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1. Introduction

The Einstein-Cartan theory of gravity (EC) extends Einstein’s theory of general

relativity (GR) in a natural way by including the spin properties of matter and their

influence on the geometrical structure of space-time. By removing the symmetry

requirement on the two lower indices of the connection, Cartan [1] showed that the

dynamics is no longer entirely determined by the metric; the antisymmetric part of

the connection called torsion became an independent dynamical variable. Besides

the energy-momentum of the matter content sourcing curvature, its spin was later

postulated to be the source of torsion [2]. The EC theory locally satisfies the Poincaré

symmetry [3] accounting for translational degrees of freedom associated with curvature

and rotational degrees of freedom linked to torsion.

Weyssenhoff and Raabe initiated a careful study of the behaviour of perfect fluids

with spin [4] . In order to build cosmological models based on the EC theory, Obukhov

and Korotky extended their work [5]. They showed, in particular, that by assuming

the Frenkel condition‡ the model reduces to the description of an effective fluid in

GR where the effective stress-energy momentum tensor contains some additional spin

squared terms.

The first studies of perturbations of a perfect fluid within GR were carried out by

Lifshitz [6] in a fixed gauge and reformulated in terms of gauge-invariant variables by

Bardeen [7]. The dynamics of such a fluid have also been investigated in a more physical

and transparent gauge-invariant manner by Hawking [8] and extended by Ellis [9]. We

shall follow the latter approach here and use the 1 + 3 formalism.

As Puetzfeld points out [10], there are an increasing number of theoretical reasons

for studying cosmological models based on a non-Riemannian geometry, as some key

features of the current concordance model such as dark matter, dark energy and in

particular inflation still need to be explained. The Weyssenhoff fluid, for example, seems

a promising candidate to describe cosmological inflation in a geometrical manner without

using scalar fields, which have not yet been observed. This promising behaviour may

arise from the spin density squared terms contained within the effective stress energy

momentum tensor derived by Obukhov and Korotky [5], since these spin contributions

dominate the dynamics at early times. Although the Weyssenhoff fluid is expected to

leave the late time dynamics unchanged, making it an unsuitable candidate to describe

dark energy, it may still therefore significantly affect the early time evolution of the

fluid.

In this publication, we restricted our study to the formal derivation of the dynamical

relations for a Weyssenhoff fluid. A detailed study of the large scales dynamics of

such a fluid in an attempt to get a spin based inflation will be pursued in further

work. To remain as general as possible we chose not to perform a first- or second-

order perturbation analysis for a particular class of models. This can easily be done

‡ Note that the Frenkel condition arises naturally when performing a rigorous variation of the action.

It simply means that the spin pseudovector is spacelike in the fluid rest frame.



Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach 3

according to the symmetries of the models, and some specific examples will be pursued

in a later publication. The derivation of the Weyssenhoff fluid dynamics is a prelude to

the perturbation analysis, which is especially relevant to study the structure formation

seeded during the inflationnary era. The dynamics of such a fluid in a 1 + 3 covariant

approach has been studied previously in a cosmological context by Palle [11]. However,

the use of effective GR relations in conjunction with EC identities is rather opaque in

this work, and also certain length scales are excluded from the analysis making a new

study, which considers all length scales, appropriate.

In the standard GR theory, the 1 + 3 covariant approach leads to six propagation

equations and six constraint equations. These give respectively the time and spatial

covariant derivatives of the set of dynamical variables, which are the energy density ρ,

the expansion rate Θ, the shear density σ, the vorticity density ω, the ‘electric’ part

of the Weyl tensor E and the ‘magnetic’ part of the Weyl tensor H . The Weyssenhoff

fluid is described by an effective GR theory, where the additional degrees of freedom

due to torsion are entirely determined by the spin density S. Therefore, in addition to

the spin density modifying the dynamical equations for the six standard variables, we

also expect to find additional dynamical relations.

In the next section, we briefly outline the EC theory, then give a concise description

of a Weyssenhoff fluid in Section 3. Section 4 is devoted to the Weyssenhoff fluid

dynamical analysis using the 1 + 3 formalism outlined in Appendix A. The consistency

of the particular case with zero vorticity and peculiar acceleration (ω = a = 0) is

established by evolving the constraints in Section 5. The last section draws a comparison

with Palle’s results. In this paper, we use the (+,−,−,−) signature. To express our

results in the opposite signature used by Ellis [12], the correspondence between physical

variables can be found in [13] and in Appendix B.

2. Einstein-Cartan theory

In the EC theory, the effect of the spin density tensor is locally to induce torsion in the

structure of space-time. In holonomic coordinates, the torsion tensor Qλ
µν is defined as

the antisymmetric part of the affine connection Γ̃λ
µν ,

Qλ
µν = Γ̃λ

[µν] = 1
2

(

Γ̃λ
µν − Γ̃λ

νµ

)

, (1)

which vanishes in GR since the connection is assumed to be symmetric in its two lower

indices. Note that the tilde denotes an EC geometrical object to differentiate it from

an effective GR object. In the following, Greek indices refer to a holonomic coordinate

basis, while Latin indices refer to an arbitrary non-holonomic orthonormal basis.

In order to find a proper description of a Weyssenhoff fluid, we first have to

determine the EC field equations. The gauge group associated with the EC theory is

the Poincaré group [3]. This is easy to understand as the asymmetry of the connection

requires an affine generalisation of the Lorentz group which is precisely the Poincaré

group. In the Poincaré gauge theory of gravity, the gravitational field is described by the
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tetrad field eµ
a and the local spin connection ω̃ab

µ. The spin connection is antisymmetric

in its Latin indices, ω̃ab
µ = −ω̃ba

µ if ∇̃λgµν = 0 which we assume throughout, and

the inverse of the tetrad is given by eµ
a, such that eµ

aeµ
b = δ b

a and eµ
aeν

a = δ µ
ν .

The geometrical structure of U4 − i.e. the metric gµν and the EC connection Γ̃λ
µν −

is completely determined by the tetrad (translational field) and the spin connection

(rotational field) according to,

gµν = eµ
aeν

bηab , (2)

Γ̃λ
µν = eλ

aω̃
a
bνeµ

b + eλ
a∂νeµ

a . (3)

Using the gauge relations (2) and (3), the torsion tensor (1) can be rewritten in terms

of the translational and rotational fields,

Qa
µν = eλ

aΓ̃λ
[µν] = −1

2

(

∂µeν
a − ∂νeµ

a + ω̃a
bµeν

b − ω̃a
bνeµ

b
)

. (4)

The metric and the connection are assumed to be compatible, which means that the

nonmetricity vanishes and implies that the EC connection Γ̃λ
µν can be decomposed in

terms of the Levita-Civita (torsion free) connection Γλ
µν and the contortion tensor Kλ

µν

as,

Γ̃λ
µν = Γλ

µν − Kλ
µν , (5)

where,

Γλ
µν = 1

2
gλσ(∂µgσν + ∂νgµσ − ∂σgµν) , (6)

Kλ
µν = −Qλ

µν − Qµν
λ − Qνµ

λ . (7)

The curvature is described by the Riemann-Cartan tensor and its contractions, i.e. the

