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ABSTRACT
Although the existence of large-scale hot gaseous halos around massive disk galaxies have been theorized

for a long time, there is yet very little observational evidence. We report theChandraand XMM-Newton
grating spectral detection of OVII and NeIX Kα absorption lines along the sight-line of 4U 1957+11. The
line absorption is consistent with the interstellar mediumin origin. Attributing these line absorptions to the
hot gas associated with the Galactic disk, we search for the gaseous halo around the Milky Way by comparing
this sight-line with more distant ones (toward LMC X–3 and the AGN Mrk 421). We find that all the line
absorptions along the LMC X-3 and Mrk 421 sight-lines are attributable to the hot gas in a thick Galactic disk,
as traced by the absorption lines in the spectra of 4U 1957+11after a Galactic latitude dependent correction.
We constrain the OVII column density through the halo to beNOVII < 5×1015 cm−2 (95% confidence limit),
and conclude that the hot gas contribution to the metal line absorptions, if existing, is negligible.
Subject headings: Galaxy: halo — Galaxy: structure — X-rays: individual (4U 1957+11, Mrk 421, LMC X–3)

1. INTRODUCTION

Many semi-analytic calculations and numerical simulations
for disk galaxy formation predict the existence of extended
hot gaseous halos around massive spirals due to the accretion
of the intergalactic medium. For the Milky Way, the gas tem-
perature can be shock-heated to∼ 106 K at the virial radius
(∼ 250 kpc; e.g., Birnboim & Dekel 2003; Fukugita & Pee-
bles 2006), and the total mass contained in the large scale halo
can be comparable with or even greater than the total baryonic
mass of stars and the interstellar medium in the Galactic disk
(e.g., Sommer-Larsen 2006). Clearly, an observational mea-
surement of such an extended halo will provide an important
test of galaxy formation theories.

Searching for X-ray emission from large scale halos around
nearby disk galaxies has proven unsuccessful. ExtraplanarX-
ray emissions have indeed been routinely detected around a
number of nearby spirals, but only on scales of several kpc
(except for the star burst galaxies), and most likely as the
result from on-going stellar feedback in galactic disks (e.g.,
Tüllmann et al. 2006; Li et al. 2006). The X-ray surface
brightness of a galactic halo must be very weak at large scales,
at least partly because of the density square dependence of the
emission and the possible low metallicity of the gas. So far,
the only claimed detection of an apparent X-ray-emitting halo
on a scale of∼ 20 kpc is around the quiescent edge-on disk
galaxy NGC 5746 (Pedersen et al. 2006).

The large-scale hot gaseous halo around the Milky Way is
indirectly evidenced by the presence of high velocity clouds
(HVCs), in particular, the detection of their associated OVI

line absorption (e.g., Spitzer 1956; Sembach et al. 2003). Be-
cause the OVI-bearing gas is preferentially populated at in-
termediate temperatures of∼ 3×105 K where thermally un-
stable cooling occurs, it is believed to be produced at the in-
terfaces between the cold/warm and the hot media. Without
knowing the temperature distribution and the metallicity of
the hot gas, however, it is very hard to reliably estimate its
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total mass.
The best way to directly measure the hot medium is through

