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TWO RESULTS ON HOMOGENEOUS HESSIAN
NILPOTENT POLYNOMIALS

ARNO VAN DEN ESSEN∗ AND WENHUA ZHAO∗∗

Abstract. Let z = (z1, · · · , zn) and ∆ =
∑n

i=1

∂
2

∂z2

i

the Laplace

operator. A formal power series P (z) is said to be Hessian Nilpo-

tent(HN) if its Hessian matrix Hes P (z) = ( ∂
2
P

∂zi∂zj
) is nilpotent. In

recent developments in [BE1], [M] and [Z], the Jacobian conjec-
ture has been reduced to the following so-called vanishing conjec-

ture(VC) of HN polynomials: for any homogeneous HN polynomial

P (z) (of degree d = 4), we have ∆mPm+1(z) = 0 for any m >> 0.
In this paper, we first show that, the VC holds for any homogeneous
HN polynomial P (z) provided that the projective subvarieties ZP

and Zσ2
of CPn−1 determined by the principal ideals generated by

P (z) and σ2(z) :=
∑n

i=1
z2

i
, respectively, intersect only at regular

points of ZP . Consequently, the Jacobian conjecture holds for the
symmetric polynomial maps F = z−∇P with P (z) HN if F has no
non-zero fixed point w ∈ Cn with

∑n

i=1
w2

i
= 0. Secondly, we show

that the VC holds for a HN formal power series P (z) if and only
if, for any polynomial f(z), ∆m(f(z)P (z)m) = 0 when m >> 0.

1. Introduction and Main Results

Let z = (z1, z2, · · · , zn) be commutative free variables. Recall that
the well-known Jacobian conjecture claims that: any polynomial map

F (z) : Cn → Cn with the Jacobian j(F )(z) ≡ 1 is an autompophism of

Cn and its inverse map must also be a polynomial map. Despite intense
study from mathematicians in more than sixty years, the conjecture is
still open even for the case n = 2. In 1998, S. Smale [S] included the
Jacobian conjecture in his list of 18 important mathematical problems
for 21st century. For more history and known results on the Jacobian
conjecture, see [BCW], [E] and references there.

Recently, M. de Bondt and the first author [BE1] and G. Meng [M]
independently made the following remarkable breakthrough on the Ja-
cobian conjecture. Namely, they reduced the Jacobian conjecture to
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the so-called symmetric polynomial maps, i.e the polynomial maps of
the form F = z − ∇P , where ∇P := ( ∂P

∂z1

, ∂P
∂z2

, · · · , ∂P
∂zn

), i.e. ∇P (z) is

the gradient of P (z) ∈ C[z].
For more recent developments on the Jacobian conjecture for sym-

metric polynomial maps, see [BE1]–[BE4].
Based on the symmetric reduction above and also the classical homo-

geneous reduction in [BCW] and [Y], the second author in [Z] further
reduced the Jacobian conjecture to the following so-called vanishing
conjecture.

Let ∆:=
∑n

i=1
∂2

∂z2

i

the Laplace operator and call a formal power series

P (z) Hessian nilpotent(HN) if its Hessian matrix Hes P (z) := ( ∂2P
∂zi∂zj

)

is nilpotent. It has been shown in [Z] that the Jacobian conjecture is
equivalent to

Conjecture 1.1. (Vanishing Conjecture of HN Polynomials)
For any homogeneous HN polynomial P (z) (of degree d = 4), we have

∆mP m+1 = 0 when m >> 0.

Note that, it has also been shown in [Z] that P (z) is HN if and only
if ∆mP m = 0 for m ≥ 1.

In this paper, we will prove the following two results on HN polyno-
mials.

Let P (z) be a homogeneous HN polynomial of degree d ≥ 3 and
σ2(z):=

∑n

i=1 z2
i . We denote by ZP and Zσ2

the projective subvarieties
of CP n−1 determined by the principal ideals generated by P (z) and
σ2(z), respectively. The first main result of this paper is the following
theorem.

Theorem 1.2. Let P (z) be a homogeneous HN polynomial of degree

d ≥ 4. Assume that ZP intersects with Zσ2
only at regular points of

ZP , then the vanishing conjecture holds for P (z). In particular, the

vanishing conjecture holds if the projective variety ZP is regular.

