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All information in quantum systems is, notwithstanding BellÕs theorem,

localised. Measuring or otherwise interacting with a quantum system  S has

no effect on distant systems from which S is dynamically isolated, even if they

are entangled with S. Using the Heisenberg picture to analyse quantum

information processing makes this locality explicit, and reveals that under

some circumstances (in particular, in Einstein-Podolski-Rosen experiments

and in quantum teleportation) quantum information is transmitted through

ÔclassicalÕ (i.e. decoherent) information channels.

1. Quantum information

It is widely believed (see e.g. Bennett and Shor (1998)) that in general a complete

description of a composite quantum system is not deducible from complete

descriptions of its subsystems unless the ÔdescriptionÕ of each subsystem S depends

on what is going on in other subsystems from which S is dynamically isolated. If

this were so, then in quantum systems information would be a  nonlocal quantity Ð

that is to say, the information in a composite system would not be deducible from

the information located in all its subsystems and, in particular, changes in the

distribution of information in a spatially extended quantum system could not be

understood wholly in terms of information flow, i.e. in terms of subsystems carrying

information from one location to another. In this paper we shall show that this belief
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is false. It has given rise to a wide range of misconceptions, some of which we shall

also address here, but our main concern will be with the analysis of information flow

in quantum information-processing systems.

Any quantum Ôtwo-stateÕ system such as the spin of an electron or the polarisation of

a photon can in principle be used as the physical realisation of a qubit (quantum bit),

the basic unit of quantum information. When used to store or transmit discrete data,

such as the values of integers, to an unknown destination, the capacity of a qubit is

exactly one bit Ð in other words, it can hold one of two possible values; moreover,

any observer who knows which of the qubitÕs observables the value was stored in

can discover the value by measuring that observable. However, the states in which

the qubit Ôholds a valueÕ in that sense are merely an isolated pair in a continuum of

possible states. Hence there is a lot more than one bit of information in a qubit,

though most of it is not accessible through measurements on that qubit alone. For a

variety of theoretical and practical reasons, the study of the properties of this

quantum information has recently been the subject of increasing attention (for a

review, see Bennett and Shor (loc. cit.)). The main question we are addressing here is

whether it possible to characterise such information locally, i.e. in such a way that a

complete description of a composite system can always be deduced from complete

descriptions of its subsystems, where under those descriptions, Ôthe real factual

situation of the system S2 is independent of what is done with the system S1, which

is spatially separated from the formerÕ (Einstein (1949, p85)).

Einstein originally proposed this criterion during his celebrated debate with Bohr on

the foundations of quantum theory, in which they both agreed that it is not satisfied

by quantum theory. Bohr drew the lesson that there can be no such thing as Ôthe real

factual situation of the systemÕ except at the instant of measurement. Einstein

concluded instead that quantum theory is incomplete and needs to be completed,

perhaps by what we should now call a hidden-variable theory. Subsequent
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developments such as BellÕs theorem (Bell (1964)) and AspectÕs experiment (Aspect

et al. (1982)), which are prima facie refutations of EinsteinÕs conclusion, have therefore

been taken as vindications of BohrÕs. In fact, both conclusions are mistaken, having

been drawn from the same false premise: as we shall show in this paper, quantum

physics is entirely consistent with EinsteinÕs criterion.

Our method is to consider a quantum system prepared in a way that depends on one

or more parameters, and then to investigate where those parameters subsequently

appear in descriptions of that system and others with which it interacts. Although

we shall express our results in terms of the location and flow of information, we

shall not require a quantitative definition of information. We require only that a

system S be deemed to contain information about a parameter q if (though not

necessarily only if) the probability of some outcome of some measurement on S

alone depends on q; and that S be deemed to contain no information about q if there

exists a complete description of S that satisfies EinsteinÕs criterion and is

independent of q.

2. Quantum theory of computation in the Heisenberg picture

Consider a quantum computational network N containing n interacting qubits

Q1,K,Qn . Following Gottesman (1998), we may represent each qubit Qa at time t in

the Heisenberg picture by a triple

ö q a t( ) = ö q ax t( ) , ö q ay t( ) , ö q az t( )( ) (1)

of 2n ´ 2n  Hermitian matrices representing observables of Qa, satisfying

ö q a t( ), ö q b t( )[ ] = 0 a ¹ b( ) ,

ö q ax t( ) ö q ay t( ) = i ö q az t( )
ö q ax t( ) 2

= ö 1 
and cyclic permutations over x ,y ,z( )( ).

ü

ý
ïï

þ
ï
ï

(2)
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Thus each ö q a t( )  is a representation of the Pauli spin operators ö s = ö s x , ö s y , ö s z( ) , but in

terms of time-dependent 2n ´ 2n  matrices instead of the usual constant 2 ´ 2  ones:

ö s x =
0 1
1 0

æ 

è 
ç ç 

ö 

ø 
÷ ÷ , ö s y =

0 - i

i 0

æ 

è 
ç ç 

ö 

ø 
÷ ÷ , ö s z =

1 0
0 -1

æ 

è 
ç ç 

ö

ø
÷÷ . (3)

We may choose, as the computation basis at time t, the simultaneous eigenstates

z1,K ,zk ;t{ }  of the ö z a t( ){ } , where

ö z a t( ) = 1
2

ö 1 + ö q az t( )( ) . (4)

Each ö z a t( )  has eigenvalues 0 and 1 (corresponding respectively to the eigenvalues Ð1

and +1 of ö q az t( ) ) and is the projector for the aÕth qubit to hold the value 1 at time t.

