

where ijδ  is the Kronekker symbol. Further substitution of Eqs. (33) into Eq (9) allows one to 
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determine a dependence of physical space-time four-vectors on the absolute velocity vr  of 
some arbitrary inertial reference frame K: 

( )[ ]1)/(1
),0(

)0()( 22
2

ph
phph −−

=
+== cv

v
vvrv

vrvr
rrr

rrr ,     (34) 

)/(1

)0(

)/(1

)0(
)(

222

ph

22

ph
ph

cvc

vvr

cv

vt
vt

−

=
+

−

=
=

rr
r .       (35) 

For the time interval in a fixed spatial point of the frame K ( phr =0), we obtain the dependence 
of pht  on vr  (see, Eq. (35)): 

,)/(1/)0()( 22
phph cvvtvt −==

r         (36) 

that means an absolute dilation of time by factor )/(1 22 cv− . Furthermore, one obtains from 
Eq. (34): 
( ) ( ) ,1),0(),( 22

phph cvvvrvvr −==
rrrrr  [ ] [ ],)0()( phph vvrvvr rrrrr

×==×     (37) 
that means an absolute contraction of moving scale along a vector of absolute velocity by fac-
tor )/(1 22 cv−  (Fitzgerald-Lorentz hypothesis). Finally, transformation (1) (under A=G) 

( ) ( )β
αβα ph21ph ")]([ xvvGx rr

−=  

leads to the Galilean law of speed addition for the physical light velocity phc . 
Thus, we have got a full set of the Lorentz ether postulates in case A=G.2 However, 

the physical space-time in the Lorentz ether theory is not observable in an arbitrary inertial 
reference frame, while the measured four-vectors xex obey the Lorentz transformations in the 
form of (31). (This important circumstance concerning a difference of physical and measured 
four-vectors for oblique-angled metrics of space-time was dropped by Lorentz and his succes-
sors). Therefore, we may consider the Lorentz ether theory (LET) as one of the CETs defined 
above, and the simplest among them. Due to this fact, the application of the Lorentz ether pos-
tulates for the explanation of “null” results of all experiments searching for “ether wind 
speed” was always successful. At the same time, now we get a possibility to proceed not only 
from the Lorentz ether postulates, but from the complete kinematics of LET. Its full descrip-
tion is given by the following equations, obtained above: 
( ) ( )αα exph '' xx =&  (for the absolute frame),       (38) 

( ) ( )γ
βγ

αβα ex2
1

1ex ")]()[( xvLvLx rr −=         (39) 

( ) ( )β
αβα ph21ph ")]([ xvvGx rr

−=         (40) 
( )[ ]1)/(1

),0(
)0()( 22

2
ph

phph −−
=

+== cv
v

vvrv
vrvr

rrr
rrr ,     (41) 

)/(1

)0(

)/(1

)0(
)(

222

ph

22

ph
ph

cvc

vvr

cv

vt
vt

−

=
+

−

=
=

rr
r .       (42) 

One should notice that the Galilean transformation itself does not restrict a value of limited 

                                         
2  Let us recall the postulates of Lorentz ether theory in its modern form: 
1)  There is an absolute reference frame K0, wherein light velocity is isotropic and equal to c.  2)  In an arbitrary reference 
frame K, moving at constant velocity v

r
 in K0, the velocity of light is equal to vcc

rrr
−=' . 3) In this reference frame K time is 

dilated by 221 cv−  times. 4) In this reference frame K a linear scale is contracted by 221 cv−  times along the vec-

tor v
r

. 
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velocity, it can be infinite. However, in case of LET such a restriction is established by the 
equality ( ) ( )αα Lph '' xx =& , which simultaneously means that the Galilean transformations in 
LET are “admissible”, and they act within pseudo-Euclidean geometry.  
 The most important physical consequence of kinematics of LET, expressed by Eqs. 
(38)-(42), is a principal possibility to detect experimentally the absolute velocity vr  of an iner-
tial reference frame, due to the mentioned above dependence of the Thomas-Wigner angle  Ω 
on vr . It can be seen in the problem of diametrical synchronization of distant clocks by a mov-
ing rod. 