Remark 1.3. Note that, when deg P (z) = d = 2 or 3, the Jacobian

conjecture holds for the symmetric polynomial map F = z −∇P . This

is because, when d = 2, F is a linear map with j(F ) ≡ 1. Hence F

is an automorphism of Cn; while when d = 3, we have deg F = 2. By

Wang’s theorem [W], the Jacobian conjecture holds for F again. Then,

by the equivalence of the vanishing conjecture for the homogeneous HN

polynomial P (z) and the Jacobian conjecture for the symmetric map

F = z −∇P established in [Z], we see that, when deg P (z) = d = 2 or

3, Theorem 1.2 actually also holds even without the condition on the

projective variety ZP .
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For any non-zero z ∈ Cn, denote by [z] its image in the projective
space CP n−1. Set

Z̃σ2
:= {z ∈ C

n | z 6= 0; [z] ∈ Zσ2
}.(1.1)

In other words, Z̃σ2
is the set of non-zero z ∈ Cn such that

∑n

i=1 z2
i = 0.

Note that, for any homogeneous polynomial P (z) of degree d, it
follows from the Euler’s formula dP =

∑n

i=1 zi
dP
dzi

, that any non-zero

w ∈ Cn, [w] ∈ CP n−1 is a singular point of ZP if and only if w is a
fixed point of the symmetric map F = z −∇P . Furthermore, it is also
well-known that, j(F ) ≡ 1 if and only if P (z) is HN.

By the observations above and Theorem 1.2, it is easy to see that
we have the following corollary on symmetric polynomial maps.

Corollary 1.4. Let F = z − ∇P with P homogeneous and j(F ) ≡ 1

(or equivalently, P is HN). Assume that F does not fix any w ∈ Z̃σ2
.

Then the Jacobian holds for F (z). In particular, if F has no non-zero

fixed point, the Jacobian conjecture holds for F .

Our second main result is following theorem which says that the
vanishing conjecture is actually equivalent to a formally much stronger
statement.

Theorem 1.5. For any HN polynomial P (z), the vanishing conjec-

ture holds for P (z) if and only if, for any polynomial f(z) ∈ C[z],
∆m(f(z)P (z)m) = 0 when m >> 0.

2. Proof of the Main Results

Let us first fix the following notation. Let z = (z1, z2, · · · , zn) be
free complex variables and C[z] (resp. C[[z]]) the algebra of polynomials
(resp. formal power series) in z. For any d ≥ 0, we denote by Vd the
vector space of homogeneous polynomials in z of degree d.

For any 1 ≤ i ≤ n, we set Di = ∂
∂zi

and D = (D1, D2, · · · , Dn). We

define a C-bilinear map {·, ·} : C[z] × C[z] → C[z] by setting

{f, g} := f(D)g(z)

for any f(z), g(z) ∈ C[z].
Note that, for any m ≥ 0, the restriction of {·, ·} on Vm × Vm gives

a C-bilinear form of the vector subspace Vm, which we will denote by
Bm(·, ·). It is easy to check that, for any m ≥ 1, Bm(·, ·) is symmetric
and non-singular.

The following lemma will play a crucial role in our proof of the first
main result.
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Lemma 2.1. For any homogeneous polynomials gi(z) (1 ≤ i ≤ k) of

degree di ≥ 1, let S be the vector space of polynomial solutions of the

following system of PDEs:




g1(D) u(z) = 0,

g2(D) u(z) = 0,

.....

gk(D) u(z) = 0.

(2.2)

Then, dim S < +∞ if and only if gi(z) (1 ≤ i ≤ k) have no non-zero

common zeroes.

Proof: Let I the homogeneous ideal of C[z] generated by {gi(z)|1 ≤
i ≤ k}. Since all gi(z)’s are homogeneous, S is a homogeneous vector
subspace S of C[z].

Write

S =

∞⊕

m=0

Sm,(2.3)

I =

∞⊕

m=0

Im.(2.4)

where Im := I ∩ Vm and Sm := I ∩ Vm for any m ≥ 0.

Claim: For any m ≥ 1 and u(z) ∈ Vm, u(z) ∈ Sm if and only if

{u, Im} = 0, or in other words, Sm = I⊥
m with respect to the C-bilinear

form Bm(·, ·) of Vm.

Proof of the Claim: First, by the definitions of I and S, we have

{Im, Sm} = 0 for any m ≥ 1, hence Sm ⊆ I⊥
m. Therefore, we need only

show that, for any u(z) ∈ I⊥
m ⊂ Vm, gi(D)u(z) = 0 for any 1 ≤ i ≤ n.