its X-ray absorption line features. Indeed, OVII , O VIII ,
and/or NeIX absorption lines consistent with zero velocity
shifts (cz ∼ 0) have been detected unambiguously toward sev-
eral bright extragalactic sources (e.g., LMC X–3, Mrk 421,
and PKS 2155-304; Nicastro et al. 2002; Fang et al. 2003;
Wang et al. 2005; Yao & Wang 2007a, YW07a hereafter).
But these sight-lines pass through the Galactic disk, the ex-
tended Galactic halo, and (for those AGNs) the possible warm
hot intergalactic medium (WHIM) in the Local Group. Re-
cently, it has been argued that the bulk of these absorp-
tions cannot be produced in the WHIM (Fang et al. 2006;
Yao & Wang 2007a; Bregman & Lloyd-Davies 2007). In-
deed, these highly ionized absorption lines have also been de-
tected in spectra of many Galactic sources (e.g., Yao & Wang
2005; Juett et al. 2006), clearly indicating the existence of the
hot gas in the Galactic disk. All existing X-ray absorption
and emission data are consistent with the hot gas located in
the Galactic disk with a vertical exponential scale height of
∼ 2 kpc (Yao & Wang 2005, 2007a), comparable to those in-
ferred from the angular distributions of column densities of
the OVI-bearing gas and pulsar dispersion measures (Savage
et al. 2003; Berkhuijsen et al. 2006). Clearly, the constraint
on the location of the hot gas depends on the modeling. For
instance, Bregman & Lloyd-Davies (2007) found that the ab-
sorbing gas toward AGNs are also consistent with a uniformly
spherical distribution within a radius of 20 kpc. The questions
here are, whether the extended Galactic halo (defined as the
hot gas in the region of>10 kpc beyond the Galactic plane but
within the Galactic virial radius) exists, and how much doesit
contribute to the observed highly ionized X-ray absorptions?

In this Letter, we present a differential study searching for
such a large-scale hot gaseous halo around our Galaxy by
comparing observations between sight-lines of 4U 1957+11
and Mrk 421, and between those of LMC X–3 and Mrk 421.
Ne IX, O VII , and/or OVIII absorption lines atcz ∼ 0 have been
detected in spectra of all three sources observed withChandra
and/orXMM-Newton X-ray Observatories. These compar-
isons enable us to probe the Galactic halo by examining its
contribution to the observed absorption lines, and then to es-
timate its total mass and/or its metallicity.
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Throughout the Letter, we adopt the solar abundances from
Wilms et al. (2000), quote statistical errors (or upper limits)
for single floating parameters at 90% (95%) confidence lev-
els, and assume that the hot gas in both the Galactic disk and
halo is in the collisional ionization equilibrium state andis ap-
proximately isothermal. We further assume that the disk gas
is distributed following an exponential decay law with a ver-
tical scale height of 2 kpc (e.g., Savage, et al. 2003; YW07a).
All the data analyses are performed with the software package
XSPEC (version 11.3.2).

2. OBSERVATIONS AND DATA REDUCTION

4U 1957+11 (V1408 Aquilae;l,b = 51.◦31,−9.◦33) is a per-
sistent low mass X-ray binary (Nowak & Wilms 1999 and
references therein).Chandraobserved this source for 67 ks
on 2004 September 7 (ObsID 4552) with the High Energy
Transmission Grating Spectrometer (HETGS; Canizares et
al. 2005) andXMM-Newton observed it for 45 ks on 2004
October 16 (ObsID 206320101).

We reprocessed bothChandraand XMM-Newton obser-
vations following the standard procedures. Using the soft-
ware packageCIAO 3 and calibration database (CALDB) ver-
sion 3.4, we re-calibrated theChandraobservation, extracted
grating spectra, and calculated corresponding instrumental re-
sponse files (RSPs). In this study, we only use the first or-
der spectra from the medium energy grating because of its
large effective area at longer wavelengths (> 13 Å). To fur-
ther enhance the counting statistics, we co-added the positive-
and the negative-grating spectra and RSPs. For theXMM-
Newtonobservation, we used the software packageSAS(ver-
sion 6.50)4 to remove those events contaminated with back-
ground flares (by screening out the time intervals with an
event count rate> 0.4 counts/s on the CCD9), and then ex-
tracted spectra and calculated RSPs from the Reflection Grat-
ing Spectrometer (RGS) events by running the threadrgsproc.
Because of the failure of the CCD4 in the RGS2, we only use
the RGS1 spectrum.

In order to measure absorption line properties we only rely
on the nearby continuum levels. We therefore use several
parts of the spectra that are local to the lines of our inter-
est. For theChandraspectrum, we use a wavelength range
of 12.0–22.5 Å covering the Kα and/or Kβ transition lines of
O VII , OVIII NeVIII , Ne IX, and NeX. For the case of theXMM-
Newtonspectrum, the RGS1 has no effective area around the
Ne IX Kα line and there is a bad pixel near the OVIII Kα line
at 18.969 Å. Here we use ranges of 18.0–18.9 and 19.2–22.5
Å covering the OVII Kα and Kβ lines.