There is considerable freedom in the choice of matrix representations for the

observables (1). It is always possible, and usually desirable, to choose the initial

representation to be

ö q a 0( ) = ö 1 a -1 Ä ö s Ä ö 1 n-a , (5)

where ÔÄÕ denotes the tensor product (distributed, in (5), over the three components

of ö s ), and ö 1 k is the tensor product of k copies of the 2 ´ 2 unit matrix. As we shall

see, once the qubits begin to interact, the observables immediately lose the form (5)

in the original basis.  That is because, as in classical mechanics, the value of each

observable of one system becomes a function of the values of observables of other

systems at previous times Ð though now the ÔvaluesÕ are matrices. (However, at

every instant, because the conditions (2) are preserved by all quantum interactions,

there exists a basis in which the observables take the form (5).)

The Heisenberg state of the network is of course constant and, in the theory of

computation, it is often desirable to make it a standard constant 0,K ,0;0 , so that the

resources required to prepare the ÔinitialÕ state will automatically be taken into
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account in the analysis of computations. When studying algorithms whose intended

inputs are qubits in unknown initial states, it may be convenient to work with other

Heisenberg states Y ¹ 0,K ,0;0  but note, nevertheless, that by choosing any

unitary matrix U with the property Y = U0,K ,0;0 , and setting

ö q a 0( ) = U  ö 1 a-1 Ä ö s Ä ö 1 n-aæ 
è ç ö 

ø ÷ U  instead of (5), it is always possible to choose the

Heisenberg state to be 0,K ,0;0 .

The formalism presented here can be generalised to accommodate mixed states (see

Deutsch et al. (1999)). That complication is unnecessary for present purposes, but

note that even in the mixed state formalism it remains possible to choose the

Heisenberg state to be 0,K ,0;0 .

In what follows, we shall make that choice. For the sake of brevity, let us define

á ö A ñ º 0,K ,0;0 ö A 0,K ,0;0 (6)

for each observable ö A of N. Note that all predictions about the behaviour of N can

be expressed entirely in terms of expectation values of the form (6).

Let us assume for simplicity that each gate of N performs its operation in a fixed

period, and let us measure time in units of that period. The effect of a k-qubit gate G

acting between the times t and t+1 is

ö q ¢ a t + 1( ) =UG
  ö q ¢ 1 t( ) ,K , ö q ¢ k t( )( ) ö q ¢ a t( )UG ö q ¢ 1 t( ) ,K , ö q ¢ k t( )( ) , (7)

where ¢ 1 ,K , ¢k  are the indices of the qubits that are acted upon by G, and ¢a  is any

such index. Since each qubit is acted upon by exactly one gate during any one

computational step (counting the Ôunit wireÕ I, which has no effect on the

computational state of a qubit, as a gate with UI = ö 1), the dynamical evolution of any

qubit of N during one step is fully specified by an expression of the form (7), where

G is the gate acting on that qubit during that step. The form of each UG qua function
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of its arguments is fixed and characteristic of the corresponding gate G, and its form

qua unitary matrix varies accordingly.

It follows that the simultaneous eigenstates of the ö z ¢ a t( ){ }  evolve according to

z ¢ 1 ,K ,z ¢ k ;t + 1 =UG
  ö q ¢ 1 t( ) ,K , ö q ¢ k t( )( ) z ¢ 1 ,K ,z ¢ k ;t . (8)

The computation basis evolves similarly, with k replaced by the total number of

qubits n, and with UG replaced by the product (in any order, since they must

commute) of all the unitary matrices corresponding to gates acting at time t.

We are now in a position to verify that quantum systems have the locality properties

stated in Section 1. If we always choose the state vector to be a standard constant, the

term Ôstate vectorÕ becomes a misnomer, for the vector 0,K ,0;0  contains no

information about the state of N or anything else. All the information is contained

in the observables. Specifically, the matrix triplets ö q a t( ){ } , each of which constitutes

a complete (indeed redundant) description of one qubit Qa, jointly constitute a

complete description of the composite system N Ð as promised.

As for EinsteinÕs criterion about the effect of one subsystem upon another, consider a

particular qubit Qa and let F be a gate that acts only on one or more qubits other than

Qa (so that Qa is dynamically isolated from those qubits) during the period between

t and t+1. According to (7), the complete description of Qa during that period would

be unchanged if F were replaced by any other gate. Hence it is a general feature of

this formalism that when a gate acts on any set of qubits, the descriptions of all other

qubits remain unaffected Ð even qubits that are entangled with those that the gate

acts on. This is, again, as promised.

A quantum computational network is not a general quantum system: for instance, its

interactions all take place in discrete computational steps of fixed duration, and

during any computational step each of its qubits interacts only with the other qubits
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that are acted upon by the same gate. Nevertheless, since every quantum system can

be simulated with arbitrary accuracy by quantum computational networks (Deutsch

1989), the above conclusions about locality are true for general quantum systems too.