Let two clocks Cl1 and Cl2 be placed upon the x axis of some inertial reference frame 
K at rest in the absolute frame K0. The distance between Cl1 and Cl2 is equal to L. Let some 
rod with a proper length L moves along the y axis at a constant velocity ur . The axis of the rod 
is parallel to the x axis, and the coordinates of its opposite ends upon the x axis coincide with 
the respective coordinates of Cl1 and Cl2. So at the instant when the rod is intersecting the axis 
x, it is simultaneously touching the Cl1 and Cl2 in the frames K and K0. We assume that at the 
touch moment each clock emits a short light pulse towards to the time analyzer (TA) placed 
between the clocks. Thus, when K rests in K0, the indication of TA is 0=∆t . 

Now consider the same problem when the frame K moves at the constant absolute ve-
locity vr  along the x axis (see, Fig. 3). One requires to find in the laboratory frame K an indi-
cation t∆  of TA.  

Fig. 3. The scheme of “diametrical” synchronization of distant clocks by moving “ideal” rod. 

 
We attach the frame Kr with the moving rod. The velocity of Kr with respect to K is 

equal to u along the y axis, while the velocity of K with respect to K0 is equal to v along the 
axis x. In order to calculate the value t∆  within SRT, one should apply a special Lorentz 
transformation from Kr to K. Hence, we get 0=∆t , as in the case v=0. 

Let us calculate the value t∆  for Fig. 3 in the Lorentz ether theory (A=G). In such a 
case, the measured space-time coordinates xex are subjected to the transformation (31), ac-
cording to which we should apply the succession Kr→K0→K with the velocities uvV rrr

⊕=  
and vr , respectively. Such a transformation for the xex coordinates entails a relative rotation of 
Kr and K coordinate axes at the angle [1] 

22cuv≈Ω .            (43) 
Hence, at the instant when the left end of rod touches the Cl1, its right end has a non-zero co-
ordinate 22cuvLL ≈Ω  upon the axis y. From there 

22cLvuLt =Ω≈∆ .          (44) 
Since the measured light velocity is isotropic, that Eq. (44) directly gives the indication of 
TA. However, Eq. (44) has no physical interpretation in the measured space-time coordinates. 
On the contrary, this equation has a clear physical meaning in physical space-time. Indeed, 
here we get an absolute contraction of moving rod along its resultant absolute velocity 

uvV rrr
⊕= . According to Eq. (37), the projection of the rod perpendicular to V

r
 remains un-

TA

u
Cl1 Cl2 x

y
Kr

K

K0

v
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changed. Let us denote it as αsinL , where α is the angle between L
r

 and V
r

. A projection of 
the rod which is parallel to V

r
 becomes equal to αcos1 22 cVL − . As a result, the axis of 

the rod turns out with respect to the axis x at the angle 22cuv≈ϕ  in comparison with the 
case v=0 (to order of approximation 2−c ). Further, the physical light velocity along the x axis 
of the laboratory frame K is equal to vcc −=+ , and in the opposite direction vcc +=− . 
Hence, the indication of TA is  

( ) ( ) 2222 c
Lv

vc
L

vc
L

u
Lt ≈

−
−

+
+≈∆

ϕ
. 

This coincides with Eq. (44). Thus, Eq. (44) can be interpreted as the real appearance of the 
properties of physical space-time, in spite of the impossibility to directly measure phx . In par-
ticular, the calculations presented allow one to consider Eq. (44) as an inference of the abso-
lute contraction of rod as well the anisotropy of physical light speed phc  in the moving labo-
ratory frame K. From a formal viewpoint, such a result follows from the dependence of Ω on 
vr  in experimentally measured coordinates exx , caused by the general transformation rule 
(39). Thus, a formal application of the transformation (39) for Minkowskian four-vectors Lx  
(leading to the measurable dependence of Ω on vr ) finds a physical interpretation in the phx  
coordinates, despite the impossibility of observing the phx  four-vectors experimentally. 