Mrk 421, a bright quasar atz = 0.03 (l,b = 179.◦83,65.◦03),
is a Chandracalibration target and has been observed with
the high resolution grating instruments multiple times; most
of the observations have been reported in YW07. In this Let-
ter, we use the same observations, and the same spectra and
RSPs as in YW07. To fit the spectra without worrying about
overlapping spectral orders, for each of the observations taken
with High Resolution Camera (HRC; Table 1 in YW07), we
derive the first order spectrum with minimal higher (> 1) or-
der confusion via the following steps. We first fit the broad-
band (1.5-35 Å) order-overlapped spectrum with the order
combined RSP, and then multiply the spectral counts chan-
nel by channel with the ratio between the model predicated

3 http://cxc.harvard.edu/ciao/
4 http://xmm.vilspa.esa.es/sas/current/documentation/threads

FIG. 1.— The oxygen and neon absorption lines detected in the spectra
of 4U 1957+11. The upper plots in panels (b) and (c) are from the XMM-
Newtonspectrum; the others are from theChandraspectrum. The vertical
dotted lines mark zero velocity. The bin-size is 22.2 mÅ and 10.0 mÅ for
XMM-Newton andChandraspectra, respectively.

counts based on the first order RSP and that based on the
order-combined RSP. We then combine all the first order spec-
tra of different observations using the same procedure as in
YW07.

In YW07, we have reported the OVII Kα, Kβ, and OVIII

Kα absorption lines in the spectrum of Mrk 421 and measured
their equivalent widths (EWs; see also Williams et al. 2005;
Kaastra et al. 2006). In fact, the NeIX Kα line has also been
detected in the spectrum (Williams et al. 2005). However, we
find that, due to an instrumental feature near the line, measur-
ing the amount of the NeIX absorption is severely affected by
how the continuum is placed. To avoid such an uncertainty,
in our analysis we only use the spectral range of 18–22.5 Å,
covering the oxygen lines as mentioned above.

LMC X–3 (l,b = 273.◦58,−32.◦08) is located∼ 50 kpc away
from the Sun andChandraobserved it with the Low Energy
Transmission Grating Spectrometer plus HRC for∼ 100 ks
in total. The interstellar OVII and NeIX Kα absorption lines
observed in this sight-line have been reported by Wang et al.
(2005). In this Letter, we use the same spectra and RSPs as
in Wang et al. . Following the same procedure as for Mrk 421
spectra (see above), we obtained the co-added first order spec-
trum and the RSP. We use the spectral range of 12.0–22.5 Å
in the following analysis.

3. ANALYSIS AND RESULTS

We focus our efforts on searching for and analyzing the
highly ionized absorption lines atcz ∼ 0 that are likely pro-
duced in the hot ISM (§ 4). The NeIX (13.447 Å) and OVII Kα
(21.602 Å) lines consistent withcz ∼ 0 appear in theChandra
andXMM-Newton spectra at∼ 3 and 4σ significance levels
(Fig. 1), respectively. Modeling these two lines with nega-
tive Gaussian models, we measure their EWs as 6.3(3.9, 8.8)
and 18.7(8.3, 30.6) mÅ. Note that the EWs measured here are
for reference only. The ionic column density and the disper-
sion velocity of the absorbing gas will be measured in below.
No other highly ionized O and Ne lines are detected at>

∼2σ
significance. Fixing the line centroid at the rest frame wave-
length (Verner et al. 1996; Behar & Netzer 2002), we obtain
the EW upper limits of NeX(12.134 Å), NeVIII (13.646 Å) and
O VIII Kα (18.969 Å), and OVII Kβ (18.629 Å) lines as 1.2,
2.8, 15.6, 10.1 mÅ, respectively. Since all these line are un-
resolved, we fix the line widthσ to 100 km s−1 (please refer
to vb in Table 1) during these measurements and we use ei-
ther theChandraor XMM-Newton spectrum, whichever has
higher counting statistics near the line (Fig. 1).