3. Some specific quantum gates

We often define gates according to the effect they are to have on the computation

basis. In such cases we can use (8) to determine the form of the function UG

associated with a given gate G . For example, a not-gate acting on a network

consisting of a single qubit at time t must have the effect

0;t = 1;t + 1 =Unot
  ö q t( )( ) 1;t

1;t = 0;t + 1 = Unot
  ö q t( )( ) 0;t

ü
ý
ï

þï
. (9)

(Recall that the kets here are not Schr�dinger states but eigenstates of Heisenberg

observables. So, for instance, 0;t  in (9) is the zero-eigenvalue eigenstate of

ö z t( ) = 1
2

ö 1 + ö q z t( )( ) .) Hence at t = 0,

r ;0Unot
  ö q 0( )( ) s;0 = d r ,1- s( ) . (10)

The Pauli matrices (3) together with the unit matrix form a basis in the vector space

of all 2 ´ 2  matrices, so we may express (10) as an expansion in this basis to obtain

Unot ö q 0( )( ) = ö s x . (11)

Using (5), (11) and the fact that the functional form of Unot is constant, we infer that

for a general network at a general time t, the unitary matrix associated with a not-

gate acting on the kÕth qubit is

Unot,k ö q 1 t( ) ,K , ö q n t( )( ) = ö q kx t( ) . (12)

From (12) and (2) it follows that the effect of not on the kÕth qubit is:
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 ÔnotÕ: ö q k t + 1( ) º ö q kx t + 1( ) , ö q ky t + 1( ) , ö q kz t + 1( )( ) = ö q kx t( ) ,- ö q ky t( ) ,- ö q kz t( )( ) , (13)

with all other qubits remaining unchanged, and from this we can immediately verify

that the following operation on Qk:

 ÔÖnotÕ: ö q k t + 1( ) = ö q kx t( ) , ö q kz t( ) ,- ö q ky t( )( ) , (14)

is a Ôsquare-root-of-notÕ operation (Deutsch (1987)).

Consider next the Ôperfect-measurementÕ or controlled-not operation, cnot (Barenco et

al. (1995)). This is an operation on two qubits, designated the control qubit and the

target qubit. Its effect is that if the control qubit takes the value 0 then the target qubit

is unaltered, and if the control qubit takes the value 1 then the target qubit is

toggled. Given (12), this means that

Ucnot ö q k , ö q l( ) = ö 1 k Ä
(ö 1 l - ö q lz )

2
+ ö q kx Ä

(ö 1 l + ö q lz )
2

. (15)

where the kÕth and l Õth qubits are the ÔtargetÕ and ÔcontrolÕ qubits respectively.

Substituting (15) into (7), we obtain

 ÔcnotÕ:
ö q k t + 1( )
ö q l t + 1( )

ì 
í 
ï 

î ï 

ü 
ý 
ï 

þ ï 
=

ö q kx t( ) ,( - ö q ky t( ) ö q lz t( ) , - ö q kz t( ) ö q lz t( ))
ö q kx t( ) ö q lx t( ) ,( ö q kx t( ) ö q ly t( ) , ö q lz t( ))

ì 
í 
ï 

î ï 

ü
ý
ï

þï
. (16)

Let Rn q( )  be the single-qubit gate that would, if the kÕth qubit were a spin- 1
2  particle,

rotate it through an angle q about the unit 3-vector n . The matrices ö q k must

transform under this rotation in the same way as Pauli matrices do:

ÔRn q( ) Ô: ö q k t + 1( ) = e i q
2n . ö q k t( ) ö q k t( )e -i q

2n .ö q k t( )
. (17)

Hence in particular, the effect of rotating the kÕth qubit through an angle q about the

x-axis is:
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ÔR x q( ) Ô: ö q k t + 1( ) = ö q kx t( ) , ö q ky t( ) cosq + ö q kz t( ) sinq, ö q kz t( ) cosq - ö q ky t( ) sinq( ) . (18)

Another useful gate, the ÔHadamard gateÕ H, is also a special case of (17), with q = p

and n  bisecting the angle between the x- and z-axes:

ÔHÔ: ö q k t + 1( ) = ö q kz t( ) ,- ö q ky t( ) , ö q kx t( )( ) . (19)

In general, since the cnot gate together with gates of the type Rn q( )  constitute a

universal set, the effect of any gate can be calculated by considering a

computationally equivalent network containing only those gates, and then using (16)

and (17).

For example, the gate that performs the so-called Bell transformation on two qubits

(Braunstein et al. (1992)) is equivalent to the network shown on the right of the

equals sign in Fig. 1. (Gates other than cnot are represented

by rectangles, the vertical lines represent the paths of qubits,

and the arrows at the top indicate their direction of motion.)

Since both cnot and H  are their own inverses, the same

network upside-down ( i.e. with H preceding cnot) performs

the inverse of the Bell transformation. It follows that the effect of the Bell gate is

 ÔBellÕ:
ö q k t + 1( )
ö q l t + 1( )

ì 
í 
ï 

î ï 

ü 
ý 
ï 

þ ï 
=

ö q kx t( ) ,( - ö q ky t( ) ö q lz t( ) , - ö q kz t( ) ö q lz t( ))
ö q lz t( ),( - ö q kx t( ) ö q ly t( ) , ö q kx t( ) ö q lx t( ))

ì 
í 
ï 

î ï 

ü
ý
ï

þï
, (20)

and the effect of its inverse is

 ÔBell-1Õ:
ö q k t + 1( )
ö q l t + 1( )

ì 
í 
ï 

î ï 

ü 
ý 
ï 

þ ï 
=

ö q kx t( ) ,( - ö q ky t( ) ö q lx t( ) , - ö q kz t( ) ö q lx t( ))
ö q kx t( )ö q lz t( )( , - ö q kx t( ) ö q ly t( ) , ö q lx t( ))

ì 
í 
ï 

î ï 

ü
ý
ï

þï
. (21)

Fig. 1: The Bell Gate
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4. Information flow in Einstein-Podolski-Rosen experiments

The quantum computational network for

performing an Einstein-Podolski-Rosen

(EPR) experiment is shown in Fig. 2.