Ricci-Cartan tensor and the Ricci-Cartan scalar,

R̃a
bµν = ∂µω̃

a
bν − ∂ν ω̃

a
bµ + ω̃c

bν ω̃
a
cµ − ω̃c

bµω̃
a
cν , (8)

R̃µν = R̃σ
µσν = eσ

aeµ
bR̃a

bσν , (9)

R̃ = R̃σν
σν = eσ

ae
ν
cη

cbR̃a
bσν . (10)

The field equations of the EC theory are derived from the action S defined on a space-

time manifold M as,

S =
∫

M
d4x

[

e

2κ

(

R̃ − 2Λ
)

+ Lm

]

, (11)

where κ = 8πG/c4, e = det(eµ
a), Λ is the cosmological constant and Lm =

Lm(eµ
a, ω̃ab

µ, φm) is the Lagrangian density of the matter fields φm . Varying the action

(11) independently for eµ
a and ω̃ab

µ, the field equations are respectively found to be,

R̃µ
a −

1
2
eµ

aR̃ + eµ
aΛ = κT̃ µ

a , (12)

Qµ
ab + 2eµ

[aQb] = κSµ
ab , (13)

where Qa = Qµ
aµ is the torsion trace, and the material sources of the gravitational field

are respectively the energy-momentum and the spin density tensors defined as,

T̃ µ
a ≡

1

e

δLm

δeµ
a

, (14)

Sµ
ab ≡

1

e

δLm

δω̃ab
µ

. (15)
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These source terms are the functional tensors of the EC classical field theory obtained by

variation of the action S. They should not be confused with the corresponding canonical

tensors derived from Noether’s theorem since these two kinds of tensors may differ in

an EC framework. The translational field equation (12) can be recast in terms of purely

holonomic coordinates and decomposed into symmetric and anti-symmetric parts,

R̃(µν) −
1
2
gµνR̃ + gµνΛ = κT̃(µν) , (16)

R̃[µν] = κT̃[µν] . (17)

3. Weyssenhoff fluid description

The Weyssenhoff fluid is a continuous macroscopic medium which is characterized on

microscopic scales by the spin of the matter fields. The spin density of matter is

described by an antisymmetric tensor,

Sµν = −Sνµ , (18)

and has been postulated by Obukhov and Korotky [5] to be related to the source of

torsion according to,

Sλ
µν = uλSµν , (19)

where uλ is the 4-velocity of the fluid element. The Frenkel condition requires the

intrinsic spin of a matter field to be spacelike in the rest frame of the fluid,

Sµνu
ν = 0 . (20)

This condition arises naturally from a rigorous variation of the matter Lagrangian Lm

as shown in [5].

The Frenkel condition implies that the torsion trace vanishes, and hence the

rotational field equations (13) reduce to an algebraic coupling between spin and torsion

according to,

Qλ
µν = κuλSµν . (21)

Thus, the torsion contributions to the EC field equations are entirely described in

terms of the spin density. It is useful to introduce a spin-density scalar S defined as,

S2 = 1
2
SµνS

µν ≥ 0 . (22)

Using the Frenkel condition, Obukhov and Korotky showed [5] that the symmetric

part of the EC field equations for a perfect fluid with spin (16) can be recast in

terms of effective GR Einstein field equations with additional spin terms, whereas the

antisymmetric part (17) simply becomes a GR spin field equation.

The former are found to be,

Rµν −
1
2
gµνR = κT s

µν , (23)

where the effective stress energy momentum tensor of the fluid is given by,

T s
µν = (ρs + ps)uµuν − psgµν − 2

(

gρλ + uρuλ
)

∇ρ

[

u(µSν)λ

]

, (24)
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with effective energy density and pressure of the form,

ρs = ρ − κS2 + κ−1Λ ,

ps = p − κS2 − κ−1Λ ,
(25)

satisfying the physical equation of state,

p = wρ , (26)

where w is the equation of state parameter.

The spin field equation is given by,

∇λ

(

uλSµν

)

= 2uρu[µ∇|λ

(

uλSρ|ν]

)

. (27)

4. Weyssenhoff fluid dynamics using a 1+3 covariant approach

We will now use the 1+3 covariant approach, outlined for convenience in Appendix A, to

describe accurately the dynamics of a Weyssenhoff fluid in GR on all scales and in a non-

perturbative way. Once the dynamical evolution is entirely determined, a perturbation

analysis can be performed for any given class of models according to their symmetries. In

a cosmological context, we would require the cosmological fluid to be highly symmetric

on large scales but allow for generic inhomogeneities on small scales. This is necessary

to provide an accurate enough description of the observable universe accounting for its

homogeneity and isotropy on large scales as well as for all the complicated structures it

contains on small scales.

In GR, the Weyssenhoff fluid dynamics is actually a generalisation of the dynamics

of a perfect fluid, where the effective energy density ρs and pressure ps contain a

spin density squared S2 correction term, and the stress energy momentum tensor T s
µν

incorporates an additional spin divergence term. The new contribution to the effective

dynamics comes from the spin field equation (27). Thus, the dynamics of a perfect fluid

is recovered for a vanishing spin density.

The dynamical model of a perfect fluid with spin is fully determined by its matter

content − including the spin properties of the particles − and its curvature. The matter

content of the Weyssenhoff fluid is described by the effective stress-energy momentum

tensor (24). Using the 1 + 3 formalism, it can be recast as,

T s
µν =

(

ρs + 4ωλSλ

)

uµuν − pshµν

− 2u(µD
λSν)λ + 4u(µaλSν)λ − 2σ(µ

λSν)λ + 2ω(µ
λSν)λ .

(28)

The physical interpretation of the Weyssenhoff fluid now becomes more transparent. The

terms containing the effective energy density ρs and pressure ps represent the behaviour

of an effective perfect fluid, where ρs and ps account for the spin contributions. The other

terms describe how the peculiar acceleration of the fluid aµ and the fluid anisotropies

− described by the rate-of-shear σµν and the vorticity ωµν respectively − couple to the

spin density Sµν and contribute to the effective energy density of the fluid.
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All the information related to the curvature is encoded in the Riemann tensor which

can be decomposed as [8],

Rρµ
νλ = Cρµ

νλ − δρ
[λR

µ
ν] − δµ

[νR
ρ
λ] −

1
3
Rδρ

[νδ
µ
λ] , (29)

where Cρµ
νλ is the Weyl tensor constructed to be the trace-free part of the Riemann

tensor.

By analogy to classical electrodynamics, the Weyl tensor can be split relative to uµ

into an ‘electric’ and a ‘magnetic’ part [8] according to,

Eµν = Cµρνσuρuσ , (30)

Hµν = ∗Cµρνσuρuσ = 1
2
ηµσλC

σλ
νρu

ρ , (31)

where ∗Cµνρσ is the dual of the Weyl tensor. These parts represent the ‘free gravitational

field’, enabling gravitational action at a distance and describing tidal forces and

gravitational waves.

The Ricci tensor Rµν is simply obtained by substituting the expression (28) for the

effective stress energy momentum tensor T s
µν into the Einstein field equations (23),

Rµν = κ
{

1
2

(

ρs + 3ps + 8ωλSλ

)

uµuν −
1
2
(ρs − ps)hµν

− 2u(µD
λSν)λ + 4u(µaλSν)λ − 2σ(µ

λSν)λ + 2ω(µ
λSν)λ} .

