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We analyze WMAP 3 year data using the one-point distribution functions to probe the non-
Gaussianity in the Cosmic Microwave Background (CMB) Anisotropy data. Computer simulations
are performed to determine the uncertainties of the results. We report the non-Gaussianity param-
eter fNL is constrained to 26 < fNL < 82 for Q-band, 12 < fNL < 67 for V-band, 7 < fNL < 64 for
W-band and 23 < fNL < 75 for Q+V+W combined data at 95% confidence level (CL).

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Non-Gaussianity is one of the most important tests of
models of the inflation. Among the various theoretical
models on the inflation, slow-roll inflation is currently
most lively being studied. There are various predictions
on the magnitude of non-Gaussianity based on the sim-
ple model of slow-roll inflation and its extensions, ranging
from undetectably tiny values to large enough values to
be detectable with currently available data [1, 2, 3, 4, 5].
On the other hand, observational works have claimed
both detection and non-detection of non-Gaussianity (for
reviews on recent works, see [6, 7, 8, 9, 10]). Among
the popular techniques for detecting non-Gaussianity
are one-point distribution function fitting, bispectrum,
trispectrum and Minkowski functionals. Here, we inves-
tigate the one-point distribution functions to probe pri-
mordial non-Gaussianity in the CMB anisotropy data.
An observed CMB anisotropy at a direction (δTobs) can
be regarded as the superposition of three parts: physi-
cal fluctuation of cosmic origin (δTp), instrumental noise
(δTn), and foreground emissions (Tfg). Since the fore-
ground templates are separately prepared, we start with
foreground-removed data of which the CMB anisotropy
can be decomposed into two uncorrelated components,

δT = δTobs − Tfg = δTp + δTn. (1)

The primary source for the cosmic fluctuation of CMB
at the large scale is attributed to the Sachs-Wolfe ef-
fect which is again triggered by the primordial curva-
ture perturbation. The curvature perturbation Φ by pri-
mordial seed during the inflation is transferred to CMB
anisotropy with the relation

δTp (x)

T0
= ηtΦ (x) (2)

where T0 = 2.725 K, the thermodynamic temperature of
the CMB today, and ηt is the radiation transfer function.

∗Electronic address: ehjeong@berkeley.edu, gfsmoot@lbl.gov

For the super-horizon scale, we take ηt = −1/3 from the
Sachs-Wolfe effects. At the first-order of perturbation, we
may replace Φ = Φg, where Φg is an auxiliary random
Gaussian field with its mean 〈Φg〉 = 0 and its variance
denoted by 〈Φ2

g〉. When the second-order perturbation is
considered, it is conventional to prescribe the nonlinear
coupling of the curvature perturbation as [11]

Φ(x) ≃ Φg(x) + fNL

(

Φ2
g(x) − 〈Φ2

g〉
)

(3)

where fNL is the non-Gaussianity parameter. The second
term in (3) is responsible for the non-Gaussianity of the
primordial fluctuation. Then, the probability distribu-
tion function of the non-Gaussian field Φ can be derived
as

fΦ(Φ) =

∫

fG(Φg)δD

[

Φ − Φg − fNL

(

Φ2
g − 〈Φ2

g〉
)]

dΦg

=
1

√

2π〈Φ2
g〉f

2
NL (Φ+ − Φ−)2

×

[

exp

(

−
Φ2

+

2〈Φ2
g〉

)

+ exp

(

−
Φ2

−

2〈Φ2
g〉

)]

(4)

where Φ± are defined by

Φ± =
1

2fNL

[

−1 ±
√

1 + 4fNLΦ + 4f2
NL〈Φ

2
g〉

]

(5)

and Φ has to be limited by the reality of Φ± as

fNLΦ > −
1

4
− f2

NL〈Φ
2
g〉. (6)

〈Φ2
g〉 can be expressed in terms of ηt, T0 and σCMB ,

〈Φ2
g〉 =

1

4f2
NL



−1 +

√

1 + 8

(

fNLσCMB

ηtT0

)2


 . (7)

For a pixelized CMB anisotropy data set, the probabil-
ity distribution function for Gaussian instrumental noise
becomes

fN (δTn) =
1

Npix

Npix
∑

i=1

1
√

2πσ2
0/ni

exp

[

−
δT 2

n

2σ2
0/ni

]