A comparison of the line absorption between 4U 1957+11
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TABLE 1
L INE ANALYSIS RESULTS

T vb NOVII NHAO
(106 K) (km s−1) (1015 cm−2) (1019 cm−2)

Mrk 421a 1.4(1.3, 1.6) 64(48, 104) 10.0(6.6, 14.7) 1.4(1.0, 2.0)
4U 1957a 2.2(1.6, 2.7) 155(70, 301) 3.1(1.8, 8.2) 1.1(0.6, 1.8)
LMC X3a 1.3(0.8, 2.0) 79(62, 132) 11.7(7.4, 18.5) 2.3(1.5, 3.7)
4U 1957b 1.8(1.7, 2.1) 70(50, 172) 7.0(3.2, 12.7) 1.4(0.7, 2.2)
Haloc

· · · · · · < 4.8 < 0.9
LMC X3b 1.8(1.6, 2.0) 64(49, 108) 8.8(5.8, 12.7) 1.7(1.2, 2.2)
Haloc

· · · · · · < 3.7 < 0.7
NOTE. — The uncertainty ranges (upper limits) are quoted at 90% (95%)

confidence levels. The dependence of the column density on the Galactic
latitude (sinb factor) has been corrected with respect to Mrk 421 direction.
AO is the oxygen abundance in unit of the solar value.a Results from fitting
lines in each direction separately.b Results from a joint analysis of lines in
the source and those in Mrk 421.c The absorption contribution from the halo
gas beyond the source. See text for detail.

and Mrk 421 sight-lines provides an effective probe of the
large scale Galactic hot gaseous halo. The distance of
4U 1957+11 is estimated to beD ∼ 10− 25 kpc (M. Nowak
et al. in preparation), a location of 1.6 – 4.1 kpc below the
Galactic disk plane where it samples 55-87% of the Galactic
disk gas in the vertical direction (§ 1) along the line of sight.
In comparison, the line of sight towards Mrk 421 samples the
hot gas not only in the Galactic disk but also in the putative
Galactic halo (§ 1). Therefore the differential absorptions be-
tween these two sight-lines allow us to directly constrain the
absorption contribution from the halo.

We first characterize the hot absorbing gas towards these
two sight-lines by using our absorption line model,absline.
This model adopts the theVoigt function to approximate an
individual line profile, and uses the line centroidEl, veloc-
ity dispersionvb, absorbing gas temperatureT , and reference
ionic column densityNX (e.g.,X=O VII or H) as fitting pa-
rameters. It therefore can be used to conduct a joint anal-
ysis of multiple absorption lines (including non-detections).
5 For the sight-line toward Mrk 421, we use OVII Kα, Kβ,
and OVIII Kα absorption lines from theChandraspectrum
(YW07). For sight-line toward 4U 1957+11, we use OVII ,
O VIII , Ne VIII , Ne IX, Ne X Kα, and OVII Kβ lines in the
ChandraandXMM-Newtonspectra where applicable, and as-
sume the neon to oxygen abundance ratio to be the solar value
(Yao & Wang 2006). From the joint analysis, we obtain the
T , vb, andNOVII (or its equivalentNH for a given metallicity),
as reported in Table 1. For ease of comparison, we take into
account the dependence of the column density on the Galactic
latitude (sinb factor; § 1) for the 4U 1957+11 sight-line with
respect to the Mrk 421 direction (Table 1).

Please note that in the above characterization we assume
that the intervening hot gas in both sight-lines is isothermal.
In reality, the temperature of both the disk and the halo gas
could be a function of the vertical off-plane distance, the ra-
dial off-Galactic center distance, or a combination of both
(e.g., Toft et al. 2002; YW07). This simplified description
aims to provide a direct comparison of the amount of absorp-
tion between the two sight-lines.