(32)

The Riemann tensor Rρµ
νλ can be fully split in a 1 + 3 manner according to (29)

by using the expression (32) for the Ricci tensor Rµν and the decomposition of the Weyl

tensor Cρµ
νλ into its electric Eµν and magnetic Hµν parts. For convenience, the tensor

is split into three parts: the spinning perfect fluid part (P), the electric part of the Weyl

tensor (E) and the magnetic part of the Weyl tensor (H). The decomposition yields,

Rρµ
νλ = Rρµ

P νλ + Rρµ
E νλ + Rρµ

H νλ , (33)

where

Rρµ
P νλ = 2

3
κ

(

ρs + 3ps + 12ωλSλ

)

h
[ρ

[νu
µ]uλ] −

2
3
κρsh

[ρ
[νh

µ]
λ]

− 2κ
(

h[ρ
[ν − u[ρu[ν

)

[−uµ]DσSλ]σ − uλ]DσS
µ]σ + 2uµ]aσSλ]σ + 2uλ]aσS

µ]σ

− σµ]σSλ]σ − σλ]σSµ]σ + ωµ]σSλ]σ + ωλ]σS
µ]σ] ,

Rρµ
E νλ = Cρµ

E νλ = 4u[ρu[νE
µ]

λ] − 4h
[ρ

[νE
µ]

λ] ,

Rρµ
H νλ = Cρµ

H νλ = 2ηρµσu[νHλ]σ + 2ηνλσu[ρHµ]σ .

Note that for a vanishing spin density (i.e. in absence of torsion), we recover

Ellis and van Elst’s results [12] after reexpressing the physical variables in terms of

the opposite signature (−, +, +, +). This is also the case for every propagation and

constraint equation describing the dynamics of the Weyssenhoff fluid because these

expressions are projections of effective GR identities which are based on the Riemann

tensor and its contractions.

In general, there are four sets of dynamical equations for a perfect fluid with spin.

These sets are derived respectively from the Ricci identities, the Bianchi identities, once-

and twice-contracted, and the spin field equation. We now discuss each set in turn.
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4.1. Ricci identities

The first set of dynamical equations arises from the Ricci identities for the vector field

uµ defining the worldline of every matter field, i.e.,

2∇[µ∇ν]uρ = R λ
[µν]ρ uλ . (34)

To extract the physical information stored in the Ricci identities, the latter have to be

projected along the worldlines uµ and on the orthogonal spatial hypersurfaces hµ
ν . The

non-vanishing projections yield the propagation equations and the constraint equations

respectively,

uαhβ
µhγ

ν

(

2∇[α∇β]uγ − R σ
[αβ]γ uσ

)

= 0 , (35)

ηρλ
νh

α
ρh

β
λh

γ
µ

(

2∇[α∇β]uγ − R σ
[αβ]γ uσ

)

= 0 , (36)

where the latter have been expressed in terms of rank-2 tensors by duality (ηρλ
ν) without

loss of information.

The Ricci identities can be further split by separating the propagation and

constraint equations into their trace part (T), symmetric trace-free part (STF) and

antisymmetric trace-free part (ATF). The sets of equations are explicitly determined

by the kinematics of the 1 + 3 covariant formalism (A.14) and by substituting the

Riemann tensor decomposition (33) into the projections yielding the propagation (35)

and constraint (36) equations respectively before splitting them into parts.

The propagation equations are found to be as follows.

• The Raychaudhuri equation (T),

Θ̇ = −1
3
Θ2 + Dλa

λ + 2
(

ω2 − σ2 − a2
)

− κ
2

(

ρs + 3ps + 8ωλSλ

)

, (37)

which is the basic dynamical equation of a perfect fluid with spin in this system.

The last term on the RHS describes how the interaction between the spin density

and the vorticity density affects the large scale dynamics. The physical meaning of

this term is clear: the energy required to align the spin with the vorticity will act

like a brake on the expansion, leading to the presence of this damping term in the

Raychaudhuri equation.

• The vorticity propagation equation (ATF),

ω̇〈µ〉 = −2
3
Θ ωµ + 1

2
(curl a)µ + σ λ

µ ωλ , (38)

which shows how vorticity conservation follows for a perfect fluid. Note that there

is no spin contribution, which means that torsion does not explicitly affect the

vorticity evolution, although the effect of spin on the other dynamical variables

must be taken into account.

• The shear propagation equation (STF),

σ̇〈µν〉 = − 2
3
Θ σµν + D〈µaν〉 − a〈µaν〉 − σ λ

〈µ σν〉λ + ω〈µων〉 − Eµν

+ κ
(

σ λ
〈µ Sν〉λ − ω〈µSν〉

)

,
(39)



Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach 9

which shows how the tidal gravitational field Eµν and the spin density Sµν induce

shear. The coupling between the spin density and the shear density contributes to

the fluid anisotropies by increasing the rate of shear whereas the coupling between

the spin density and the vorticity density has the opposite effect.

The constraint equations are given by the following relations.

• The vorticity divergence constraint (T),

Dλω
λ = −aλω

λ . (40)

This constraint simply expresses the fact that, in presence of a peculiar acceleration

induced by a non-gravitational force due to the fluid dynamics, the spatial variation

of vorticity is proportional to the vorticity.

• The shear and spin divergence constraint (ATF),

Dλ

(

σµ
λ + ωµ

λ + κS λ
µ

)

− 2
3
DµΘ = 2aλ

(

ωµ
λ + κSµ

λ
)

. (41)

Using the vorticity constraint (40), the shear and spin density constraint (41) can

be recast as,

Dλ

(

σµ
λ + κS λ

µ

)

− 2
3
DµΘ = aλ

(

3ωµ
λ + 2κSµ

λ
)

. (42)

This expression relates the spatial variation of physical quantities, such as the spin

density, the rate of shear and the expansion rate on the LHS, to the coupling

between the acceleration due to the fluid dynamics and the fluid anisotropies on

the RHS.

• The magnetic constraint (STF),

Hµν = −D〈µων〉 + 2a〈µων〉 + (curl σ)µν . (43)

Using the vorticity constraint (40), the magnetic constraint (43) reduces to,

Hµν = 3a〈µων〉 + (curl σ)µν . (44)

This constraint shows that the magnetic part of the Weyl tensor is induced by

the curl of the shear and the coupling between the acceleration due to the fluid

dynamics and the vorticity.

4.2. Once-contracted Bianchi identities

The second and third set of dynamical equations are contained in the Bianchi identities.

