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S. Levy,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipeles,9 A. Lister,7

D.O. Litvintsev,17 T. Liu,17 N.S. Lockyer,44 A. Loginov,59 M. Loreti,42 L. Lovas,14 R.-S. Lu,1

D. Lucchesi,42 J. Lueck,26 C. Luci,50 P. Lujan,28 P. Lukens,17 G. Lungu,18 L. Lyons,41 J. Lys,28

R. Lysak,14 E. Lytken,47 P. Mack,26 D. MacQueen,33 R. Madrak,17 K. Maeshima,17 K. Makhoul,32

T. Maki,23 P. Maksimovic,25 S. Malde,41 S. Malik,30 G. Manca,29 A. Manousakisa,15

F. Margaroli,47 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martinj ,21
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We report the results of a search for the anomalous production of a massive particle decaying to
four electrons via two Z0 bosons in 1.1 fb−1 of pp̄ collisions at

√
s =1.96 TeV collected by the CDF II

detector at Fermilab. We employ optimized electron identification criteria to maximize acceptance
and efficiency. We estimate the backgrounds in the invariant mass range 500 - 1000 GeV/c2 to be
0.028±0.009 (stat) ± 0.011 (syst) events. We observe zero events in this search region. Assuming a
Randall-Sundrum graviton production model, we set 95% CL limits on σ×BF(G→ Z0Z0) < 4− 6
pb, depending on the graviton mass.

PACS numbers: 12.60.Cn,13.85.Rm,14.70.Hp

I. INTRODUCTION

We present a search for new heavy particles
“G” in the decay mode G→ Z0Z0 → eeee in p̄p
collisions at

√
s = 1.96 TeV performed with the

CDF II detector at the Fermilab Tevatron. Pre-
vious analyses of double gauge boson production
at the Tevatron have focused on standard model
production [1, 2, 3, 4]. Here, we present for the

∗With visitors from aUniversity of Athens, 15784 Athens,
Greece, bChinese Academy of Sciences, Beijing 100864,
China, cUniversity of Bristol, Bristol BS8 1TL, United
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first time a search for massive particles G which
decay to Z0Z0 which could indicate physics be-
yond the standard model.

The goal of this search is to be sensitive to
production of any massive particle which could
decay to Z0Z0, that is, to avoid focusing on any
one specific model; however, for the purpose of
quantifying acceptance for this search, we con-
sider the virtual production of gravitons in a
simple Randall-Sundrum (RS1) scenario [5, 6].
In this model, the geometry consists of two 3-
branes which confine the standard model sector
separated from each other by a single extra di-
mension. One can look for evidence of the ex-
tra dimension at particle colliders in the form of
a Kaluza-Klein tower of discrete, massive gravi-
tons. In the RS1 scenario, the gravitons predom-
inantly decay to jets, and the remaining modes
are W+W− (∼ 10%), Z0Z0 (∼ 5%), γγ (∼ 5%),
and ll (∼ 2% per lepton)[7]. Searches for the de-
cays of such particles to photons and electrons
have been performed [8, 9, 10]. If the couplings
to leptons and photons are suppressed relative to
the couplings to gauge bosons [11], such a particle
might escape detection in these searches. Here,
we have searched for massive particles in their
decays to Z0 bosons.

In the leptonic final states of Z0 decay, the
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expected signal from the model described above
is small, as are the backgrounds. In order to
maximize acceptance and efficiency for the four-
electron signature, we use optimized calorimet-
ric electron identification criteria, select electron
candidates identified as isolated tracks where
there is no calorimeter coverage, and use low elec-
tron energy thresholds.

The organization of this article is as follows:
first, we describe the components of the CDF II
detector relevant to this search and summarize
the data sample and event selection criteria.
Then we describe the background estimation, re-
port the results of the search, and interpret the
results in the context of the lightest massive RS1
graviton.

II. THE CDF II DETECTOR

This analysis uses 1.1 fb−1 of pp̄ collisions col-
lected by the CDF II detector, a general purpose
magnetic spectrometer. We briefly describe the
components of the detector relevant to this search
here. A complete description can be found else-
where [12].

A combination of tracking systems reconstruct
the trajectories and measure momenta of charged
particles in a 1.4T solenoidal magnetic field. Tra-
jectories of charged particles are reconstructed
using an eight-layer silicon microstrip vertex
tracker [13] at radii 1.3 < r < 29 cm [14], and
a 96-layer open-cell drift chamber (COT) pro-
viding eight superlayers of alternating axial and
stereo position measurements [15]. The COT al-
lows track reconstruction at large radii 43 < r <
132 cm in the region |η| < 1.6, and provides full
geometric coverage for |η| < 1.0.