(8)
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where ni is the effective number of measurements at the
ith pixel and σ0 represents the dispersion of the instru-
mental noise per observation (σ0=2.1898, 3.1249, 6.5112
mK for Q, V, W-band, respectively [12]). Now, it is
straightforward to express the probability density func-
tion for δT in an integral form,

f(δT ) =

∫

fδTp
(δTp)fN(δTn)

×δD (δT − δTp − δTn) dδTpdδTn

=

∫

fΦ(Φ)fN (δTn)

×δD (δT − ηtT0Φ − δTn) dΦdδTn. (9)

The probability density function derived in (9) explic-
itly contains the non-Gaussianity parameter fNL, and it
can serve as the prediction of one-point distribution func-
tion with a given fNL for a (ideally) foreground-removed
CMB anisotropy data set to estimate the magnitude of
deviation from Gaussian distribution in a quantitative
manner.

II. APPLICATION TO WMAP DATA

We use the three channels of WMAP 3 year CMB
anisotropy data sets (Q (33GHz)-, V (61GHz)-, W
(94GHz)-band) which contain dominant signal over con-
taminations to investigate the non-Gaussianity of the
CMB anisotropy data. To remove the foreground emis-
sions, the Maximum Entropy Method (MEM) maps of
the synchrotron, free-free and thermal dust are used[16].
The Kp0-mask is applied to the sky maps to remove
the intense Galactic emissions and scattered bright point
sources, which leaves 76.5% of the sky. We also prepare
a combined map (Q+V+W) by taking a weighted sum
for a pixel temperature,

δT (x) =

∑

i δTi (x)ni (x) /σ2
0i

∑

i ni (x) /σ2
0i

, i = Q, V, W (10)

where ni (x) is the effective number of measurements at
the pixelized position x and σ0i is the dispersion of the
instrumental noise of the ith channel. We can trace the
effective variance of the instrumental noise as a result of
weighted sum defined in (10) as

σ2 (x) =

[

∑

i

ni (x) /σ2
0i

]−1

, i = Q, V, W. (11)

The sky map data are degraded from Nside = 512 (6.87′

pixel) to Nside = 128 (27.48′ pixel) where the number
of pixels in a full sky map is given by 12 × N2

side. The
purpose of demotion of the resolution is to suppress the
small scale fluctuation which is dominated by the instru-
mental noise. We perform the χ2-test for the goodness
of fit for the probability density function given in (9) as
a prediction to the observed probability density function

which is directly calculated from the WMAP data. Fig-
ure 1 and Table I show the results of χ2 fitting of WMAP

data sets with varying fNL as a free parameter. All data

sets are best fitted at positive fNL (dubbed f
(opt)
NL ) which

are consistent with one another as well as the results with
previous work [7] within the statistical errors.

Map Q-band V-band W-band Q+V+W

f
(opt)
NL 53 39 35 48
68% N/A -9<fNL <86 N/A -6<fNL <101
95% 34<fNL <71 -37<fNL <113 -20<fNL <89 -29<fNL <123
99% 3<fNL <102 -49<fNL <126 -37<fNL <106 -40<fNL <134
DOF 119 119 119 119

TABLE I: The results of χ2-tests for Goodness-of-fit for
WMAP 3 year data. The percentages on the first column rep-
resent the tail probabilities at which the statistic χ2 would be
smaller than the observed. DOF on the bottom row stands
for Degrees of freedom.

III. SIMULATION AND STATISTICAL

UNCERTAINTIES

As is shown in Figure 1, WMAP data fit well with fi-
nite range of the non-Gaussianity parameter fNL. We

pick f
(opt)
NL as the representative magnitude of non-

Gaussianity for a data set, and carry out the Monte-

Carlo simulations to test the pertinence of f
(opt)
NL as a

proper measure of non-Gaussianity for a data set in a
quantitative manner. A simulated data set is prepared
as follows: First, a Gaussian field Φg with its variance
equal to (7) is generated and we use it to generate Φ-
field of which the deviation from Gaussianity is denoted
by fNL. Second, we prepare a noise map in which each
pixel contains a random value picked from a normal dis-
tribution with variance σ2

0/ni as defined in (8) and add
this to Φ-field. A simulated map generated in this way
has the same noise structure and the dispersion of phys-
ical fluctuation (σCMB) as a real data set. Since a data
set contains nontrivial instrumental noise and the num-
ber of pixels is finite, the returned magnitude of non-

Gaussianity (f
(opt)
NL ) would have some uncertainty. For a

given value of fNL, we repeat the simulation and find that
the algorithm returned an unbiased, normal distribution

of f
(opt)
NL which is centered at the input value of fNL.