The Riemann tensor satisfies the Bianchi identities as follows,

∇[σRλν]
µρ = 0 . (45)

By substituting the splitting (29) of the Riemann tensor Rλν
µρ and the effective

Einstein field equations (23) into the Bianchi identities (45) and contracting two indices

(σ and ρ), the once-contracted Bianchi identities are found to be,

∇ρCλν
µρ + ∇[λRν]

µ + 1
6
δ [λ
µ ∇ν]R = 0 . (46)
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In a similar manner to the Ricci identities, the information stored in the once-contracted

Bianchi identities has to be projected along the worldlines uµ and on the orthogonal

hypersurfaces hµ
ν . The projections yield respectively two propagation and two constraint

equations,

hα〈µhγ
ν〉uβ

(

∇ρCαβ
γρ + ∇[αRβ]

γ + 1
6
δ [α
γ ∇β]R

)

= 0 , (47)

ηλσ〈µhγ
ν〉h

λ
αhσ

β

(

∇ρCαβ
γρ + ∇[αRβ]

γ + 1
6
δ [α
γ ∇β]R

)

= 0 , (48)

hαµhγ
β

(

∇ρCαβ
γρ + ∇[αRβ]

γ + 1
6
δ [α
γ ∇β]R

)

= 0 , (49)

ηλσµu
γhλ

αhσ
β

(

∇ρCαβ
γρ + ∇[αRβ]

γ + 1
6
δ [α
γ ∇β]R

)

= 0 . (50)

The sets of equations are explicitly determined by substituting the expression for

the Weyl tensor splitting (33) and the Ricci tensor (32) into the projections of the

once-contracted Bianchi identities (47) − (50).

The propagation equations are found to be as follows.

• The electric propagation equation,

Ė〈µν〉 = − Θ Eµν + (curl H)µν −
κ
2
(ρs + ps) σµν

+ 3σ〈µ
λEν〉λ + ω〈µ

λEν〉λ − 2ηρλ〈µHν〉
λaρ + κ (SĖ)〈µν〉 ,

(51)

where

(SĖ)〈µν〉 = −
(

σ〈µ
λSν〉λ − ω〈µSν〉

)·

⊥
− 1

3
Θ

(

σ〈µ
λSν〉λ − ω〈µSν〉

)

− 1
2
σλρ

(

σ〈µ
λSν〉

ρ − ω〈µ
λSν〉

ρ
)

+ 1
2

(

D〈µ − 2a〈µ

) (

DλSν〉λ − 2aλSν〉λ

)

.

This equation is similar in form to Maxwell’s electric propagation equation in an

expanding universe. The (SĖ)〈µν〉 term on the RHS of relation (51) describes how

the coupling between the spin density and the fluid anisotropies contributes to the

gravitational tidal field Eµν .

• The magnetic propagation equation,

Ḣ〈µν〉 = − Θ Hµν − (curl E)µν

+ 3σ〈µ
λHν〉λ − ω〈µ

λHν〉λ + 2ηρλ〈µEν〉
λaρ + κ (SḢ)〈µν〉 ,

(52)

where

(SḢ)〈µν〉 = 1
2
ησρ〈µ[Dσ{(σρλ − ωρλ)Sν〉λ + Sρλ(σν〉λ − ων〉λ)}

− (σν〉
σ − ων〉

σ)(DλS
ρλ − 2aλS

ρλ)

− ωσρ(DλSν〉λ − 2aλSν〉λ)] .

This expression is analogous to Maxwell’s magnetic propagation equation in an

expanding universe. The (SḢ)〈µν〉 term on the RHS of this relation (52) describe

how the coupling between the spin density and the fluid anisotropies contributes to

the gravitational tidal field Hµν .
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In a similar manner to that in which Maxwell’s equations describe electrodynamics

in an expanding universe, the coupling between the electric (51) and magnetic (52)

propagation equations gives rise to gravitational waves damped by the expansion of the

universe.

The constraint equations are given by the following relations.

• The electric constraint equation,

DλEµλ = κ
3
Dµρs − 3ωλHµλ − ηµνλσ

ν
ρH

λρ + κ (SdivE)µ , (53)

where

(SdivE)µ =Dµ[(σλρ − ωλρ)Sλρ] − Dλ[(σ ρ
(µ − ω ρ

(µ )Sλ)ρ]

− 1
3
Θ

(

DλSµλ − 2aλSµλ

)

+ 1
2
σµρ

(

DλS
ρλ − 2aλS

ρλ
)

.

This constraint is a vector analogue of the Newtonian Poisson equation. It is

similar in form to Maxwell’s electric divergence equation. For this gravitational

field equation, the source is not the electric charge density but the energy density.

The (SdivE)µ term on the RHS of expression (53) describes how the coupling between

the spin density and the fluid anisotropies acts like an effective electric divergence

source.

• The magnetic constraint equation,

DλHµλ = κ (ρs + ps) ωµ + 3ωλEµλ + ηµνλσ
ν
ρE

λρ + κ (SdivH)µ , (54)

where

(SdivH)µ = 1
2
ηµνρD

ν
(

DλS
ρλ − 2aλS

ρλ
)

.

This constraint is analogous to Maxwell’s magnetic divergence equation. Unlike for

Maxwell’s equation, this gravitational field equation has a source term which is the

fluid vorticity. The (SdivH)µ term on the RHS of expression (54) describes how the

coupling between the spin density and the fluid anisotropies acts like an effective

magnetic divergence source.

4.3. Twice-contracted Bianchi identities

The third set of equations is given by the twice-contracted Bianchi identities which

represent the conservation of the effective stress energy momentum tensor. They are

obtained by performing a second contraction (µ = ν) on the once-contracted Bianchi

identities (46),

∇µ
(

Rµν + 1
2
gµνR

)

= κ∇µT s
µν = 0 . (55)

There are only two possible projections to extract the information stored in the

twice-contracted Bianchi identities,

uµ∇νT s
µν = 0 , (56)

hµ
λ∇νT s

λν = 0 . (57)
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The propagation and constraint equations are explicitly determined by substituting

the reduced expression for the stress-energy momentum tensor (28) into the two

projections of the twice-contracted Bianchi identities (56) and (57) respectively.

The propagation equation is found to be as follows.

• The effective energy conservation equation,

ρ̇s = −Θ (ρs + ps) . (58)

Note that for a vanishing spin density this relation reduces to the well-known energy

conservation equation determining the evolution of the physical energy density ρ

and pressure p.

The constraint equation is given by the following relation.

• The momentum conservation equation,

Dµps = (ρs + ps) aµ + (Sp)µ
, (59)

where

(Sp)µ
= − 2 (Dν − aν)

(

σ(µ
λSν)λ − ω(µ

λSν)λ

)

−
(

DλSµλ − 2aλSµλ

)·

⊥

− 4
3
Θ

(

DλSµλ − 2aλSµλ

)

− (σµ
ν − ωµ

ν)
(

DλSνλ − 2aλSνλ

)

.

The term (Sp)µ
describes how the coupling between the spin density and the fluid

anisotropies contributes to the total angular momentum.

4.4. Spin dynamics

The last dynamical equation for the evolution of the Weyssenhoff fluid is the spin field

equation (27). To extract the spin propagation equation, the field equation has to be

twice projected on the hypersurface orthogonal to the worldline. By duality, we can

write it in terms of the spin density pseudovector Sµ without loss of information (A.19),

and we obtain:

• The spin propagation equation,

Ṡ〈µ〉 = −Θ Sµ . (60)

This expression (60) can be recast in terms of the spin-density scalar S2 (22) defined

as,

S2 = −SµSµ . (61)

It is then simply given by,

Ṡ = −Θ S . (62)

This relation shows that the evolution of the spin density is the same on all scales

because it is entirely determined by the volume rate of expansion of the fluid.