Outside the tracking volume, segmented elec-
tromagnetic (EM) lead-scintillator and hadronic
(HAD) iron-scintillator sampling calorimeters
measure particle energies [16]. In the cen-
tral region (|η| < 1.1), the calorimeters are
arranged in a projective-tower cylindrical ge-
ometry, divided azimuthally into 15◦ wedges
which measure EM energies with a resolution
of [σ(E)/E]2 = (13.5%)2/ET + (2%)2. In
the region covered by the forward calorimeter
(1.1 < |η| < 3.6), the calorimeters are ar-
ranged in an azimuthally-symmetric disk geome-
try and measure EM energies with a resolution of
[σ(E)/E]2 = (16.0%)2/E + (1%)2. Wire cham-
bers (scintillator strips) embedded in the cen-
tral (forward) EM calorimeters at the electro-

magnetic shower maximum (∼ 6X0) provide po-
sition and lateral shower development measure-
ments used to identify electrons by their char-
acteristic energy-deposition distribution. The
beam luminosity is determined by measuring the
inelastic pp̄ collision rate with gas Cherenkov
detectors[17], located in the region 3.7 < |η| <
4.7.

III. EVENT SELECTION

Events are selected for collection by a three-
level trigger system. We search in data collected
by triggering on a central high-momentum elec-
tron. Each of two trigger paths used requires an
energy cluster in the central calorimeter and a
track which projects to the energy cluster. The
primary trigger path requires a clustered trans-
verse energy ET > 18 GeV, transverse momen-
tum of the associated track pT > 9 GeV/c, the
ratio of energy measured in the hadronic to elec-
tromagnetic calorimeters, EHAD/EEM < 0.125
and a lateral shower profile consistent with an
electron. The second trigger path requires a clus-
ter with ET > 70 GeV and an associated track
with pT > 15 GeV/c.

We select events containing one “seed” electron
which satisfies trigger requirements and those
listed in Table I, and three other electrons which
satisfy either the central, forward, or track re-
quirements in Table I. To maximize acceptance
and efficiency for events containing four elec-
trons, we select three other electron candidates
using optimized identification and kinematic cri-
teria in the central or forward calorimeters, and
from isolated tracks pointing to uninstrumented
regions of the calorimeters.

Electron candidates are formed in the central
and forward calorimeters from isolated energy de-
posits with ET ≥ 5 GeV. An electron is con-
sidered to be isolated in the calorimeter if the
sum of the transverse energy detected within
a cone ∆R ≡

√
(∆η)2 + (∆φ)2 ≤ 0.4, minus

the electron ET, is less than 20% of the elec-
tron ET. For clusters in the central calorime-
ter, where tracking efficiency is optimal, we re-
quire that a track reconstructed in the COT
project to the cluster. Tracks must include mea-
surements in at least three axial and two stereo
superlayers of the COT, and the track coordi-
nate along the beam direction, z0, must also
lie within the nominal extent of the interac-
tion region, |z0| < 60 cm. To reduce back-
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grounds from hadrons misidentified as electrons,
central candidates must also satisfy an energy-
dependent requirement EHAD/EEM < 0.055 +
0.00045 GeV−1×EEM . Forward candidates must
have EHAD/EEM < 0.05 and lie within 1.1 <
|η| < 2.5.

The “seed” electron candidate must satisfy the
above requirements to be reconstructed in the
central calorimeter, and satisfy additional selec-
tion criteria imposed by the trigger. Specifically,
the “seed” electron must also have ET ≥ 20 GeV,
satisfy the same lateral shower profile require-
ment as the triggering one, and have an associ-
ated track with pT ≥ 10 GeV/c.

Some calorimeter acceptance for electrons is
lost in 24 one-degree gaps in φ between the cen-
tral calorimeter projective wedges, a region at
0.7 < η < 1.0 and 75◦ < φ < 90◦ which
accommodates cables and cryogenic utilities for
the solenoid, a gap between central calorimeter
arches at η = 0, and the gap at the junction
between the central and forward calorimeters at
1.0 < |η| < 1.2. Together, these regions add
up to approximately 17% of the solid angle for
|η| < 1.2, which for a four-lepton final state rep-
resents an acceptance loss of approximately half.