One can finally add that the solution (44) could also be produced by conventional rela-
tivistic calculations when the relative velocity of K and K0 is equal to vr , while the relative 
velocity of Kr and K0 is equal to uvV rrr

⊕= . However, such a motion diagram of the frames 
Kr, K in K0 differs from the motion diagram in Fig. 3. Thus, the solution (44) and the solution 

0=∆t  within SRT correspond to different physical problems, while within LET these solu-
tions reflect a dependence of Ω on vr  for a fixed experimental instrument (Cl1, Cl2 + moving 
rod). 
 
4.1. Notes about classical dynamics and classical electrodynamics of CETs 
 
Now we make a further step to generalization of CETs, stating that physical and measured 
values should be inevitably distinguished not only for space-time four-vectors, but for any 
functions of t, rr . Then the quantities, depending on xex and constituting measured four-
vectors (energy-momentum, charge density-current density, etc.), obey the Lorentz transfor-
mations, while their corresponding physical magnitudes (depending on xph) are subjected to 
the transformation A. This result follows from the general transformation rule for a four-
vector X: 

( ) kkii XxxX ''∂∂= . 

Indeed, one can see from Eq. (1) that ( ) ( ) i
k

ki Axx =∂∂ phph ' , and 

( ) ( )ki
k

i XAX phph '= , or ( ) ( )k
iki

XAX phph '= , which coincides with Eq. (1). 

In the case A=G (LET) we get the Galilean transformation for ( )
i

X ph . In particular, 

when ),( phphph pEX r
= , where E ph is the physical energy, and phpr  is the physical momen-

tum, we obtain 
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2
ph

phph
'

'
c
Ev

pp
r

rr
−= , phph 'EE = .        (45) 

Then a dependence of physical momentum and energy on the absolute velocity vr  is deter-
mined similarly to Eqs. (34), (35): 

( )[ ]1)/(1
)0(

)0()( 22
2

ph
phph −−

⋅=
+== cv

v
vvpv

vpvp
rrr

rrr ,     (46) 

)/(1

)0(

)/(1

)0(
)(

22

ph

22

ph
ph

cv

vvp

cv

vE
vE

−

⋅=
+

−

=
=

rr
r .       (47) 

Note that in the rest frame of particle 0ph =pr , and )/(1)0()( 22
phph cvvEvE −==

r . Tak-

ing into account that 2
ph )0( mcvE ==  (m is the rest mass of particle), we get 

)/(1)( 222
ph cvmcvE −=

r , that is an usual expression of relativistic physics, but with al-
ternative physical interpretation: a total physical energy of moving particle (and, correspond-
ingly, total physical mass) is fully determined by its absolute velocity. In contrast, a measured 
energy and measured mass depend on a relative velocity solely. 

The scalar ϕ and vector A
r

 potentials, as the functions of space and time coordinates, 
also have the physical and measured values in CETs. The same is true for the electric E

r
 and 

magnetic B
r

 fields. The measured fields ( )exexex ,rtE rr
, ( )exexex , rtB rr

 obey the conventional 
Maxwell’s equations in any inertial reference frame. Physical electromagnetic fields 

( )phphph , rtE rr
 and ( )phphph , rtB rr

 obey the Maxwell’s equations only in the absolute frame. Con-
cerning these equations in an arbitrary frame of references, we mention that an absolute mo-
tion of an inertial frame in CETs, in fact, induces its admissible coordinate transformation, 
depending on the absolute velocity. We stress that such a coordinate transformation in CETs 
is an objective property of nature, on the contrary to purely mathematical coordinate trans-
formations in SRT. That is why CETs leads to alternative to SRT physics. At the same time, a 
mathematical identity of the admissible coordinate transformations in two these theories al-
lows applying the well-developed coordinate formalism of SRT to physical problems of 
CETs. For this purpose we have to determine the metric tensor gph in physical space-time of 
moving inertial frame, where the physical space and time intervals obey the transformation A 
in Eq. (1). In order to solve this problem, we use the expression for space-time interval: 

( ) ( ) ( )( ) ( ) λγ
γλ

λβ
λ

γα
γαβ

βα
αβ LLLLLphphphph

2 xxgxBxBgxxgs === , 

where gL stands for the Minkowskian metric tensor. From there 
( ) ( ) .ph γλ

β
λ

α
γαβ LgBBg =          (48) 

The latter expression represents a system of ten linear equations with respect to ten independ-
ent parameters ( )