For consistency, note that this expression implies that the spin density is inversely

proportional to the volume of the fluid.
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The effective energy conservation equation (58) can now be recast in terms of the

true (i.e. not effective) energy density and pressure of the fluid by substituting the

spin propagation equation (62),

ρ̇ = −Θ (ρ + p) . (63)

The effective energy density ρs and pressure ps contain spin density squared S2

correction terms (25). Thus, the spin propagation equation (62) and the energy

conservation equation (63) imply that the spin density will rule entirely the dynamics

of the fluid at early times (κS2 ≫ ρ, p), whereas, at late times, the spin contribution

can safely be neglected (κS2 ≪ ρ, p).

In a cosmological context, the spin dominated era might lead to an inflationnary

behaviour. This promising prospect will be analysed in detail in further work. Given

that the matter dominated era is not affected by the spin contribution, the cosmological

model thus reduces to the dynamical behaviour of a perfect fluid in GR. Hence, the spin

density contribution from the Weyssenhoff fluid is expected to affect significantly the

early time evolution of the fluid leaving the late time dynamics unchanged. Therefore,

it is not currently promising as a candidate to describe dark energy.

5. Consistency of the dynamics for an irrotational Weyssenhoff fluid with

no peculiar acceleration

The consistency of the propagation and constraint equations can be verified by evolving

the constraints. This is a tedious but straightforward task. To make the problem

tractable, we chose to restrict our attention to the class of models for which the fluid

dynamics is described by an irrotational flow (i.e. ωµν = 0) with no peculiar acceleration

(i.e. aµ = 0). This ensures a hypersurface-orthogonal flow and the existence of a globally

defined cosmic time. If the flow is initially irrotational, it will remain so at later times

[12].

For each space-time slicing, we can now define the curvature tensors entirely in

terms of the spatial hypersurface orthogonal to the worldline. For this purpose, let us

define a vector vλ, which is orthogonal to the worldline, and an expansion tensor Θµν

according to

vλuλ = 0 , Θµν = 1
3
Θ hµν + σµν . (64)

The Ricci identities on the 3-space orthogonal to the worldline can be defined as

2D[µDν]vρ = ∗Rµνρ
λvλ , (65)

where the 3-space Riemann tensor ∗Rµνρλ is related to the Riemann tensor Rµνρλ by

∗Rρµνλ = hα
ρh

β
µh

γ
νh

δ
λRαβγδ + ΘρνΘµλ − ΘρλΘµν . (66)

The 3-space Ricci tensor and scalar can be obtained by contracting the 3-space Riemann

tensor with the induced 3-space metric hµν ,

∗Rµν = hρλ∗Rρµλν , (67)
∗R = hµνhρλ∗Rρµλν . (68)
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Using (A.14), (33), (39) and (66), these 3-space curvature quantities can be recast

respectively as,

∗Rρµ
νλ = − 2

3
κhρ

[νh
µ

λ]ρs − 4hρ
[νE

µ
λ] + 2Θρ

[νΘ
µ

λ]

− 2κh[ρ
[ν

(

Θλ]σS
µ]σ + Θµ]σSλ]σ

)

,
(69)

∗Rµν = σ̇〈µν〉 + Θ σµν − κσ〈µ
λSν〉λ − 1

3
hµν

(

2κρs −
2
3
Θ2 + 2σ2

)

, (70)

∗R = 2
3
Θ2 − 2κρs − 2σ2 , (71)

where the last relation is the generalised Friedmann equation expressed in terms of the

spatial curvature ∗R.

5.1. Evolution of the constraints

To determine the time evolution of the constraint equations, we shall follow Maartens’

approach [14] and generalise his results to the include the presence of spin. For an

irrotational Weyssenhoff fluid in absence of any peculiar acceleration, the propagation

equations (37), (39), (51), (52), (60) and (63), denoted by PA = 0 where A = 0, . . . , 5 ,

reduce to

P0

µ = Ṡ〈µ〉 + ΘSµ , (72)

P1 = ρ̇ + Θ (ρ + p) , (73)

P2 = Θ̇ + 1
3
Θ2 + 2σ2 + κ

2
(ρs + 3ps) , (74)

P3

µν = σ̇〈µν〉 + 2
3
Θ σµν + σ λ

〈µ σν〉λ + Eµν − κσ λ
〈µ Sν〉λ , (75)

P4

µν =Ė〈µν〉 + Θ Eµν − (curl H)µν + κ
2
(ρs + ps) σµν − 3σ〈µ

λEν〉λ

+ κ
(

σ〈µ
λSν〉λ

)·

⊥
+ κ

3
Θσ〈µ

λSν〉λ + κ
2
σλρσ〈µ

λSν〉
ρ − κ

2
D〈µD

λSν〉λ ,
(76)

P5

µν =Ḣ〈µν〉 + Θ Hµν + (curl E)µν − 3σ〈µ
λHν〉λ

− κ
2
ησρ〈µDσ

(

σρλSν〉λ + σν〉λSρλ
)

+ κ
2
ησρ〈µσν〉

σDλS
ρλ ,

(77)

and the constraint equations (42), (44), (53), (54), and (59), denoted by CA = 0 where

A = 0, . . . , 4 , become

C0

µ =Dµps + 2Dλ
(

σ(µ
ρSλ)ρ

)

− σ λ
ρ DρSµλ + σ λ

µ DρSλρ

− S λ
µ DλΘ − 1

2
S λ

µ DρSλρ + ηµνλS
ν
ρH

λρ ,
(78)

C1

µ = Dλσµλ + κDλSµλ − 2
3
DµΘ , (79)

C2

µν = (curl σ)µν − Hµν , (80)

C3

µ =DλEµλ − κ
3
Dµρs + ηµνλσ

ν
ρH

λρ

+ κDλ
(

σ(µ
ρSλ)ρ

)

+ κ
3
ΘDλSµλ − κ

2
σµρDλS

ρλ ,
(81)

C4

µ = DλHµλ − ηµνλσ
ν
ρE

λρ − κ
2
ηµνλD

νDρS
λρ . (82)

The evolution of the constraints CA along the worldlines uµ leads to a system

of equations ĊA = FA(CB), where FA do not contain time derivatives, since

these are eliminated via the propagation equations PA and suitable identities. The



Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach 15

covariant analysis of propagation and constraint equations involves frequent use of a

number of algebraic and differential identities governing the kinematical and dynamical

quantities. In particular, one requires commutation rules for spatial and time derivatives.

The necessary identities are collected for convenience in Appendix C. After lengthy

calculations the explicit time evolution of the constraints (79), (80), and (82) is found

to be,

(C1

µ)
·
⊥ = −ΘC1

µ − 2ηµ
ρσσσ

λC2

λρ − C3

µ + κC0

µ , (83)

(C2

µν)
·
⊥ = −ΘC2

µν + ηλρ
(µσν)ρC

1

λ , (84)

(C4

µ)
·
⊥ = − 4

3
ΘC4

µ + 1
2
σµ

λC4

λ + 3
2
Hµ

λC1

λ

+ ηµρ
σρHσ

λC2

ρλ −
1
2
curl C3

µ .
(85)

The constraints are preserved under evolution as now briefly explain. Suppose that

the constraints are satisfied on an initial spatial hypersurface {t = t0}, i.e. CA|t0 = 0,

where t is the proper time along the worldlines. Since CA = 0 is a solution for the initial

data, it then follows from (83) − (85) that the constraints are satisfied for all time.