Since this is the archetypal experiment

that has been thought to demonstrate the

nonlocal nature of information in

quantum physics, it is instructive to trace

the paths that information takes during

the course of such an experiment. In

particular, we shall trace how quantum

information about the value of an angle

f, chosen arbitrarily in a region B,

reaches a distant region A.

Starting at time t = 0 with four qubits Q1KQ4 in the standard state 0,0,0,0;0 , we

entangle Q2 with Q3 by performing the inverse Bell operation (21). In Schr�dinger-

picture terminology they are now in the state

y 1( ) = i
2

0 0 - 1 1( ) , (22)

but in the Heisenberg picture we have

ö q 2 1( ) = ö 1 Ä ö s x Ä ö 1 , - ö s y Ä ö s x , - ö s z Ä ö s x( ) Ä ö 1 

ö q 3 1( ) = ö 1 Ä ö s x Ä ö s z , - ö s x Ä ö s y , ö 1 Ä ö s x( ) Ä ö 1 

ü

ý
ïï

þ
ï
ï

. (23)

After that (at t = 1) we physically separate Q1 and Q2 from Q3 and Q4, moving these

respective pairs to two regions A and B which are sufficiently far apart (or

sufficiently isolated from each other) for nothing to be able to travel from either of

them to the other until after t = 3.

Fig. 2: An Einstein-Podolski-Rosen Experiment
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Then (still at t = 1 as far as the computation is concerned, though in reality some

time would be needed for the qubits to travel to A and B) we rotate Q2 and Q3 about

their x-axes through arbitrarily (but locally) chosen angles q and f respectively. At

this time ( t = 2), Q1 and Q4 have not yet participated in the computation and have

therefore remained unchanged:

ö q 1 2( ) = ö q 1 0( ) = ö s Ä ö 1 3 ; ö q 4 2( ) = ö q 4 0( ) = ö 1 3 Ä ö s , (24)

but the descriptors of Q2 and Q3 are now functions of q and f respectively:

ö q 2 2( ) = ö 1 Ä ö s x Ä ö 1 , - cosq ö s y + sinq ö s z( ) Ä ö s x , sinqö s y - cosqö s z( ) Ä ö s x( ) Ä ö 1 

ö q 3 2( ) = ö 1 Ä ö s x Ä ö s z , sinfö 1 Ä ö s x - cosf ö s x Ä ö s y , cosfö 1 Ä ö s x + sinfö s x Ä ö s y( )æ 
è ç ö 

ø ÷ Ä ö 1 

ü

ý
ïï

þ
ï
ï

. (25)

Now, given the qualitative properties of information that we stated at the end of

Section 1, and since, as we shall see, the values of q and f will affect the probabilities

of the outcomes of measurements performed later in the experiment, we can infer

that the system as a whole contains information about q and f at t = 2. Furthermore,

from (24) and (25) we know that none of the information about q is contained in Q1,

Q3 or Q4, so we must conclude that it is located entirely in Q2. Similarly, all the

information about f that is in the network at t = 2 is located in Q3. However, since

all observables on Q2 are linear combinations of the unit observable and the three

components of ö q 2 2( ) , and since

ö q 2 2( ) = 0,0,0( ) (26)

is independent of q, the probability of any outcome of any possible measurement of

any observable of Q2 at t = 2  is independent of q. In other words, the information

about q, though present in Q2, is not detectable by measurements on Q2 alone.

Let us define locally inaccessible information as information which is present in a

system but does not affect the probability of any outcome of any possible
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measurement on that system alone. We have shown that at t = 2,  the information

about q in Q2 is locally inaccessible, and so is the information about f in Q3.

Nevertheless, such information can, and generically does, spread to other qubits

through further local interactions. For example, in practice it spreads into the local

environment through the unwanted interactions that cause decoherence. It also

spreads to other qubits in our EPR experiment, where we now (after t = 2) use cnot

gates to perform perfect measurements on Q2 and Q3, recording the outcomes in Q1

and Q4 respectively. We then have:

ö q 1 3( ) = ö s x Ä ö 1 2 , ö s y Ä cosq ö s z - sinq ö s y( ) Ä ö s x , ö s z Ä cosqö s z - sinqö s y( ) Ä ö s x( ) Ä ö 1 ,

ö q 2 3( ) = ö s x Ä ö s x Ä ö 1 , - ö s x Ä cosq ö s y + sinq ö s z( ) Ä ö s x , ö 1 Ä sinqö s y - cosqö s z( ) Ä ö s x( ) Ä ö 1 ,

ö q 3 3( ) = ö 1 Ä ö s x Ä ö s z Ä ö s x , sinfö 1 Ä ö s x - cosf ö s x Ä ö s y( ) Ä ö s x , cosfö 1 Ä ö s x + sinfö s x Ä ö s y( ) Ä ö 1 
æ 
è ç ö 

ø ÷ ,

ö q 4 3( ) = ö 1 Ä ö 1 2 Ä ö s x , - cosfö 1 Ä ö s x + sinf ö s x Ä ö s y( ) Ä ö s y , - cosfö 1 Ä ö s x + sinfö s x Ä ö s y( ) Ä ö s z
æ 
è ç ö 

ø ÷ .