We recover acceptance by forming electron
candidates from isolated tracks which project to
the gaps between instrumented regions of the
calorimeter. A track is defined to be isolated in
the tracking chamber if the transverse momen-
tum of the track is more than 90% of the total
transverse momentum of all tracks within a cone
∆R ≤ 0.4 around the candidate track. We re-
quire track electron candidates be consistent with
originating from prompt decays by requiring that
they pass within 0.2mm (2mm) of the axial beam
position for tracks with (without) position mea-
surements in the silicon vertex tracker.

To reconstruct Z0 candidates, we form all
unique combinations of pairs of electrons in the
event. To avoid rejecting events where the charge
of one electron is misidentified, we do not impose
an opposite charge requirement on the pair. We
ensure that all electron candidates are isolated
from each other by requiring a separation of 0.2
in ∆R between any two electron candidates in
the combination. If both candidates in a pair
have associated tracks, we ensure they are con-
sistent with originating from the same parent by
requiring their z0 measurements to lie within 5
cm of each other. The invariant mass distribu-
tions for events containing Z0 candidates formed
from a “seed” electron candidate together with
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FIG. 1: Distribution of mee for Z0 candidates formed
from a “seed” electron candidate together with a sec-
ond electron candidate (a), and the subset of Z0 can-
didates formed from a “seed” electron candidate and
an isolated track (b).

just one other electron candidate and the sub-
set where an isolated track is used as the second
electron candidate are shown in Fig. 1.

To reconstruct Z0 pairs, we form all unique
combinations of all Z0 candidates containing a
“seed” electron with all other Z0 candidates in
the event and again require a separation of 0.2
in ∆R between any two electrons in the four-
electron combination.

The variable

χ2 =
∑
i=1,2

(
mi −mZ0

σi

)2

(1)

quantifies consistency between a given combi-
nation and a Z0Z0 → eeee final state, where
mZ0 = 91.19 GeV/c2 is the nominal Z0 mass [18],
mi is the measured invariant mass of each candi-
date Z0 in the combination computed from the
electron candidates’ four-momenta, and σi is the
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TABLE I: Electron Selection Criteria

Criteria Central (Seed) Forward Track
ET ( GeV) ≥ 5(20) ≥ 5
|z0| (cm) < 60 < 60

EHAD/EEM < 0.055 + 0.00045 GeV−1 × E < 0.05
Isolation < 0.2 < 0.2 > 0.9

pT ( GeV/c) (≥ 10) ≥ 10

uncertainty on the mass of each Z0 candidate
consisting of a contribution from the intrinsic
width of the Z0 boson and a contribution propa-
gated from the individual electron energy or mo-
mentum measurements (typically ∼ 3.5 GeV/c2).
In each event, we retain the one Z0Z0 combina-
tion with the lowest χ2.

We fix the final event selection criteria before
examining the event yield in the signal region.
We define the signal region as the events con-
taining a four electron combination with χ2 < 50
and meeee > 500 GeV/c2. Events with meeee <
400 GeV/c2 are used as a low-mass control re-
gion to estimate backgrounds, as described in
Section IV. We find 12 events containing four
electron candidates in this control region.

Although we do not focus on one spe-
cific model, for the purpose of quantifying
acceptance for this signature, we consider a
graviton-production scenario implemented in the
herwig [20] Monte Carlo generator which is
treated in a model-independent way, assuming
only that there is a universal coupling of the
graviton to standard-model particles. For com-
parison, we interpret the couplings in the con-
text of the RS1 model. We determine geomet-
ric and kinematic acceptance and reconstruc-
tion efficiency for this model using Monte Carlo
calculations followed by a geant-based simula-
tion of the CDF II detector [19]. We consider
graviton production followed by decay to two Z0

bosons followed by decay into four electrons. We
use a leading-order calculation implemented in
herwig to estimate acceptance times efficiency
for the model. For a RS1 graviton with mass
MG = 500 GeV/c2 and ratio of warp factor to
Planck mass, k/MPl = 0.1, Fig. 2 shows the dis-
tribution of reconstructed χ2 and meeee, the in-
variant mass of the Z0Z0 combination with the
lowest χ2 computed from the four-momenta of
the two Z0 candidates. As expected for events
containing two real Z0 bosons, the χ2 distribu-
tion peaks near zero, and the total invariant mass
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FIG. 2: Distribution of χ2 for simulated Randall-
Sundrum signal scenario (mG = 500 GeV/c2) (top).
Four-electron invariant mass distribution for events
satisfying χ2 < 50 (gray) and for events which fail
this requirement (black) (bottom).