The time evolution of C0

µ was not explicitly established because the equation of

state needs to be specified for this endeavour. Neither was the expression for the time

evolution of C3

µ explicitly determined due to the overwhelming algebraic complexity of

that particular computation. However, it is plausible that the dynamics is consistent

since the three time evolution equations for the constraints (83), (84) and (85) involve

all the constraint and propagation equations. This is true with the exception of P1. As

we discuss in detail below, P1 is not involved in the time evolution of (83), (84) and

(85). However, Obukhov and Korotky have shown [5], using the Frenkel condition, that

any perfect fluid with spin in the EC theory has an energy conservation equation of the

form P1. This is sufficient to show independently the consistency of P1.

The time evolution of C1

µ, (83), involves the propagation equations P0

µ, P
2, P3

µν

and the constraint equations C0

µ, C1

µ, C
2

µν . It has been determined by using the covariant

identities (C.4) and (C.8).

The time evolution of C2

µν , (84), involves the propagation equations P3

µν , P5

µν

and the constraint equations C1

µ, C2

µν . It has been determined by using the covariant

identities (C.7) and (C.11).

The time evolution of C4

µ, (85), involves the propagation equations P0

µ, P
3

µν , P
4

µν ,

P5

µν and the constraint equations C1

µ, C2

µν , C
3

µ, C
4

µ. It has been determined by using

the covariant identities (C.3), (C.5), (C.8), (C.9) and (C.10).

The constraint equations are not linearly independent given that they satisfy,

C4

µ = −1
2
curl C1

µ − DλC2

µλ . (86)

The consistency of the constraint equations can be explicitly inferred from relation

(86) as explained below [14]. For any given spatial hypersurface, i.e. {t = const},

the linear dependence (86) of the constraint equations implies the constraint C4

µ is

satisfied provided that the constraints C1

µ and C2

µν are also satisfied. Moreover, the time

evolution of C1

µ and C2

µν , described by (83) and (84) respectively, depends explicitly on
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C0

µ and C3

µ. Hence, if we take C0

µ as determining DλSµλ, C
1

µ as defining DµΘ, C2

µν as

establishing Hµν and C3

µ as setting Dµρs, the constraint equations are consistent with

each other because C4

µ then follows.

The consistency of the constraints for a perfect fluid in GR with non vanishing

vorticity and peculiar acceleration has been established by van Elst [15]. Thus, having

shown that the dynamics of an irrotational Weyssenhoff fluid in absence of any peculiar

acceleration (ω = a = 0) is consistent, it is very plausible − although not proven −

that this will remain the case in the general case when the vorticity and the peculiar

acceleration are considered. Hence, in that case, to establish explicitly the consistency

of the constraints for such a fluid, the coherence of the terms involving the coupling

between the spin density, the vorticity density and the peculiar acceleration would have

to be shown respectively. This would be a extremely laborious algebraic task, but it is,

in fact, quite likely to be true since the consistency of two different particular cases has

already been established.

6. Comparison with previous results

A first attempt to study the dynamics of a Weyssenhoff fluid in a 1+3 covariant approach

was initiated by Palle [11]. The results we find in this paper disagree, however, with the

majority of the results derived by Palle, as we now briefly explain.

In a similar way to our own procedure, Palle based his analysis on the effective

Einstein field equations for a Weyssenhoff fluid obtained by Obukhov and Korotky [5],

which are outlined in relation {1} of his publication. As explicitly stated in his work,

Palle projects the EC version of the Ricci identities determined by Hehl [16],

2∇̃[µ∇̃ν]uρ = R̃ λ
µνρ uλ + 2Qλ

µν∇̃λuρ, (87)

which are given in relation {4} of his paper to find the corresponding propagation and

constraint equations. This stands in direct contradiction with the fact that the 1 + 3

covariant approach used is based on effective GR field equations.

Moreover, in Palle’s work, there is no mention of the antisymmetric part of the

EC field equations which lead to the spin field equation. It seems unfeasible to provide

an accurate description of a cosmological fluid with spin without describing the spin

dynamics.

Furthermore, Palle chose to neglect the contributions due to the electric and

magnetic part of the Weyl tensor but did not provide any explanation for this. Indeed,

the relation {7} he obtained for the shear propagation equation has no tidal gravitational

field Eµν contribution, and there is no magnetic constraint equation. To describe the late

time cosmological evolution, it seems indeed reasonable to neglect the contributions due

to the primordial free propagating gravitational fields which have been damped by the

cosmological expansion. However, these fields do significantly affect the early dynamics

and have to be taken into account in a general description of cosmological models.

Finally, Palle does not determine the cosmological relations derived from the
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Bianchi identities. Again, these would be very useful to understand the dynamics of the

early time evolution of cosmological models.

Palle has recently clarified [17] certain points relating to the approach he followed

in analysing the cosmological implications of a Weyssenhoff fluid. Several issues still,

however, remain a concern, as outlined below.

It is perfectly legitimate to analyse the Weyssenhoff fluid dynamics within an

EC framework without resorting to an effective GR framework. In such a case, the

appropriate way to determine the large scale propagation and constraint equations is

indeed to project the EC Ricci identites (87) on the relevant hypersurfaces, which is

what Palle seems to have done. To achieve this, the EC Ricci identities have to be

explicitly determined using the effective EC field equations. Our contention is that the

only effective field equations {1} mentioned in Palle’s paper [11], and used to perform

the calculations, are the effective GR field equations obtained by Obukhov and Korotky.

We believe that the GR field equations are incompatible with EC Ricci identities, which

would thus invalidate the analysis.

The physical motivation for using GR field equations is that it provides a more

natural generalisation for the dynamics of a perfect fluid within GR. Although Palle’s

procedure seems inconsistent, we have nevertheless translated his results within a GR

framework to be able to compare them. To compare explicitly our results with those

obtained by Palle, note that the torsion scalar Q he uses is related − due to the algebraic

coupling between spin and torsion − to our definition of the spin density S by,

Q = κS . (88)

It is now straightforward to see that neither the propagation equations {5 − 7} nor the

constraint equations {8 − 9} he found agree with our own corresponding results. The

detailed comparision and analysis can be found in Appendix D. We hope that it might

clarify this particular issue.

With regard to the scope of Palle’s paper, on large scales, the contribution of the

tidal forces to dynamics of the Weyssenhoff fluid can indeed be neglected. Hence, the

Weyl tensor can safely be ignored in his approach, but it was not stated by Palle that

only the dynamics on large scales were under consideration. It was important to clarify

this issue because we have considered the dynamical evolution of Weyssenhoff fluid on

all scales.

Finally, let us just mention that, as suggested by Palle in [17], it might indeed be

more appropriate to consider an N-body simulation to determine the large scale and

late time dynamics of a Weyssenhoff fluid in a cosmological context, as Palle suggested.

However, this seems to us to lie outside our study, as we simply considered the evolution

of such a fluid on all scales and for all times.

7. Conclusions

We have used the 1+3 covariant approach to determine the dynamics of a Weyssenhoff

fluid in a non-perturbative and hence completely general manner. This gauge-invariant
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procedure leads to a consistent set of seven propagation and six constraint equations.