αβphg  (a total number of coefficients αβg  is equal to 16, but βααβ gg = , and 

only ten independent parameters remain). A solution of this system is: 

( ) ( ) ( )γβγααβ
11

ph
−−= BBg ,         (49) 

where the matrix B is defined by Eqs. (27). For physical space-time transformation A=G 
(LET), the coefficients of matrix B are found from Eqs. (33). Then the straightforward calcu-
lations give: 

22
00 1 cvg −= , cvgg iii == 00 , 1−=iig , and others 0=ijg .    (50) 

By the way, we see from Eqs. (50) that for 000 >g  (the requirement of GRP), the absolute 
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velocity v is always less than c. This again signifies that we work within admissible Galilean 
transformations, and do not leave pseudo-Euclidean geometry of empty space-time. Substitut-
ing the coefficients (50) into the Maxwell equations, written in arbitrary admissible coordi-
nates (see, e.g. [1, 3]), we can find their form in physical space-time of LET. Within the same 
coordinate formalism we can derive a law of transformation of physical electric and magnetic 
fields, using the metric tensor (50). This is a quite formal mathematical task. However, a 
physical analysis of classical electrodynamics in LET, written in physical space-time with the 
metric tensor (50), represents a very extensive problem. At the same time, it is important to 
remember that using measured space-time coordinates, we always get the corresponding 
“measuring” functions of space-time, and observable world looks almost the same, like in 
conventional relativistic dynamics and classical electrodynamics. The difference appears in 
successive space-time transformations with non-collinear relative velocities. This problem in 
its application to dynamics and electrodynamics will be analyzed elsewhere. However, with-
out such a detailed analysis, we already can notice that the conception about “physical” and 
“measured” quantities appears to be useful in resolution of a number of relativistic paradoxes 
of classical electrodynamics. One of them is presented in Fig.4. Let there be two charges 
point-like particles with the charge +q and –q, respectively, being inside a hollow neutral 
tube. The tube is placed into a parallel plate condenser, creating a homogeneous electric field 
E along the axis y. The tube has a single degree of freedom to move along the axis y. A gravi-
tation field is absent, so that the masses of particles are not relevant. Initially both particles are 
fixed inside the tube and they rest with respect to each other and the condenser. The resultant 
force acting on the tube along the axis y is composed as the sum of qE and –qE, and equal to 
zero. Now we imagine that the positively charged particle (p) can move inside the tube, and it 
acquires a constant velocity v in the negative x-direction (Fig. 4). We want to compute the 
force acting on the tube along the axis y. 

 
Fig. 4. The oppositely charged point-like particles “p” and “n” are placed into a hollow tube. All system is in the 
inner volume of the parallel plate condenser, which creates the electric field E along the axis y. The particle “n” 
is fixed inside the tube and rests with respect to condenser. The particle “p” moves at the constant velocity v 
along the axis -x. Here we assume a presence of an external mechanical force along the axis x, which compen-
sates an electrical attraction of the particles. We also exclude a weak electric interaction between the condenser 
and the thin wall tube due to its electric polarization.  
 
 It seems that the problem is trivial: the magnetic field is absent in the rest frame of 
condenser (KC), and the total force acting on the moving particle “p” is directed along the axis 
y and equal to F+=qE, like in the case v=0. Since the force acting on the particle “n” is F-=-qE, 
that the resultant force, exerted on the tube due to two charged particles, is equal to zero. 

A paradox appears, when we compute the same force in the rest frame Kp of particle 
“p” within SRT. According to the relativistic force transformation law [1] 

v

+

_

EF+

F-

Tube

p n

Condenser
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( )( ) ( )

( ) 2

22

22
22

1

11
1

'
cuv

c
Fuv

v
cvFvv

Fcv
F rr

rrrrrrr
r

⋅+

⋅⋅
+

−−⋅⋅
+−

= ,     (51) 

( vr  is the velocity of the frame K in the frame K’, and ur  is the velocity of particle in the 
frame K), the particle “p” in its rest frame experiences the force  

2222 11' cvqEcvFF yy −=−= ++ .       (52) 
Computing the force acting on the particle “n” in this frame Kp, we have to accomplish a re-
verse force transformation from Kp to KC, taking into account that in the frame KC, F-=-qE. 
Then we obtain from Eq. (51): 