of selected combinations is centered on the gener-
ated graviton mass (500 GeV/c2). Events which
contain mis-measured electrons contribute to the
population with large χ2 values. The width of
the meeee distribution, ∼ 15 GeV/c2, is dom-
inated by the detector resolutions of the con-
stituent electron candidates. We find the geo-
metric and kinematic acceptance times efficiency
for this model to be 65%. Of the events recon-
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FIG. 3: Acceptance for Randall-Sundrum graviton
decaying to Z0Z0 versus its mass.

structed, 93% yield a four electron combination
with χ2 < 50.

The total acceptance versus meeee is shown in
Fig. 3. At very high graviton mass, the mo-
mentum of the daughter Z0s becomes significant,
which can cause the electrons to have a small
opening angle and fail the isolation requirement.

IV. BACKGROUND ESTIMATION

In studies using Monte Carlo simulation to es-
timate the main sources of backgrounds, we find
that the dominant background consists of events
in which one or more hadrons satisfy the electron
ID requirements in the four electron combination.

We use control samples in the data to obtain
the shape and normalization of this background
in the signal region. Background-dominated
(hadron-enriched) control samples are selected
from the data. We form hadron candidates, h,
from calorimeter clusters in a manner identical
to the central and forward electron candidates,
with two exceptions. The hadron candidate must
fail the relevant EHAD/EEM criterion, and to
increase the size of the control samples, we do
not impose any isolation requirements. In Fig. 4
we show the invariant mass of all pairings of one
seed electron candidate with one hadron candi-
date. The absence of a significant peak at the Z0

mass indicates that contamination from electrons
in the hadron candidates is small.1

1 The presence of a small amount of electron contami-
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FIG. 4: Invariant mass distribution of one cen-
tral electron satisfying trigger requirements and one
hadronic candidate in data.

We obtain five control samples, namely
the four-electron sample which has meeee <
400 GeV/c2 introduced above, and additional
control samples having one, two, three, or four
hadron candidates by repeating the Z0Z0 selec-
tion procedure, forming combinations using one
or more hadron candidates with electron candi-
dates and retaining the minimum χ2 combination
for each event. The distributions of the minimum
χ2 versus meeee for samples with different num-
bers of hadron candidates are shown in Fig. 5.
For reconstructed masses smaller than twice the
Z0 mass, there is a correlation between χ2 and
mass caused by a kinematic threshold effect. At
higher masses, the two variables are much less
correlated.

The single probability density function,

f(χ2,meeee) = Cmγ
eeeee

χ2τ , (2)

where C is a normalization constant, provides an
empirical description of the χ2 vs. meeee dis-
tributions for each of the four hadron-enriched
control samples. We obtain the parameters γ =
−4.57 ± 0.06 and τ = −0.00319 ± 0.00007 from
a two-dimensional unbinned maximum likelihood
fit to the low-mass four-electron control region
and the hadron-enriched control samples simul-
taneously, using events with invariant mass above

nation in the hadron candidate sample has a negligible
effect on the estimate of the background at high mass,
and is included in the systematic uncertainty we assign
to the background estimation method.
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FIG. 5: Distribution of χ2 vs meeee for control samples containing one, two, three, or four hadron candidates
with the number of events in the plot increasing with the number of hadron candidates used in the combination.

185 GeV/c2 (∼ 2 × mZ0 .) The control samples
containing mostly hadron candidates dominate
the fit. Fig. 6 shows the projections of the fit re-
sult in the invariant mass dimension along with
the data for each hadron-enriched sample. The
low-mass control region (meeee < 400 GeV/c2)
contains five events with meeee > 185 GeV/c2
and serves to normalize the prediction of back-
ground in the high-mass search region. We inte-
grate the fit result above 500 GeV/c2 and χ2 < 50
to extract an estimate of the total background
for the high-mass region. Using this method, we
estimate 0.020±0.009 (stat) ± 0.007 (syst) back-
ground events from hadrons misidentified as elec-
trons in the search region. The systematic uncer-
tainty on the background estimate is obtained
by varying the functional form of the probability
density function fitted to the meeee spectrum.