These give respectively the time and spatial covariant derivative of the set of dynamical

variables (ρ, Θ, σ, ω, E, B, S). Compared to the dynamics of a perfect fluid in GR, there

is one additional propagation equation which is the spin density propagation equation.

Note that the spin constraint is included in the shear constraint.
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Appendix A. 1+3 covariant formalism

We will briefly outline the basics of the 1 + 3 covariant formalism introduced by

Hawking and extended by Ellis to describe the fluid dynamics within GR in a non-

perturbative way. The aim of this approach is to study the intrinsic dynamics of fluid

models in a physically transparent manner. This formalism relies on covariantly defined

variables, which are gauge-invariant by construction, thus simplifying the methodology

and clarifying the physical interpretation of the models. Furthermore, the form of the

metric does not need to be explicitly specified and can remain fully general until the

dynamics is determined. Finally, this approach admits a covariant and gauge-invariant

linearization that allows linearized calculations to be performed in a direct manner [13].

To introduce the 1+3 covariant formalism, we follow Ellis and Van Elst’s approach

[12] using the opposite signature. The approach is based on a 1 + 3 decomposition

of geometric quantities with respect to a fundamental 4-velocity uµ which uniquely

determines the worldline of every infinitesimal volume element of fluid,

uµ =
dxµ

dτ
, uµu

µ = 1 , (A.1)

where τ is the proper time measured along the worldlines. In the context of a general

cosmological model, we require that the 4-velocity be chosen in a physical manner such

that in the FRW limit the dipole of the cosmic microwave background radiation vanishes.

This condition is necessary to ensure the gauge-invariance of the approach.

The 4-velocity uµ defines locally two projection tensors in a unique fashion,

Uµν = uµuν ⇒ Uµ
λU

λ
ν = Uµ

ν , Uµ
µ = 1 , Uµνu

ν = uµ , (A.2)

hµν = gµν − uµuν ⇒ hµ
λh

λ
ν = hµ

ν , hµ
µ = 3 , hµνu

ν = 0 . (A.3)

The first projects parallel to the 4-velocity vector uµ, and the second determines

the (orthogonal) metric properties of the instantaneous rest-spaces of observers moving

with 4-velocity uµ. There is also a volume element for the rest-spaces defined as

ηµνρ = uληλµνρ ⇒ ηµνρ = η[µνρ] , ηµνρu
ρ = 0 , (A.4)



Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach 19

where ηλµνρ is the 4-dimensional volume element (ηλµνρ = η[λµνρ], η0123 =
√

| det gµν |).

Note that the contraction of the rest-space volume elements can be expressed in terms

of the induced metric on these rest-spaces as

ηαβγη
µνρ = −3!h[µ

αhν
βhρ]

γ = −3!hµ
[αhν

βh
ρ
γ] . (A.5)

Moreover, we define two projected covariant derivatives which are the time projected

covariant derivative along the worldline (denoted ˙ ) and the orthogonally projected

covariant derivative (denoted Dµ). For any general tensor T µ...
ν..., these are respectively

defined as

Ṫ µ...
ν... ≡ uλ∇λT

µ...
ν... , (A.6)

DλT
µ...

ν... ≡ hǫ
λh

µ
ρ . . . hσ

ν . . .∇ǫT
ρ...

σ... . (A.7)

Furthermore, the dynamics is determined by projected tensors that are orthogonal to

uµ on every index. The angle brackets are used to denote respectively orthogonal

projections of vectors and the orthogonally projected symmetric trace-free part (PSTF)

of rank-2 tensors according to,

v〈µ〉 = hµ
νv

ν , (A.8)

T 〈µν〉 =
(

h(µ
ρh

ν)
σ − 1

3
hµνhρσ

)

T ρσ . (A.9)

For convenience, the angle brackets are also used to denote the orthogonal projections

of covariant time derivatives of tensors along the worldline uµ as follows,

v̇〈µ〉 = hµ
ν v̇

ν , (A.10)

Ṫ 〈µν〉 =
(

h(µ
ρh

ν)
σ − 1

3
hµνhρσ

)

Ṫ ρσ . (A.11)

The orthogonal projection of the covariant time derivative of a general tensor T µ...
ν... is

denoted by,

(T µ...
ν...)

·
⊥ ≡ hµ

ρ . . . hσ
ν . . . uλ∇λT

ρ...
σ... . (A.12)

It is also useful to define the projected covariant curl as,

(curl T )µ...ν ≡ ηρσ〈µDρT ...ν〉
σ . (A.13)

Information relating to the kinematics is contained in the covariant derivative of

uµ which can be split into irreducible parts, defined by their symmetry properties,

∇µuν = uµaν + Dµuν = uµaν + 1
3
Θhµν + σµν + ωµν , (A.14)

where

• aµ ≡ uν∇νu
µ is the relativistic peculiar acceleration vector, representing the degree

to which matter moves under forces other than gravity.

• Θ ≡ Dµu
µ is the scalar describing the volume rate of expansion of the fluid (with

H = 1
3
Θ the Hubble parameter).

• σµν ≡ D〈µuν〉 is the trace-free rate-of-shear tensor describing the rate of distortion

of the matter flow.
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• ωµν ≡ D[µuν] is the anti-symmetric vorticity tensor describing the rotation of matter

relative to a non-rotating frame.

These kinematical quantities have the following properties,

aµu
µ = 0 , (A.15)

σµνu
ν = 0 , σνµ = σµν , σµ

µ = 0 , (A.16)

ωµνu
ν = 0 , ωνµ = −ωµν , ωµ

µ = 0 . (A.17)

It is useful to introduce two additional pseudovectors known respectively as the vorticity

and spin density. These pseudovectors are defined by duality as,

ωλ = 1
2
ηλµνωµν ⇒ ωµν = −ηµνλωλ , (A.18)

Sλ = 1
2
ηλµνSµν ⇒ Sµν = −ηµνλSλ , (A.19)

and satisfy

ωµu
µ = 0 , ωµνω

ν = 0 , (A.20)

Sµu
µ = 0 , SµνS

ν = 0 . (A.21)

It is also of physical interest to introduce three further scalars which are respectively

the acceleration, the shear and the vorticity magnitudes defined as,

a2 = 1
2
aµa

µ ≥ 0 , (A.22)

σ2 = 1
2
σµνσ

µν ≥ 0 , (A.23)

ω2 = 1
2
ωµνω

µν ≥ 0 . (A.24)

Appendix B. Transformation of physical quantities under a signature

change

The signature convention (+,−,−,−) we have used throughout this paper is the

opposite of the one (−, +, +, +) adopted by many authors, such as Ellis and Hawking.

To facilitate the comparison between results obtained using different conventions, the

explicit transformations for physical quantities evaluated within the effective field theory

are given below.

The metrics, the Levi-Civita tensors and the derivatives transform as,

gµν → −gµν , hµν → −hµν , ηµνλρ → ηµνλρ , ηµνλ → ηµνλ ,

∂µ → ∂µ , ∇µ → ∇µ , Dµ → Dµ .

The kinematical quantities transform as,

uµ → uµ , uµ → −uµ , aµ → aµ , aµ → −aµ ,

σµν → −σµν , ωµν → −ωµν , ωµ → ωµ , ωµ → −ωµ .

