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ABSTRACT

In this study we present the results from realistic N -body modelling of massive star
clusters in the Magellanic Clouds. We have computed eight simulations with N ∼ 105

particles; six of these were evolved for at least a Hubble time. The aim of this mod-
elling is to examine in detail the possibility of large-scale core expansion in massive
star clusters, and search for a viable dynamical origin for the radius-age trend ob-
served for such objects in the Magellanic Clouds. We identify two physical processes
which can lead to significant and prolonged cluster core expansion – mass-loss due to
rapid stellar evolution in a primordially mass segregated cluster, and heating due to a
retained population of stellar-mass black holes, formed in the supernova explosions of
the most massive cluster stars. These two processes operate over different time-scales
and during different periods of a cluster’s life. The former occurs only at early times
and cannot drive core expansion for longer than a few hundred Myr, while the latter
typically does not begin until several hundred Myr have passed, but can result in core
expansion lasting for many Gyr. We investigate the behaviour of each of these expan-
sion mechanisms under different circumstances – in clusters with varying degrees of
primordial mass segregation, and in clusters with varying black hole retention frac-
tions. In combination, the two processes can lead to a wide variety of evolutionary
paths on the radius-age plane, which fully cover the observed cluster distribution and
hence define a dynamical origin for the radius-age trend in the Magellanic Clouds. We
discuss in some detail the implications of core expansion for various aspects of globular
cluster research, as well as the possibility of observationally inferring the presence of
a significant population of stellar-mass black holes in a cluster.

Key words: stellar dynamics – globular clusters: general – methods: N -body simu-
lations – Magellanic Clouds.

1 INTRODUCTION

As relatively simple objects which are integral to the study
of many fundamental astronomical processes, massive star
clusters are central to a wide variety of astrophysics over
all scales – from star formation and stellar and binary evo-
lution, through stellar exotica and variable stars, and the
dynamics of self-gravitating systems, to galaxy formation
and evolution, with implications for cosmology. In the con-
text of this wider astrophysics however, it is clearly essential
that we understand the clusters themselves: how internal
physical processes in clusters shape their overall character-
istics (and vice versa), and how individual clusters interact
with and are influenced by their local environments. Only
when armed with this knowledge is it possible to disentangle
cluster evolutionary processes from the specific astrophysics
under investigation.

From an observational perspective, we are provided
with only a limited set of massive stellar clusters which are
close enough to us that they may be fully resolved using
presently available facilities (and hence thoroughly studied
on a star-by-star basis). The Galactic globular clusters, while
constituting the closest ensemble, are not ideal for study-
ing massive star cluster evolution, primarily because they
are almost exclusively ancient objects with ages ∼ 10 − 13
Gyr (see e.g., Rosenberg et al. 1999; Salaris & Weiss 2002;
Krauss & Chaboyer 2003; De Angeli et al. 2005). Therefore,
while we are able to precisely measure the end-points of mas-
sive star cluster evolution, the long-term development which
brought them to these observed states must be almost com-
pletely inferred. Fortunately, it is relatively straightforward
to turn our attention to the Large and Small Magellanic
Clouds (LMC/SMC), which both possess extensive systems
of star clusters with masses comparable to the Galactic glob-
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ulars, but crucially of all ages: 106 . τ . 1010 yr. These
two nearby galaxies are hence of fundamental importance to
studies of star cluster evolution, because they are the only
systems in which we can directly observe snapshots of clus-
ter development over the last Hubble time using a sample
of fully resolved objects.

Some of the earliest studies to take advantage of this
situation and investigate the structural evolution of mas-
sive stellar clusters were those of Elson and collaborators.
In particular, Elson, Fall & Freeman (1987) constructed ra-
dial brightness and density profiles for 10 young clusters in
the LMC, while Elson, Freeman & Lauer (1989) and Elson
(1991, 1992) extended this study to a larger sample of LMC
clusters including much older objects. They discovered a
striking relationship between cluster core size and age –
specifically, that the observed spread in core radius is a
strongly increasing function of age. The youngest clusters
in their sample possessed compact cores with rc ∼ 1− 2 pc,
while the oldest clusters exhibited a range 0 . rc . 6 pc (cf.
Fig. 1). Here, cluster core size is parametrised by the obser-
vational core radius, rc, defined as the projected radius at
which the surface density/brightness has decreased to half
its central value.