2222 11' cvqEcvFF yy −−=−= −− ,       (53) 

and yy FF −+ ≠ '' . 
Let us show that Eqs. (52) and (53) are in agreement with a direct calculation of the 

Lorentz forces acting on both particles in the frame Kp. Indeed, according to the relativistic 
transformation of electromagnetic field, the moving in Kp condenser produces the electric 
field 221' cvEE y −=  and the magnetic field 222 1' cvcvEB z −=  as well. Hence, the 

force acting on the particle “p” is 221'' cvqEqEF yy −==+ , which coincides with Eq. 
(52). The force experienced by the moving particle “n” is written in accordance with the Lor-
entz force law ( )BvEqF

rrrr
×+=  as 

22
222

2

22
1

11
''' cvqE

cvc

Eqv

cv

qEqvBqEF zyy −−=
−

−
−

−=−−=− , 

which coincides with Eq. (53). Therefore, the resultant force, acting on the tube along the axis 
y in the frame Kp is determined as the sum of time-independent forces (52) and (53), and it is 
not vanishing: 

0
1

1
1

'''
222

2
22

22
≠

−
=−−

−
=+= −+

Σ
cvc

qEvcvqE
cv

qEFFF yyy .   (54) 

Thus, we derive the paradoxical result: in the frame Kp the tube acquires the acceleration 
along the axis y due to the force (54), while in the rest frame of condenser it should remain at 
rest. 
 The paradox can be resolved in CETs, using the “physical” forces, for example, for 
LET. Then we can get from Eq. (45) 

ph
2

ph

ph

ph

ph

ph

'

'
'
'

dtc
dEv

dt
pd

dt
pd rrr

−= . 

where we applied the Galilean transformation of physical time, phph 'tt = . Denoting the force 

dtpdF rr
= , and taking into account that phphph ''' FwdtdE

rr
⋅=  ( wr  is the absolute velocity of 

particle), we obtain: 
( )

2
ph

phph
'

'
c

Fwv
FF

rrrrr ⋅⋅
−= .         (55) 

Regardless of specification of the absolute frame K0 for the problem in Fig. 4, we have 

ph'Fw
rr

⊥ , and phph 'FF
rr

= . Therefore, the charged particles “p” and “n” experience the force 

yqE  and yqE− , correspondingly, and the resultant force is vanishing for any inertial frame of 
observations. It resolves the paradox.  
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5. Possible experimental tests of CETs 
 
As we concluded above, the difference between SRT (A=L) and CETs (A≠L) appears at the 
experimental level only in successive space-time transformations with non-collinear relative 
velocities. Such is a property of space-time transformations in CETs (Eqs. (31), (32)), which 
corresponds to the general conclusions of Section 2. It follows from there, that an instrument 
for measuring an absolute velocity must contain moving inertial parts, in order to deal with 
such transformations. Then a general idea of an experiment for a choice between SRT and 
CETs can be described with the help of the diagram in Fig. 5. It shows the absolute frame K0, 
laboratory frame K (moving at the constant absolute velocity vr ) and frame Ki, attached to 
some moving inertial part of a measuring instrument in K.  

 

 
Fig. 5. General idea for an experiment to provide an experimental test of covariant ether theories. 
 
In our laboratory we specify a constant velocity ur  of Ki in K. In such a case for the 

hypothesis A=L we apply a direct rotation-free Lorentz transformation K→Ki for calculation 
of the reading of the measuring device. Hence, according to SRT we get a vanishing value of 
absolute velocity. Under the hypothesis A≠L, Nature does not “know” a direct rotation-free 
Lorentz transformation between K and Ki, and “operates” with the absolute velocities of these 
frames vr  and uv rr

⊕ . Hence, in order to calculate an indication of the measuring device, we 
must apply the successive Lorentz transformations K→K0→Ki according to Eq. (31). (A di-
rect Lorentz transformation from K to Ki is also possible, but it will not be rotation-free). In 
this case the axes of the frames K and Ki are turned out at the Thomas-Wigner angle Ω, that, 
in principle, changes the state of the measuring instrument. Since Ω depends on the absolute 
velocity vr  of the laboratory frame K, the state of the measuring instrument will depend on vr , 
too. There is only one particular case ( vr  is collinear to ur ) where 0=Ω , and the state of the 
measuring instrument has to be unchanged for any magnitude of absolute velocity of the labo-