Thus, from the results of the simulations, we are able to
set the bounds on fNL for the real data. The simulation
results and error bands are plotted in Figure 2 and the
deduced uncertainties for fNL are summarized in Table
II. It is very remarkable that this analysis strongly disfa-
vors the null hypothesis (fNL = 0) and all the data sets
show consistent results within the statistical errors. The
results are also consistent with the works by the WMAP

team (−54 < fNL < 114 at 95% CL from bispectrum [7])
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FIG. 1: χ2-test for goodness of fit is used to find the optimal value of the non-Gaussianity parameter. The anisotropy maps
are demoted to Nside = 27. Top left: Q-band, top right: V-band, bottom left: W-band, bottom right: Q+V+W combined.
The color (shaded) bands indicate the bounds on fNL in which the probability that the statistic χ2 is smaller than that of the
observed with respect to the prediction curve with fNL.

but with much tighter limits and more importantly, it
excludes fNL = 0 at 95% CL.

Map Q-band V-band W-band Q+V+W

Nsim
b 100 100 100 100

68% 40< fNL <68 26< fNL <53 21< fNL <50 36< fNL <62
95% 26< fNL <82 12< fNL <67 7< fNL <64 23< fNL <75
99% 12< fNL <96 -1< fNL <80 -7< fNL <78 9< fNL <88

bNumber of simulations for each input fNL.

TABLE II: Summary of results from Simulations with WMAP
3 year data profiles and the bounds at three confidence levels
from the simulations.

IV. CONCLUSION

We developed an algorithm that uses the one-point dis-
tribution function to investigate the non-Gaussianity of
CMB anisotropy data, and applied it to WMAP 3 year
data. We found that the null result (fNL=0) is mani-
festly excluded at 95% CL. The estimated magnitude of
non-Gaussianity parameter is 23 < fNL < 75 at 95%
CL and 9 < fNL < 88 at 99% CL for the (Q+V+W)-
combined map. Since the quadratic term in (3) takes

a generic form of Taylor series for a perturbative ex-
pansion, it is a good possibility that the observed non-
Gaussianity in this work is a combined effects of various
physical processes, while the primordial seeds are very
likely to be the leading one. There are two premises we
have taken in developing the algorithm, which, provided
they are not precise enough, could cause non-Gaussianity
of not cosmic but systematic origin: (1) the probability
distribution function of the instrumental noise for each
pixel is centered at zero, and (2) the foreground emis-
sions are removed efficiently enough in the foreground-
removed maps. The first condition can be broken when
the thermal and radiation environments of the WMAP

satellite in its orbit are taken into account, while the
WMAP team assessed they are insufficient to influence
the science data [12]. So, we tested the effects of the al-
ternative noise distributions with a random mean in each
of the Gaussian distribution in (8) and the algorithm was
not misled to show non-Gaussianity within the statisti-
cal error. It is difficult to directly estimate how much
residual foreground emissions after foreground subtrac-
tion would affect the one-point distribution function. We
solely rely on the quality of foreground templates and it
is remarkably successful, showing that the observed to-
tal Galactic emission matches the model to less than 1%
[13, 14]. We also analyzed simulated maps which are
(Gaussian map + foreground templates), and all the tem-
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FIG. 2: Error bands found through the simulations with the same profiles with WMAP 3 year data (blue-green slanted bands).
Here the “same profile” means that the simulated data set has exactly same instrumental noise structure and σCMB as a real

WMAP data set has. The vertical bands indicate the bounds for f
(opt)
NL found from the analysis of the WMAP data. Top left:

Q-band, top right: V-band, bottom left: W-band, bottom right: Q+V+W. On the vertical axis, f
(out)
NL is the measured f

(opt)
NL

from the simulated data.

plates for Q, V and W-channel showed negative values of
the non-Gaussianity parameter with |fNL| ∼ O

(

101
)

at
the resolution Nside = 512.
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