As demonstrated in Table 1 and Figure 2, the absorption
towards 4U 1957+11 can account for the bulk of the absorp-
tion towards Mrk 421. To quantify the absorption contribution
from the putative Galactic halo gas, we jointly analyze the ab-

5 Please refer to Yao & Wang (2005, 2006) for the model and the joint
analysis procedure.

FIG. 2.— The observed Mrk 421 spectrum (cross) around the oxygen ab-
sorption lines and the best fit model (green histogram) convolved with the
instrumental response. The red histograms mark the amount of absorption
predicted for the Mrk 421 direction from the best fit of the lines observed in
the spectra of 4U 1957+11 (left panels) and LMC X–3 (right panels).

sorption lines in these two directions, “subtract” the absorp-
tion spectrum toward 4U 1957+11 direction from that toward
Mrk 421 direction, and attribute the residual absorption tothe
halo gas. We find that the halo gas is consistent withno con-
tribution to the observed line absorptions. Assuming that the
halo gas has the same thermal (e.g.,T ) and dynamic (e.g.,
vb) properties as the disk gas, we estimate the column den-
sity upper limit of the halo gas asNOVII < 4.8×1015 cm−2 (or
NHAO < 9×1018 cm−2, whereAO is the oxygen abundance in
unit of the solar value; Table 1). The halo gas and the disk gas
may have differentT ; for the halo gas over a broad tempera-
ture range of 0.4− 2.5×106 K, we findNHAO < 1019 cm−2.

Following the same procedure as above, we characterize the
line absorptions toward LMC X–3 (Table 1; see also Wang et
al. 2005), and then search for the absorption feature of the
halo gas beyond LMC X–3 by comparing it with Mrk 421.
Again, we find that the line absorptions toward LMC X–3 can
account for all the absorptions observed toward the Mrk 421
sight-line (Fig. 2), and obtain the upper limits of the col-
umn density of the halo by jointly analyzing the sight-lines
of LMC X–3 and Mrk 421 (Table 1).

4. DISCUSSION

In this study, we have assumed that the absorption lines
observed in the spectra of 4U 1957+11 are produced in the
ISM. However, the photo-ionized in- or out-flow material in-
trinsic to 4U 1957+11 could contaminate these lines. From
the best fit to theChandraspectrum in the range of 2–23
Å, we estimate the source luminosity over 0.5–10 keV as
L = 1.19D2

10kpc×1037 ergs s−1, whereD10kpc is the source dis-
tance in units of 10 kpc. A curve of growth analysis with a
dispersion velocity (vb) of 0 km s−1 gives a firm upper limit
of the Ne IX column density to beNNeIX < 6.6× 1017 cm−2

(assuming the solar abundance of Ne). This is equivalent
to a hydrogen column densityNH < 1.1× 1022 cm−2, as-
suming an ionization fraction of 0.5 for NeIX. For the ab-
sorber, the ionization parameterU = Lx/n(r)r2 must satisfy
log(U) ≤ 2.5, since the NeX Kα absorption line has not been
detected (Kallman & McCray 1982). Further assuming a ra-
dial gas density distributionn(r)∝ (rw/r)2, whererw is the lo-
cation where wind launches andr > rw, we obtainrw > 50R⊙,
which is much larger than the star separation (<

∼6R⊙) of the
system (estimated from its orbital period 9.33 hours and tak-
ing an upper limit of the X-ray compact objectMX < 16M⊙).
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These estimates make the in-flow scenario very unlikely. On
the other hand, if the absorber is out-flow material, the lines
are expected to be blue-shifted at velocities larger than the
escape velocity of the system (e.g., GRO J1655–40; Miller
et al. 2006), which is 260 km s−1 for 4U 1957+11 (taking
MX = 10M⊙ andrw = 6R⊙). In contrast, the detected NeIX

Kα velocity is 0±114 km s−1. The above arguments suggest
that the absorption lines are more likely produced in the ISM
(see also Juett et al. 2006), although the intrinsic scenario can
not be completely ruled out.