K(x)

Ω

Ki(x”)

K0(x’)

( )vr1−L

apparatus

ur   (in K)

vr   (in K0)

( )urL

Transformation of STRTransformation of CETs

observer

( )uv rr
⊕L
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ratory frame. Therefore, all experiments searching for “ether wind” velocity with experimen-
tal instruments containing moving inertial parts, aiming to measure non-relativistic effects 
under collinear vr  and ur  (see, e.g., [10-12]), in fact checked the GRP, not the Einstein relativ-
ity principle. 

Thus, an experiment for testing of CETs must contain moving inertial parts with non-
collinear velocities vr  and ur , and be aimed to measure a dependence of the angle Ω on the 
absolute velocity of the laboratory frame. To the order of magnitude 2−c , and for orthogonal 
vectors of vr  and ur , this dependence is defined by Eq. (43). A direct measurement of this de-
pendence in a laboratory-scale experiment is impractical. Indeed, the absolute speed v could 
be taken as about 10-3c (typical velocities of Galaxy objects). The maximum value of u could 
be about 103 m/s. Hence, the angle Ω takes on the value 3×10-9, i.e., well below any limit of 
practicability in a laboratory experiment. 

An analysis of possible experimental schemes for indirect measurement of the angle Ω 
can be greatly simplified through numerical estimation of eventual non-relativistic effects, 
proceeding from their dimension. The experiments, looking for a change of length associated 
with )(vrΩ  dependence, give an effect of the order of magnitude LΩ. Here L is some length, 
which is equal to about 1 m in the laboratory scale. In such a case we get LΩ≈3×10-9 m, 
which is impossible to measure in practice. A corresponding change of time has a dimension 

2cLvuL ≈Ω ≈3 ps, a time interval within the range of present technology, but not for the 
mechanical parts necessarily involved. Further, one can rearrange the experiment into a 
“speed experiment” looking at the term uΩ , and the latter arrangement could be further trans-
formed into frequency measurement via the Doppler effect ( cuΩ ). For the last case one is 
looking at the term 32 cvu , the latter being about 10-14…10-15 (for u=102…103 m/s) - a value 
accessible practically conveniently by the Mössbauer effect, at least as far as a laboratory-
scale experiment is concerned. One of such experiments is considered in sub-section 6.1. Fi-
nally, one may consider an electromagnetic experiment, where the eventual non-relativistic 
effect should be VΩ (V is the voltage). For example, for V=104 V and Ω≈10-9, one gets 
VΩ=10-5 V. This value is acceptable for laboratory measurements. However, the analysis of 
such experiments requires to develop classical electromagnetic theory of CETs in detail, 
which can be done elsewhere. 
 

5.1. Proposed experiments for test of CETs, based on the Mössbauer effect 
 

One should mention that the Mössbauer experiments for test of CETs, in their com-
parison with known experiment by Champeney et al. [10], should be more sensitive by u/c 
times. In fact, only past decade gave an opportunity to realize such high-sensitive experi-
ments, when the technique for resonant synchrotron radiation and for resonant detection of 
gamma-quanta had been developed. Possible schemes of such experiments with the resonant 
synchrotron radiation have been described in ref. [13] (for 67Zn isotope) and in ref. [14] (for 
57Fe isotope). In this paper we propose another experiment, which uses a radioisotope Möss-
bauer spectroscopy with resonant detection of gamma-quanta of 119Sn. 