ü

ý

ï
ï
ï
ï

þ

ï
ï
ï
ï

(27)

The locality of all these operations is reflected in the fact that at this time ( t = 3), ö q 1

and ö q 2 depend on q but not f, while ö q 3 and ö q 4 depend on f but not q. Again, it is

easily verified that none of these dependences is detectable locally Ð i.e. by any

measurement performed jointly on Q1 and Q2, or jointly on Q3 and Q4 Ð and that

this would remain true if any amount of further interaction with other local qubits,

or with the local environments, were to occur.

Finally, we measure whether the two outcomes that are now (at t = 3) stored in Q1

and Q4 were the same or not. We do this by bringing Q4 (and thereby its

information about f) to location A and then using it as the control qubit of a cnot

operation with Q1 as the target. The probability that the two outcomes were different

is then áö z 1 4( ) ñ . Using (4), (16), (27) and (2), we find that
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ö z 1 4( ) = 1
2

ö 1 + ö q 1z 4( )

= 1
2 - 1

2
ö q 1z 3( ) ö q 4z 3( )

= 1
2 - 1

2 ö s z Ä cosq cosf ö s z Ä ö 1 - cosq sinf ö s y Ä ö s z - sinq cosf ö s y Ä ö 1 - sinq sinf ö s z Ä ö s z( ) Ä ö s z

= cos2 1
2 q - f( ).

(28)

This is a familiar result, but in the course of calculating it in the Heisenberg picture,

we have discovered exactly how the information about f reached Q1: it was carried

there in the qubit Q4 as it travelled from B to A.

It is easily verified that the result of the experiment would be unchanged if ö z 4 t( )

were measured any number of times on Q4Õs journey from B to A. The locally

inaccessible information about f that is carried in Q4 would not be affected by such

measurements, nor, therefore, would it be affected if Q4 suffered decoherence

through environmental interactions that stabilised ö z 4 . But it would be copied into

other qubits, and any qubit holding the outcome of a measurement of ö z 4  could be

used instead of Q4 to carry the information to A. The ability of quantum information

to flow through a classical channel in this way, surviving decoherence, is also the

basis of quantum teleportation, a remarkable phenomenon to which we now turn.
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5. Information flow in quantum teleportation

The very term ÔteleportationÕ was chosen by the discoverers of the phenomenon

(Bennett et al. (1993)) because it was deemed to be a spectacular example of

information from one location A appearing at another location B without being

carried there in any physical

object travelling from A to B Ð i.e.

without information flow.

A quantum computational

network for demonstrating

teleportation is shown in Fig. 3.

The information of interest is the

angle q through which, at t = 0,

we choose to rotate the qubit Q1,

located at A, about its x-axis.

More generally, the R x q( )  gate

could be replaced by an arbitrary

single-qubit gate that prepared

Q1 in an arbitrary pure state,

which the network would ÔteleportÕ to Q5 at the distant location B, but for simplicity

we are restricting ourselves to a one-parameter family of states. We have

ö q 1 1( ) = ö s x , cosq ö s y + sinq ö s z , cosq ö s z - sinq ö s y( ) Ä ö 1 4 . (29)

Also at t = 0, at location B, qubits Q4 and Q5 are entangled by the action of an

inverse Bell gate:

ö q 4 1( ) = ö 1 3 Ä ö s x Ä ö 1 , - ö s y Ä ö s x , - ö s z Ä ö s x( )
ö q 5 1( ) = ö 1 3 Ä ö s x Ä ö s z , - ö s x Ä ö s y , ö 1 Ä ö s x( )

ü
ý
ï

þ
ï

. (30)

Fig. 3: Quantum Teleportation experiment
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Then the qubit Q4 travels to location A and undergoes a Bell operation together with

the qubit Q1 that we rotated. As a result,

ö q 1 2( ) = ö s x Ä ö 1 4 , cosq ö s y + sinq ö s z( ) Ä ö 1 2 Ä ö s z Ä ö s x , cosqö s z - sinqö s y( ) Ä ö 1 2 Ä ö s z Ä ö s x( )
ö q 4 2( ) = - ö 1 3 Ä ö s z Ä ö s x , ö s x Ä ö 1 2 Ä ö s y Ä ö s x , ö s x Ä ö 1 2 Ä ö s x Ä ö 1 ( )

ü

ý
ïï

þ
ï
ï

. (31)

Next we use cnot gates to perform perfect measurements on Q1 and Q4, recording

the outcomes in Q2 and Q3 respectively:

ö q 2 3( ) = ö 1 Ä ö s x Ä ö 1 3 , sinq ö s y - cosq ö s z( ) Ä ö s y Ä ö 1 Ä ö s z Ä ö s x , sinqö s y - cosqö s z( ) Ä ö s z Ä ö 1 Ä ö s z Ä ö s x( )
ö q 3 3( ) = ö 1 2 Ä ö s x Ä ö 1 2 , - ö s x Ä ö 1 Ä ö s y Ä ö s x Ä ö 1 , - ö s x Ä ö 1 Ä ö s z Ä ö s x Ä ö 1 ( )

ü

ý
ïï

þ
ï
ï

. (32)

(The fact that in this simplified example the information about q at t = 2 is absent

from Q4, and that it is then ( t ³ 3) carried only in Q2 and not Q3, has no

fundamental significance: had we been teleporting a general pure state, which

would require us to choose two real parameters at A instead of one, ö q 1 2( ) , ö q 4 2( ) ,

ö q 2 3( )  and ö q 3 3( )  would all generically depend on both those parameters, and both

Q2 and Q3 would be needed to transport the information about our choice to B.)