We have compared the highly ionized line absorptions of
O VII , O VIII , and NeIX observed in the spectra of 4U 1957+11
and Mrk 421, and in the spectra of LMC X–3 and Mrk 421 to
search for the large scale Galactic halo. We found that thereis
no significant X-ray absorption due to hot gas beyond either
4U 1957+11 or LMC X–3. These results are consistent with
our previous conclusion that bulk of the absorptions observed
toward the Mrk 421 sight-line are due to the hot gas around the
Galactic disk with a scale height of∼ 2 kpc based on a joint
analysis of the absorption and emission data (YW07). Note
that the upper limits obtained toward LMC X–3 are slightly
lower than those toward 4U 1957+11 (Table 1). Some of
the difference are due to the partial sampling of the Galac-
tic disk by the latter sight-line, and the better spectral quality
of LMC X–3 also matters.

Large scale hot gaseous halos are commonly expected in
modern disk formation models for massive spirals (e.g. White
& Frenk 1991). For the Milky Way in particular, the hot
gaseous halo can extend up torvirial ∼ 250 kpc and the to-
tal mass contained is expected to be∼ 6×1010 M⊙, which is
currently missing in the baryon mass inventory in the Lambda
Cold Dark Matter (ΛCDM) cosmology (Dehnen & Binney
1998; Klypin et al. 2002; Sommer-Larsen 2006). Recently,
Maller & Bullock (2004) assumed that the fragmentated
warm clouds could be formed out of the hot gas halo and
proposed a multiphase cooling scenario for the galaxy for-
mation. This model alleviates the so-called “over-cooling”
problem faced by the standard cooling model (e.g., Klypin et
al. 2002). They then obtained a density profile for the resid-
ual hot halo gas as a function of radius (Eq. 21 and Fig. 4
in Maller & Bullock 2004). Normalizing their density profile
by requiring the total column density integrated from 10 to
250 kpc to beNHAO < 1019 cm−2 (Tabel 1), we obtain the to-
tal mass contained in the halo asMH < 1.2/AO× 1010 M⊙.
Clearly, to match this upper limit with the total missing
baryon mass in the MW,AO should be< 20% of the solar

value. More recently, Hansen & Sommer-Larsen (2006) as-
sumed that gaseous halos of galaxies are in a hydrostatic equi-
librium state and that the gas density and the total mass den-
sity profiles are power laws, and then derived a hot halo gas
density profile for the MW-like galaxy (Fig. 2 in Hansen &
Sommer-Larsen 2006). Again, normalizing their profile we
obtain the total hot gas mass as< 2.2/AO×109 M⊙, requir-
ing AO to be< 3.7% of the solar value.

Low metallicity of the hot halo gas is not surprising; the
halo gas is believed to be primarily accreted from the inter-
galactic medium that is expected to be metal poor. This would
also suggest that the star formation and the associated stellar
feedback via Type II supernovae (SNeII) that occurred in the
Galactic disk and bulge are not important in regulating the
metal content of the halo. Hot gas resulting from SNeII, if
leaking into the halo (e.g., Mac Low & Ferrara 1999), may
cool quickly enough (via adiabatic expansion and atomic line
radiation) to form metal-rich cold clouds in the local environ-
ment before homogenizing with the halo gas (Wang 2007). As
these clouds return back to the disk plane as Galactic foun-
tains, their interaction with the embedding hot gas could be
another mechanism of warm cloud formation as required in
multiphase cooling scenarios (Maller & Bullock 2004). The
interfaces between these two media may harbor the bulk of
HVCs as observed via OVI absorptions at large distance (e.g.,
Sembach et al. 2003).

In this Letter, we derive the mass and metallicity limits on
the putative Galactic halo by comparing the observed absorp-
tion lines among the sight-lines of 4U 1957+11, LMC X–3,
and Mrk 421. However, the amount of absorptions observed
along different AGN sight-lines could vary substantially (e.g.,
Bregman & Lloyd-Davies 2007), which may be due to ad-
ditional absorption components (e.g., 3C 273; Yao & Wang
2007b) and/or different absorbing gas properties. More com-
parisons among other sight-lines are therefore needed to con-
firm the presented results.
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