We have performed several cross checks to en-
sure that the fit provides a reasonable estimate of
the background rate at high mass. In particular,
we have performed the fit allowing the power-law
parameter to vary independently for each of the

TABLE II: Result of fit with γ floating independently
for each control sample.

Sample Events γ

eeee 5 −5.90± 2.14
eeeh 52 −4.85± 0.55
eehh 323 −4.28± 0.19
ehhh 1208 −4.43± 0.10
hhhh 1927 −4.71± 0.09

categories. The parameters resulting from this
fit along with the number of events observed in
each sample are shown in Table II. The fitted
values for γ are consistent within errors across
categories and with the nominal result. We have
verified that the background shape in meeee is in-
dependent of χ2 in subsets of data in bins of χ2

and have checked that the projected fit result is
consistent with data.

Standard model production of Z0Z0 [21] is the
only background to this search with two real Z0
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FIG. 6: Projections of fit to invariant mass in control samples of varying number of electron and hadronic
candidates with same ordering as in Fig. 5. Data are shown with the fit projection overlaid.

bosons and possibly four electrons in the final
state. While we use data to estimate the total
background from misidentified electrons in the
search region, we have studied the background
from this source at high mass with simulated
events. We determine geometric and kinematic
acceptance using Monte Carlo events generated
by pythia [22], followed by a geant-based sim-
ulation of the CDF II detector. The expected
number of events from this background compo-
nent is determined as the product of the cross
section, the luminosity of the sample, and the
acceptance of the detector. We estimate a total
of 0.54± 0.04 events in the four-electron sample.
In the invariant mass region above 500 GeV/c2,
we expect 0.008± 0.006 events. We estimate the
total background from production of standard
model Z0Z0 events and events in which hadrons
are misidentified as electrons is 0.028 ± 0.009
(stat) ± 0.011 (syst) events.

V. OTHER SYSTEMATIC
UNCERTAINTIES

When setting the cross-section limit, we have
considered other systematic uncertainties from
several sources. The dominant source of these
uncertainties is from the measured luminosity
(5.9%) [23]. Other sources include parton dis-
tribution function uncertainties (0.4%), signal
Monte Carlo statistics (1.3%), initial state radia-
tion(1.0%), and the difference between electron
identification efficiency in data and simulation
(1.0% per electron). The total systematic un-
certainty from all these sources is 7.3%.

VI. RESULTS

The distribution of data events surviving all
requirements is shown in Fig. 7. We observe no
events in the high-mass signal region. There is
one event in the low-mass region with very small
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FIG. 7: Distribution of χ2 vs meeee for four-electron
candidates in data. The signal region is χ2 < 50 and
meeee > 500 GeV/c2, the boundaries of which are
shown by the dashed line.

χ2 consistent with standard model Z0Z0 pro-
duction, while we expect 0.54 standard model
Z0Z0 events over the entire mass range. In
the observed event, the total invariant mass is
190 GeV/c2, and the two Z0 candidates in the
lowest χ2 combination have measured masses of
91 and 92 GeV/c2.

We have set limits on σ(pp̄ → G) × BF(G →
Z0Z0) in the context of a RS1 graviton scenario.
We use a Bayesian binned maximum likelihood
method to extract 95% confidence level limits
in 100 GeV/c2 wide windows centered on each
mass. We incorporate the effects of uncertainty
on the background and signal acceptance with a
flat prior for the signal rate and Gaussian pri-
ors for the acceptance and expected background.
The limits including systematic uncertainties on
the acceptance on σ×BF(G→ Z0Z0) range from
4−6 pb, depending on the graviton mass, and are
shown in Fig. 8 along with the prediction from
the RS1 model for k/MPl = 0.1. In the future,
the sensitivity of this search will improve with
more data as well as additional acceptance from
other Z0 decays.

VII. CONCLUSIONS

We have searched for production of particles
decaying to a pair of Z0 bosons. We have
estimated backgrounds from misidentified elec-
trons using a data-based technique, and the

background from standard model processes in-
volving four electrons with simulations. Us-
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FIG. 8: Limits on σ × BF(G→ Z0Z0) versus mass.

ing an optimized electron selection, we expect
0.028 ± 0.009 (stat) ±0.011 (syst) total back-
ground events with χ2 < 50 above 500 GeV/c2
in 1.10 fb−1, and observe no events. In the ab-
sence of evidence for a signal, we have set limits
on σ(pp̄→ G(1.96 GeV))× BF(G→ Z0Z0).
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