We first fix any 1 ≤ i ≤ n. If m < di, there is nothing to prove. If
m = di, then gi(z) ∈ Im, hence {gi, u} = gi(D)u = 0. Now suppose
m > di. Note that, for any v(z) ∈ Vm−di

, v(z)gi(z) ∈ Im. Hence we
have

0 = {v(z)gi(z), u(z)}

= v(D)gi(D)u(z)

= v(D) (gi(D)u) (z)

= {v(z), (gi(D)u) (z)}.

Therefore, we have

Bm−di
((gi(D)u)(z), Vm−di

) = 0.
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Since Bm−di
(·, ·) is a non-singular C-bilinear form of Vm−di

, we have
gi(D)u = 0. Hence, the Claim holds. ✷

By a well-known fact in Algebraic Geometry (see Exercise 2.2 in
[H], for example), we know that the homogeneous polynomials gi(z)
(1 ≤ i ≤ k) have no non-zero common zeroes if and only if Im = Vm

when m >> 0. While, by the Claim above, we know that, Im = Vm

when m >> 0 if and only if Sm = 0 when m >> 0, and if and only if
the solution space S of the system (2.2) is finite dimensional. Hence,
the lemma follows. ✷

Now we are ready to prove our first main result, Theorem 1.2.

Proof of Theorem 1.2: Let P (z) be a homogeneous HN polynomial
of degree d ≥ 4 and S the vector space of polynomial solutions of the
following system of PDEs:





∂P
∂z1

(D) u(z) = 0,
∂P
∂z2

(D) u(z) = 0,

.....
∂P
∂zn

(D) u(z) = 0,

∆ u(z) = 0.

(2.5)

First, note that the projective subvariety ZP intersects with Zσ2
only

at regular points of ZP if and only if ∂P
∂zi

(z) (1 ≤ i ≤ n) and σ2 =∑n

i=1 z2
i have no non-zero common zeros (agian use Euler’s formula).

Then, by Lemma 2.1, we have dim S < +∞.
On the other hand, by Theorem 6.3 in [Z], we know that ∆mP m+1 ∈

S for any m ≥ 0. Note that deg ∆mP m+1 = (d−2)m+d for any m ≥ 0.
So deg ∆mP m+1 > deg ∆kP k+1 for any m > k. Since dim S < +∞
(from above), we have ∆mP m+1 = 0 when m >> 0, i.e. the vanishing
conjecture holds for P (z). ✷

Next, we give a proof for our second main result, Theorem 1.5.

Proof of Theorem 1.5: The (⇐) part follows directly by choosing
f(z) to be P (z) itself.

To show (⇒) part, let d = deg f(z). If d = 0, f is a constant. Then,
∆m(f(z)P (z)m) = f(z)∆mP m = 0 for any m ≥ 1.

So we assume d ≥ 1. By Theorem 6.2 in [Z], we know that, if
the vanishing conjecture holds for P (z), then, for any fixed a ≥ 1,
∆mP m+a = 0 when m >> 0. Therefore there exists N > 0 such that,
for any 0 ≤ b ≤ d and any m > N , we have ∆mP m+b = 0.
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By Lemma 6.5 in [Z], for any m ≥ 1, we have

∆m(f(z)P (z)m) =(2.6)

∑

k1+k2+k3=m
k1,k2,k3≥0

2k2

(
m

k1, k2, k3

) ∑

s∈Nn

|s|=k2

(
k2

s

)
∂k2∆k1f(z)

∂zs

∂k2∆k3P m(z)

∂zs

,

where
(

m

k1,k2,k3

)
and

(
k2

s

)
denote the usual binomials.

Note first that, the general term in the sum above is non-zero only
if 2k1 + k2 ≤ d. But on the other hand, since

0 ≤ k1 + k2 ≤ 2k1 + k2 ≤ d,(2.7)

by the choice of N ≥ 1, we have ∆k3P m(z) = ∆k3P k3+(k1+k2)(z) is
non-zero only if

k3 ≤ N.(2.8)

From the observations above and Eqs. (2.6), (2.7), (2.8) it is easy to
see that, ∆m(f(z)P (z)m) 6= 0 only if m = k1 + k2 + k3 ≤ d + N . In
other words, ∆m(f(z)P (z)m) = 0 for any m > d + N . Hence Theorem
1.5 holds. ✷

Note that all results used in the proof above for the (⇐) part of the
theorem also hold for all HN formal power series. Therefore we have
the following corollary.

Corollary 2.2. Let P (z) be a HN formal power series such that the

vanishing conjecture holds for P (z). Then, for any polynomial f(z),
we have ∆m(f(z)P (z)m) = 0 when m >> 0.
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