Let us consider the following experimental scheme. Let there be two rotors with the 
equal radius r, lying on the same plane and separated by the distance L. Under synchronic ro-
tation at the angular frequency ω these rotors drive a rod with the length L, as shown in Fig. 6. 
The Mössbauer source S and receiver R are fixed on the opposite sides of the rod. In this ge-
ometry we measure a relative Doppler shift between emission and absorption lines, which, as 
we will see below, is a function of the “absolute” velocity of Earth vr . In order to obtain this 
function in the explicit form, let us consider a diagram of velocities of source and receiver in 
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the absolute frame (Fig. 7). In this diagram the vector of tangential velocity rotates clockwise 
at the angular frequency ω for both the source and receiver. For simplicity we can imagine 
these vectors as some “clock arrows”, and within LET, where the Galilean transformations are 
valid, the physical directions of both “ clock arrows” coincide at any fixed instant. (A similar 
diagram drawing according to SRT, gives a corresponding retardation for the right “clock ar-
row”). However, during a time of light propagation from the first clock to the second clock, 
the right “arrow” has time to turn out at some angle ∆ϕ, which causes a corresponding linear 
Doppler shift between emission and absorption lines. It is obvious that the time of propaga-
tion of gamma-quanta from S to R (and hence, the value of ∆ϕ) depends on the angle between 
the vector of “absolute” velocity vr  and the line S-R. Therefore, the same dependence should 
be detected, while measuring the relative energy shift between the source’s and receiver’s 
resonant lines. 

 
Fig. 6. Schematic of the experiment for measurement of an absolute velocity 

 
Fig. 7. Diagram of the velocities of source and receiver in the Mössbauer experiment of Fig. 6. 

 
 Such is a general idea of the experiment, which should be confirmed by calculations. 
First we adopt for simplicity that the vector vr  is collinear to the line S-R (Fig. 7). Let us write 
an expression for the frequency of emitted radiation νem, considering the process from the ab-
solute frame and using known equation for the Doppler effect: 

( )
( ) ,
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−
=
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ν          (56) 

where ν0 is the proper frequency of Mössbauer radiation, V
r

 is the velocity of source in the 
absolute frame К0 at the emission instant of gamma-quanta, and nr  is the unit vector in the 
emitting direction. An expression for the absorption frequency νa takes the form: 
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where 'V
r

 is the velocity of receiver in the absolute frame at the absorption instant of gamma-
quanta. Further, the Einstein law of speed composition, applied to the absolute frame, gives 
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where u stands for the linear velocity of the source and receiver upon the rotor in the labora-
tory frame, ϕ is the angle of the vector ur  with the axis x at the moment of emission of 
gamma-quanta by the source. We can get the components of the vector nr  from the following 
expressions (to the accuracy с-2, sufficient for further calculations): 
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Inserting corresponding values from Eqs. (58) and (59) into Eq. (57), we get after simple ma-
nipulations to the order с-3: 
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Here ∆ϕ=ω∆t =ωL/(с-v) (∆t is the time of gamma-quanta propagation from the source to re-
ceiver), ϕ=ωt. Substituting the value of ∆ϕ into Eq. (60), and decomposing into series the ob-
tained expression to the order с-3, we obtain 
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Eq. (61) describes the energy shift between emission and absorption lines. The second term in 
brackets of rhs of Eq. (61) has a meaning of “gravitational shift” of gamma-quanta frequency 
in the non-inertial reference frame attached to the source and receiver of Mössbauer radiation. 
Indeed, in accordance with the equivalence principle, an oscillating gravitational field with 
the potential uωsinωt appears in this frame. And the measured energy shift of gamma-quanta 
depends on the potential difference between S and R, according to known result of general 
relativity theory. Such a shift is vanishing for ϕ=0, i.e., for the case when the acceleration is 
perpendicular to the line S-R. 