The advent of the Hubble Space Telescope (HST)
has allowed this discovery to be re-addressed observation-
ally in significantly more detail than was possible with
ground-based facilities. HST imaging can resolve Magel-
lanic Cloud star clusters even in their inner cores, so that
star counts may be conducted to very small projected radii
and accurate surface density/brightness profiles constructed.
Mackey & Gilmore (2003a) obtained structural measure-
ments from a homogeneous compilation of archival Wide
Field Planetary Camera 2 (WFPC2) imaging of 53 mas-
sive LMC clusters spanning the full age range. We found
essentially the same relationship as Elson et al. (1989) – the
youngest massive LMC clusters possess compact cores of
typical radius ∼ 1−2 pc, but with increasing age the spread
in core radius increases such that the oldest clusters span
the range 0 . rc . 8 pc. Mackey & Gilmore (2003b) subse-
quently extended these HST measurements to 10 SMC clus-
ters, demonstrating for the first time that a radius-age trend
indistinguishable from that observed in the LMC exists for
this star cluster system.

Following these two studies, we were granted HST time
to conduct a snapshot survey of additional massive LMC and
SMC star clusters using the Advanced Camera for Surveys
(ACS; HST program #9891), with the aim of improving the
sampling of the radius-age parameter space. In all, 31 extra
LMC and 13 extra SMC clusters were successfully imaged,
significantly enlarging the sample. Final structural measure-
ments for these objects are yet to be published (Mackey
et al. 2008, in prep.); however preliminary results for the
core sizes are plotted in Figure 1, along with the WFPC2
measurements of Mackey & Gilmore (2003a,b). In obtain-
ing these new parameters, photometric measurements were
made using the pipeline described by Mackey & Gilmore
(2004) and Mackey, Payne & Gilmore (2006), while radial
brightness profiles were constructed following procedures es-
sentially identical to those described by Mackey & Gilmore
(2003a) but adapted for ACS Wide Field Channel (WFC)
imaging. Figure 1 also includes the recent HST/ACS mea-
surements of the SMC cluster BS90 by Rochau et al. (2007).

Figure 1. Core radius versus age for massive stellar clusters in the
Large and Small Magellanic Clouds. This Figure includes all clus-
ters from the HST/WFPC2 measurements of Mackey & Gilmore
(2003a,b) as well as the new preliminary HST/ACS measurements
of Mackey et al. (2008, in prep.) from Program #9891, and the
recent measurements of BS90 by Rochau et al. (2007). Core radii
for several of the oldest compact clusters are upper limits, as in-
dicated (see Mackey & Gilmore 2003a).

Note that the core radii for several of the oldest, most com-
pact clusters in Fig. 1 are upper limits, as indicated. This is
due to severe crowding in the HST imaging, and the possibil-
ity that several of these clusters are core-collapsed objects
(see Mackey & Gilmore 2003a). All affected clusters have
measured rc < 1 pc.

Figure 1 represents the most complete and up-to-date
information presently available regarding the radius-age
trend in the LMC and SMC star cluster systems. The upper
envelope is very well defined for all ages up to a few Gyr. At
older times than this, the full range of core radii observed
in massive star clusters is allowed. In fact the situation is
even more dramatic than was appreciated by earlier studies.
Several of the oldest clusters in the new ACS sample fall off
the top of the diagram: the Reticulum cluster in the LMC,
with age τ ∼ 12 − 13 Gyr and rc ∼ 14.8 pc; and Lindsay
1 and 113 in the SMC, with τ ∼ 9 Gyr and rc ∼ 16.4 pc,
and τ ∼ 5 Gyr and rc ∼ 11 pc, respectively. Hence the size
range observed for the oldest clusters is 0 . rc . 17 pc.