Next we subject Q2, Q3 and Q5 to the special transformation T:

 ÔTÕ: 

ö q k t + 1( )
ö q l t + 1( )
ö q m t + 1( )

ì 

í 
ï ï 

î 
ï 
ï 

ü 

ý 
ï ï 

þ 
ï 
ï 

=

- ö q kx t( ) ö q mx t( ) ,( - ö q ky t( ) ö q mx t( ), ö q kz t( ))
ö q kz t( )ö q lx t( ) ö q mz t( ) ,( ö q kz t( ) ö q ly t( ) ö q mz t( ) , ö q lz t( ))

- ö q lz t( ) ö q mx t( ) ,( ö q kz t( ) ö q lz t( ) ö q my t( ) - ö q kz t( ) ö q mz t( ))

ì 

í 
ï 
ï 

î 
ï 
ï 

ü

ý
ï
ï

þ
ï
ï

, (33)

which, as explained by Bennett et al. (1993), amounts to performing one of four

unitary transformations on Qm, depending on the binary number stored in Qk and

Ql . For present purposes we need only consider the net effect on Q5, which is to set

ö q 5 4( ) = ö s x Ä ö 1 Ä ö s z Ä ö 1 Ä ö s z , cosq ö s y + sinq ö s z( ) Ä ö s z Ä ö s z Ä ö s z Ä ö s z , cosq ö s z - sinq ö s y( ) Ä ö s z Ä ö 1 Ä ö s z Ä ö 1 ( ) . (34)
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Teleportation is now (at t = 4) complete. To verify this, note first that Q5 is now in a

pure state Ð i.e. it is no longer entangled with anything. In the Heisenberg picture,

the condition that a qubit is pure (given that the overall Heisenberg state is pure) is

that there exist a Boolean observable (i.e. a projection operator) on that qubit whose

measurement is guaranteed to have the outcome 1. This condition is satisfied by Q5

at t = 4, since

1
2

ö 1 - sinqö q 5y 4( ) - cosq ö q 5z 4( )( ) = 1. (35)

A necessary and sufficient condition for the teleportation to have been successful is

that the probability of each possible outcome of each possible measurement on Q5 at

t = 4 be the same as the probability of the same outcome of the corresponding

measurement on Q1 at t = 1 (just after we rotated Q1 through the arbitrary angle q).

Since Q5 is un-entangled, it suffices to consider measurements on it alone, and so,

since

ö q 1 1( ) = ö q 5 4( ) = 0, - sinq, - cosq( ) , (36)

the condition is met.

Experimentally, one would verify that the information about q has reached Q5 by

rotating Q5 through an angle -q  about its x-axis, after which

ö q 5 z 5( ) = cos2 qö s z Ä ö s z Ä ö 1 Ä ö s z Ä ö 1 + cosq sinq ö s y Ä ö s z Ä ö s z Ä ö s z Ä ö s z - ö 1 Ä ö s z Ä ö 1 ( ) + sin2q ö s z Ä ö s z Ä ö s z Ä ö s z Ä ö s z , (37)

and then measuring whether Q5 holds the value 0. The probability that it does is

predicted to be 1
2

ö 1 - ö q 5z 5( ) = 1.

Once again, we see exactly how the information about the angle q reached B: not

through Ônonlocal influencesÕ allowing it to Ôfly across the entanglementÕ (Jozsa

(1998)); not by residing in N as a whole rather than in any particular qubit
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(Braunstein (1996)); not by travelling backwards in time to t = 1 with Q4 and then

forwards again with Q5 (Penrose (1998)); not instantaneously (a traditional

misconception that has sometimes found its way into textbooks Ð e.g. Williams and

Clearwater (1998, ¤8.10)), nor through action at a distance (Williams and Clearwater

(1998, ¤9.2)); nor of course through the Ôcollapse of the state vectorÕ (since the state

vector is strictly constant) Ð but simply, prosaically, in the qubits Q2 and Q3 as they

travelled from A to B.

6. Locally inaccessible information

Qubits Q2 and Q3 do not contain a copy of all the information in Q1 and Q4, but

only that which has survived decoherence (in the computation basis). Therefore, to

local experiments, Q2 and Q3 look like a classical information channel through

which the four possible outcomes of the ÔBell measurementÕ that took place between

t = 1 and t = 3 are transmitted from A to B. However, as we have just seen, this

channel also carries a qubitÕs worth of quantum information, which is locally

inaccessible while in transit. This information is transmitted extremely reliably by

the decoherent channel, arriving intact provided only that there is no error in

communicating the classical message. This illustrates an interesting tradeoff between

accessibility and robustness for quantum information: In its simplest manifestations

(say, in a single qubit prepared in a pure state) all the quantum information is locally

accessible, but it is also maximally vulnerable to decoherence. In contrast, the

quantum information that travels from A to B in the teleportation experiment is

invulnerable to decoherence but absolutely inaccessible to local experiments.