 The most interesting is the third term in brackets of Eq. (61), which is proportional to 
the “absolute” velocity v. One can see that for ϕ=0 (i.e., when the momentary velocities of the 
source and receiver are collinear to vr ), this term becomes to be equal to zero. Such a result 
directly reflects the fact that under addition of Lorentz boosts with the collinear velocities, the 
Lorentz operators commutate with each other and an absolute velocity is not observable in 
CETs. We also notice that this term is proportional to с-3, i.e., its value is greatly less than in 
Champeney et al. experiment, where the eventual term was proportional to с-2. As we men-
tioned earlier, it leads to stronger requirements to the energy sensitivity of the considered ex-
periment in comparison with the Champeney et al. experiment. Let us estimate numerically 
the third order term in Eq. (61) for ϕsin =1. We adopt L=1 m, the rotation frequency ν=200 
Hz (ω≈1250 Hz); the rotor’s radius r=10 сm (u=ωr=125 m/s); v/c=10-3. Then the relative en-
ergy shift is equal to ( 00 /)( ννν −a =1,7×10-15. In order to measure such an energy shift, we 
suppose to use a single line resonant scintillation detector (RSD) [15], as a receiver R, with a 
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combination of single line Mössbauer source S. Such detectors have been developed to reach 
a sufficient progress for 119Sn (23.9 keV) and other isotopes of Mössbauer spectroscopy. It 
consists of a thin scintillating organic film, where the absorbing medium (converter) is dis-
tributed, and a photomultiplier. The converter transforms a beam of gamma-quanta into con-
version electrons accompanying decay of resonantly exited nuclei. Due to the very low 
gamma-counting efficiency by the organic film and the high counting efficiency for low-
energy conversion electrons such a detector has a high selectivity value S=η0/η∞ (η0 is the 
counting efficiency for resonant gamma-quanta, while η∞ is the counting efficiency for non-
resonant gamma-quanta). For RSD the value S> 50 [15]. Hence, one may expect a great in-
crease in sensitivity of RSD to the relative energy shift in comparison with ordinary detectors 
of gamma-quanta, applied in Champeney et al. experiment.  

Moreover, on the contrary to the Champeney et al. experiment, an RSD allows us to 
realize a continuous registration of gamma-quanta as a function of a rotating angle ωt due to 
application of special system of light-guides between the resonant scintillator and photomulti-
plier (Fig. 8). Such an arrangement allows one to look for the harmonic oscillations in meas-
ured signal (sinωt in Eq. (61)) and thus, to exclude an influence of possible time drift of the 
detector parameters as well as possible material deformations in the rotating frame. 

 
Fig. 8. An optical coupling of the resonant scintillator with a photomultiplier P. S is a Mössbauer source. 

 
 
6. Conclusions 
 

1) Consideration of all hypothetical ether theories of empty space-time, admitting 
pseudo-Euclidean geometry with oblique-angled metrics in arbitrary inertial frame, should be 
based on distinguishing between physical and measured space-time four-vectors. General 
analysis of the properties of admissible space-time transformations shows that in any theory 
adopting the general relativity principle and symmetries of space-time, the measured space 
and time intervals always obey the Lorentz transformation, regardless of a concrete choice of 
physical space-time transformation. The latter circumstance makes it possible to explain all 
known experimental results in physics of empty space-time within an infinite number of ad-
missible space-time theories, called “covariant ether theories”. 

2) SRT is unique among admissible theories of empty space-time because it directly 
asserts the equality between measured and physical four-vectors under optimal measurements. 
Adoption of such an equality defines the possibility of direct rotation-free Lorentz transforma-
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tion between two arbitrary inertial frames. This is impossible in all other admissible space-
time theories, named as covariant ether theories. An absolute motion of inertial frame in 
CETs, in fact, induces its admissible coordinate transformation, depending on an absolute ve-
locity. We stress that such a coordinate transformation in CETs is an objective property of 
nature, on the contrary to purely mathematical coordinate transformations in SRT. That is 
why CETs lead to alternative to SRT physics. In particular, CETs predict a dependence of 
Thomas-Wigner angle Ω on an “absolute” velocity vr , resulted from the transformation (31).  

3) It has been shown that the choice of Galilean transformation in physical space-time 
within covariant ether theories leads to the Lorentz ether theory. Then kinematics of LET is 
described by Eqs. (38)-(42). They indicate a principal possibility to measure an absolute ve-
locity experimentally. Therefore, we lose an ether formulation of special relativity principle in 
the sense adopted by Lorentz and Poincaré. In contrast, we arrive at the conclusion: if an exis-
tence of absolute frame is assumed, that an absolute velocity can be detected experimentally, 
at least in principle.  

4) The dependence )(vrΩ  can be measured in the experiments, based on the recent 
methodological achievements in the Mössbauer spectroscopy. The proposed experiments test 
the Einstein relativity principle within the scope of validity of general relativity principle, that 
qualitatively differs these experiments from another, being performed up-to-date in physics of 
an empty space-time. 
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