The dynamical quantities transform as,

Rµνλρ → −Rµνλρ , Rµν → Rµν , R → −R ,

Cµνλρ → −Cµνλρ , Eµν → −Eµν , Hµν → −Hµν ,

Tµν → Tµν , Sµν → Sµν , Sµ → −Sµ .
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It is obvious that rising or lowering indices affects the sign of the transformation for

any physical quantity since the space-time metric gµν and the spatial metric hµν change

sign under such a transformation.

Appendix C. Covariant identites for an irrotational Weyssenhoff fluid with

no peculiar acceleration

It is straightforward to show that the derivatives of the induced metric hµν and the

Levi-Civita tensor ηµνλ vanish,

Dρhµν = 0 , (hµν)
·
⊥ = 0 , (C.1)

Dρηµνλ = 0 , (ηµνλ)
·
⊥ = 0 . (C.2)

In this appendix, we consider an irrotational Weyssenhoff fluid (ωµν = 0) with no

peculiar acceleration (aµ = 0). The covariant identities are defined in terms of a scalar

field f , a vector field Vµ and three tensor fields, Aµν , Bµν and Cµν satisfying the following

properties

Vµu
µ = 0 , Aµνu

µ = Aνµuµ = 0 ,

Bµν = B〈µν〉 , Cµν = C〈µν〉 .

Using the kinematical decomposition (A.14), the identities involving the derivatives

of the scalar field f are found to be,

D[µDν]f = 0 , (C.3)

(Dµf)·⊥ = Dµḟ − 1
3
ΘDµf − σµ

λDλf . (C.4)

Using the Ricci identities (34), the identities involving the derivatives of the vector

field Vµ and tensor field Aµν are given by,

(DµVν)
·
⊥ =DµV̇ν −

1
3
ΘDµVν − σµλD

λVν + ηνλρV
λHµ

ρ

− κhµ[νV
ρDλSρ]λ ,

(C.5)

(DλVλ)
·
⊥ = DλV̇λ −

1
3
ΘDλVλ − σρλD

λV ρ − κV ρDλSρλ , (C.6)

(DλAµν)
·
⊥ =DλȦµν −

1
3
ΘDλAµν − σλρD

ρAµν

+ (ηµσρA
σ

ν + ηνσρAµ
σ) Hλ

ρ

− κ
(

Aσ
νhλ[µ + Aµ

σhλ[ν

)

DρSσ]ρ ,

(C.7)

(DλAµλ)
·
⊥ =DλȦµλ − 1

3
ΘDλAµλ − σρλD

ρAµ
λ + ηµσρA

σ
λH

ρλ

− κ
2
(Aσ

µ + 2Aµ
σ) DρSσρ .

(C.8)

Using the definition of the curl (A.13) and the spatial Ricci identities (65),the

identities involving the derivatives of the symmetric trace-free tensor fields Bµν and Cµν

yield,

ηµνρC
ν
λ (curlB)ρλ = −2CρλD[µBρ]λ + 1

2
CµρDλB

ρλ , (C.9)

Dλ(curlB)µλ =1
2
ηµνρD

ν
(

DλB
ρλ

)

+ ηµνρB
ρ
λ

(

1
3
Θσνλ − Eνλ

)

+ 1
2
ηλνρσ

λ
µσ

ν
σB

ρσ − 3
2
κηµνρσ

〈ν
λS

σ〉λBσ
ρ .

(C.10)
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(curlB)·⊥µν =(curlḂ)µν −
1
3
Θ (curlB)µν − σσ

ληλρ〈µDσB〉ν
ρ

+ 3H〈µ
λBν〉λ − κ

2
ηλρ〈µBν〉

λDσSρσ .
(C.11)

Appendix D. Explicit comparision with Palle’s results

To compare our results (BHL) explicitly with the corresponding results obtained by

Palle, we reexpressed his EC propagation and constraint equations − presumably

obtained within an EC framework − into a GR framework using the relations given

in Appendix B. The correspondence between the EC and GR connections is given by,

Γ̃λ
µν = Γλ

µν + κ
(

uλSµν + uµSν
λ + uνSµ

λ
)

, (D.1)

and necessary to recast the EC covariant derivative ∇̃µ in terms of its GR counterpart

∇µ. To be consistent with Palle’s procedure, we only considered the dynamics on large

scales, hence neglecting the contribution due to the tidal forces (Eµν = Hµν = 0).

The propagation equations are respectively found to be (where we highlight in bold

face the terms that differ):

(Palle) : Θ̇ = −1
3
Θ2 + Dλa

λ + 2
(

ω2 − σ2 − a2
)

− κ
2
(ρs + 3ps) , (D.2)

(BHL) : Θ̇ = −1
3
Θ2 + Dλa

λ + 2
(

ω2 − σ2 − a2
)

− κ
2

(

ρs + 3ps + 8ω
λ
Sλ

)

. (D.3)

(Palle) : ω̇〈µ〉 = −2
3
Θ ωµ + 1

2
(curl a)µ +

(

σ λ
µ + κS

λ
µ

)

ωλ , (D.4)

(BHL) : ω̇〈µ〉 = −2
3
Θ ωµ + 1

2
(curl a)µ + σ λ

µ ωλ . (D.5)

(Palle) :
σ̇〈µν〉 = − 2

3
Θ σµν + D〈µaν〉 − a〈µaν〉 − σ λ

〈µ σν〉λ + ω〈µων〉

+ 2κσ
λ

〈µ Sν〉λ −

1

3
hµν

(

Θ − 2Dλa
λ + 2a

2 + 2κ
2
S

2

)

,
(D.6)

(BHL) :
σ̇〈µν〉 = − 2

3
Θ σµν + D〈µaν〉 − a〈µaν〉 − σ λ

〈µ σν〉λ + ω〈µων〉

+ κ

(

σ
λ

〈µ Sν〉λ − ω〈µSν〉

)

.
(D.7)

The constraint equations respectively yield (where we highlight in bold face the

terms that differ):

(Palle) : Dλ

(

ωλ + κS
λ
)

= −aλ

(

ωλ + κS
λ
)

, (D.8)

(BHL) : Dλω
λ = −aλω

λ . (D.9)

(Palle) : Dλ

(

σµ
λ + ωµ

λ
)

− 2
3
DµΘ = 2aλωµ

λ , (D.10)

(BHL) : Dλ

(

σµ
λ + ωµ

λ + κS
λ

µ

)

− 2
3
DµΘ = 2aλ

(

ωµ
λ + κSµ

λ
)

. (D.11)
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Note that the shear propagation equation is by definition trace free. This result

is recovered by BHL but not by Palle. Furthermore, in absence of torsion − i.e. for a

vanishing spin contribution − the shear evolution equation obtained by Palle does not

reduce to Hawking and Ellis’ result whereas the relation obtained by BHL does.

We could not rigorously verify Palle’s result by evolving the constraints because

the spin contribution to the Bianchi identities are needed for that purpose as shown in

Section 5. However, it would be of considerable interest if Palle could emulate BHL

and demonstrate that his set of equations also reduce to Hawking and Ellis’ results in

absence of torsion, and that the consistency of his equations could be established in the

absence of voritcity and of any peculiar acceleration.
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