This tradeoff, which is to be expected given that decoherence processes can be

regarded as measurements of the quantum system by the environment (Zurek

(1981)), shows us the true role of entanglement in quantum teleportation:

entanglement provides a key that determines when and how quantum information
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can be extracted from a decoherent channel. Thus in our teleportation experiment,

the inverse Bell operation at t = 0 sets up algebraic relationships (such as

ö q 4z 1( ) ö q 5z 1( ) ¹ ö q 4z 1( ) ö q 5z 1( ) ) between ö q 4 t ³ 1( )  and ö q 5 t ³ 1( ) . These relationships

constitute quantum information that is not locally accessible in either Q4 or Q5, and

is the key that is copied into Q2 and Q3 by the measurements at t = 2, and then

allows Q5 to recover the quantum information about q that is hidden in Q2 and Q3.

This may be contrasted with existing interpretations of quantum teleportation,

where it is the classical information transmitted in qubits Q2 and Q3 that would be

interpreted as the key, while entanglement is deemed to provide a channel that is

neither material nor located in spacetime but through which, nevertheless, the

quantum information somehow passes from A to B.

Consider the moment t = 2 in our EPR experiment (Section 4), when we have just

rotated qubit Q2 through an angle q, and suppose that f = 0. Neither of the regions

A or B then contains any locally accessible information about q, but the composite

system still does. This ability to Ôstore information in the correlations between

subsystemsÕ is often misrepresented as a nonlocality property of quantum physics,

but in fact it is not a uniquely quantum phenomenon at all. For example, imagine

that Alice and Bob share a random string of bits r = r1r2Krn( )  at time t = 0, and then

move to spatially separated regions A and B. Alice composes a text x = x1x2 Kxn( )
and encodes it as y = x Å r , where Å is the bitwise exclusive-or operation, and then

discards the original. As a result the text x is not retrievable from region A alone nor,

of course, from region B alone, but only from the combined system. Nevertheless,

the information about x does not jump out of region A to an indeterminate location

when Alice performs her exclusive-or operation but is, in the following sense,

located entirely at A throughout: r and y are both random numbers, and given only

the mathematical relationship y = x Å r  between them, which is equivalent to

r = x Å y , either of them could be regarded as the cyphertext version of x while the

other was the key needed to extract x from that cyphertext. Nevertheless the history
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of information flow in the combined system is that y, and not r, was constructed

from x, and r but not y was constructed independently of x. Hence y is genuinely the

cyphertext and r genuinely the key, and consequently the information about x is

located at A and not elsewhere.

All phenomena that have been thought to demonstrate nonlocality in quantum

physics are actually due to the phenomenon of locally inaccessible information. That

is to say, what has been mistaken for nonlocality is the ability of quantum systems to

store information in a form which, like a cyphertext, is accessible only after suitable

interactions with other systems. It is worth noting that not all such phenomena

involve entanglement: the discovery by Bennett et al. (1998), which they called

Ônonlocality without entanglementÕ, must now be understood as a proof that locally

inaccessible information can exist even in non-entangled quantum systems.

Returning now to our EPR experiment with f = 0, we note that at t = 2, all of the

networkÕs information about q is localised in Q2. It is locally inaccessible there, but

accessible in Q2 and Q3 jointly. Thus, again, Q3 holds the ÔkeyÕ for accessing the

information about q in Q2. Given (22), the Schr�dinger state at t = 2 is

y 2( ) = e -i q
2 ö s x Ä ö 1 ( ) y 1( ) =

1
2

sin 1
2 q 1 0 - 0 1( ) + i cos 1

2 q 0 0 - 1 1( )[ ] . (38)

But it is easy to verify that

e -i q
2 ö s x Ä ö 1 ( ) y 1( ) = ö 1 Ä e+ i q

2 ö s x( ) y 1( ) , (39)

which means that the Schr�dinger state would have been exactly the same if we had

placed the information about q in Q3 instead of Q2, by rotating Q3 through an angle

-q  Ð just as, in our classical example, we could have obtained y and r with the same

probability distribution function by first choosing y randomly and then constructing

r from x and y. It follows that in general, to determine where the information about a
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given parameter is located at a given instant, it is insufficient to know how the

Schr�dinger state at that instant depends on the parameter. (In contrast, as we have

seen, it is sufficient to know how the Heisenberg observables at that instant depend

on the parameter.)

7. Irrelevance of BellÕs theorem

Some readers may be hearing a warning Bell in their minds at the idea that the

purely local accounts given in Sections 4 and 5 above Ð or any purely local account Ð

can be compatible with predictions of quantum theory such as (28) and (36). Such

readers will be considering reductio-ad-absurdum proofs that supposedly rule out all

such accounts, along the following lines:

Suppose that at t = 3 in our EPR experiment we allow the Boolean observables ö z 1 3( )
and ö z 4 3( )  to be measured by observers at A and B respectively, and suppose that the

outcomes a and b  of these measurements are determined by some local stochastic

processes that select each actual outcome from the possibilities 0,1{ } . Since the

angles q and f were chosen after the qubits were separated, the effective content of

the locality condition is that the stochastic Boolean variables a and b  must be

independent of f and q respectively.

For the stochastic processes determining a and b  to be consistent with the

probabilistic predictions of quantum theory, we must have

a q( ) = ö z 1 3( ) = 1
2 1+ ö s z Ä cosqö s z - sinqö s y( ) Ä ö s x Ä ö 1 ( ) = 1

2

b f( ) = ö z 4 3( ) = 1
2

1- ö 1 Ä cosfö 1 Ä ö s x + sinfö s x Ä ö s y( ) Ä ö s z
æ 
è ç 

ö 
ø ÷ = 1

2

ü

ý
ïï

þ
ï
ï

(40)

for all q and f, where barred quantities such as a q( )  denote mean values.

Furthermore, applying (27) and (4), we obtain
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a q( )b f( ) = ö z 1 3( ) ö z 4 3( ) = 1
2 sin2 1

2 q - f( ) . (41)

From (40) and (41) with f = q, we conclude that for any q,

1- a q( ) - b q( )( ) 2
= 0 , (42)

and therefore

b q( ) = 1- a q( ) . (43)

Hence from (41) again, for all q0 and q1,

a q0( )a q1( ) = 1
2 cos2 1

2 q0 - q1( ) . (44)

Let Ú denote the logical or operation on Boolean variables, so that p Úq º p + q - pq ,

and set q j = 2p
3 j in the identity

a q0( ) º a q0( ) a q1( ) Ú a q2( )( ) + a q0( ) 1- a q1( ) Ú a q2( )( ) . (45)

Then note that p Úq  is itself a stochastic Boolean variable and that such variables are

non-negative. Hence, using (44) and (40), we obtain

1
2 = a 0( ) a 2p

3( ) Ú a 4p
3( )( ) + a 0( ) 1- a 2p

3( ) Ú a 4p
3( )( )

£ a 0( ) a 2p
3( ) + a 4p

3( ) - a 2p
3( )a 4p

3( )( ) + 1- a 2p
3( ) - a 4p

3( ) + a 2p
3( )a 4p

3( )( )
£ 3

8 - a 0( )a 2p
3( )a 4p

3( )
£ 3

8

(46)

which is a contradiction. This result is a version (similar to that of Mermin (1985)) of

BellÕs theorem.

BellÕs theorem has often been misinterpreted as implying that the empirical

predictions of quantum theory cannot be obtained from any local theory (see e.g.

dÕEspagnat (1971, ¤11.6)), and hence that quantum theory (and therefore presumably
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reality as well) has a nonlocal character. In the light of our explicit demonstration

that the locality premise is true after all, we must instead infer that another of our

premises was at fault. In fact the false premise occurs in the first sentence of the

argument, where we assumed that we could assign stochastic variables such as a q( )
to the Ôactual outcomesÕ of measurements. Comparing this with the general

exposition of the quantum theory of computation in Section 2, we notice that no such

quantities appear there. It is hardly surprising that assigning a single-valued (albeit

stochastic) variable to a physical quantity whose true descriptor is a matrix, soon

leads to inconsistency.

Note that despite there being, in general, no single Ôactual outcomeÕ of a

measurement, there is of course a well-defined set of actual outcomes (viz. some or

all of the eigenvalues of the observable being measured), and a probability for each

member of that set. These probabilities are not, however, associated with any

stochastic variables Ð again, no such variables occur in the theory presented in

Section 2 Ð but enter quantum theory through an entirely different, deterministic

mechanism (see Deutsch (1999)).

8.  ÔNonlocalityÕ of the Schr�dinger picture

Given that quantum theory is entirely local when expressed in the Heisenberg

picture, but appears nonlocal in the Schr�dinger picture, and given that the two

pictures are mathematically equivalent, are we therefore still free to believe that

quantum theory (and the physical reality it describes) is nonlocal?

We are not Ð just as we should not be free to describe a theory as ÔcomplexÕ if it had

both a simple version and a mathematically equivalent complex version. The point is

that a ÔlocalÕ theory is defined as one for which there exists a formulation satisfying

the locality conditions that we stated at the end of Section 1 (and a local reality is

defined as one that is fully described by such a theory). If we were to classify
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theories as nonlocal whenever it was possible to reformulate them in terms of

nonlocal quantities (say, p + q  and p - q , where p  and q  are local to A and B

respectively), then no theory would qualify as local.

Moreover, although the Schr�dinger picture disguises the locality of quantum

physical processes, all our results could also, with sufficiently careful analysis, be

obtained using the Schr�dinger picture. Indeed, although we are not aware of any

existing correct analysis of quantum information flow, the Schr�dinger picture has

been used by several authors to reach the bare conclusion that quantum processes

are local (e.g. Page (1982); Tipler (1998)). When analysing information flow in the

Schr�dinger picture it is essential to realise that, as we noted in Section 6, it is

impossible to characterise quantum information at a given instant using the state

vector alone. To investigate where information is located one must also take into

account how that state came about. In the Heisenberg picture this is taken care of

automatically, precisely because the Heisenberg picture gives a description that is

both complete and local.

Thus the Heisenberg picture makes explicit what is implicit, indeed quite well

hidden, in the Schr�dinger picture. The latter is optimised for predicting the

outcomes of processes given how they were prepared, but (notoriously) not for

explaining how the outcomes come about Ð so it is not surprising that on the face of

it, it misrepresents information flow. The relationship between the two pictures is

somewhat analogous to that between any descriptive piece of information, such as a

text or a digitised image, and an algorithmically compressed version of the same

information that eliminates redundancy to achieve a more compact representation. If

the compression algorithm used is not ÔlossyÕ, then, considered as a description of

the original data, the two versions are mathematically equivalent. However, the

elimination of redundancy results in strong interdependence between the elements

of the compressed description so that, for instance, a localised change in the original



David Deutsch and Patrick Hayden Information Flow in Entangled Quantum Systems

24

data can result in changes all over the compressed version, so that a particular

character or pixel from the original is not necessarily located at any particular

position in the compressed version. Nevertheless, it would be a serious error to

conclude that this ÔholisticÕ property of the compressed description expresses any

analogous property in the original text or image, or of course in the reality that they

refer to.
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