These recent measurements of very extended objects are
consistent with those for several old globular clusters in the
Fornax and Sagittarius dwarf galaxies – Fornax cluster 1,
and Terzan 8 and Arp 2 (Mackey & Gilmore 2003c) – which
also have very large core radii. A number of Galactic glob-
ular clusters are also known to possess extended cores, as
seen in Fig. 2 (upper panel), which shows the core radius
distribution of the oldest LMC and SMC clusters from Fig.
1 compared with that for the Galactic globular cluster sys-
tem. The observed ranges in rc match well, as do the general
shapes of the distributions. The main difference is that the
distribution for Galactic globulars is more sharply peaked
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Figure 2. Core radius distributions for the oldest (τ & 7 Gyr)
Magellanic Cloud clusters from Fig. 1 (dashed lines) and for
Galactic globular clusters (solid lines). Upper panel: The full
sample of Galactic globular clusters with suitable measurements
of rc is plotted; objects which are members or ex-members of
the Sagittarius dwarf galaxy are excluded. Data are from Harris
(1996) (2003 online update) with new measurements as described
in Mackey & Gilmore (2004) and Hilker (2006). The distributions
are very similar in range and overall shape; however the Galactic
globulars have a sharp peak at small core radii. Note that all Mag-
ellanic Cloud clusters with core radius measurements which are
upper limits already fall in the smallest rc bin. Lower panel: If
only the Galactic “young-halo” subsystem is considered (objects
which preferentially lie at Galactocentric radii beyond ∼ 15 kpc)
a very much closer match is observed.

at small rc. This is not surprising given that a large frac-
tion of the Galactic globulars reside in the inner Galaxy,
where tidal forces are expected to rapidly destroy loosely
bound clusters. Indeed, following Mackey & Gilmore (2004)
(see also Zinn 1993; Mackey & van den Bergh 2005), if only
members of the Galactic globular cluster “young-halo” sub-
system are considered (most of which are located at Galac-
tocentric radii larger than ∼ 15 kpc), the core radius distri-
bution is an excellent match to that observed for the oldest
LMC and SMC objects (Fig. 2, lower panel). The end-points
of structural evolution observed for the Galactic globulars
appear quite consistent with the end-points of the radius-age
trend observed in the Magellanic Clouds.

The simplest interpretation of the radius-age trend is
that it represents the progression of cluster structural prop-
erties with time1. In this scenario, Figures 1 and 2 pro-
vide striking evidence that our understanding of massive
star cluster evolution is incomplete, since standard models
do not predict an order-of-magnitude expansion of the core

1 An additional possibility is that cluster formation conditions
have changed significantly over the past ∼ 10 Gyr. However,
presently available constraints on this proposition are limited,
and we do not discuss it further here.

radius over a Hubble time (e.g., Meylan & Heggie 1997).
Identifying the origin of the radius-age trend is therefore of
considerable importance for star cluster astrophysics, and all
related fields in which star clusters play a prominent role.

Elson et al. (1989) discussed the possibility that the in-
creasing spread in radius with age could reflect inter-cluster
variations in the slope of the stellar initial mass function
(IMF). Clusters with flat IMFs possess comparatively more
massive stars than those with steep IMFs. Consequently,
they suffer more severe mass loss due to stellar evolution at
early times, resulting in increased relative expansion. How-
ever, Elson et al. (1989) found that to induce expansion
along the upper envelope of the observed trend would re-
quire a very flat IMF slope, and the resulting early mass loss
would be severe enough to disrupt the cluster within only a
few tens of Myr. An additional problem with the IMF hy-
pothesis concerns the time-scale – the severe mass loss phase
lasts for roughly only the first ∼ 100 Myr of a cluster’s evo-
lution. Therefore, it cannot drive significant expansion over
the full range of ages observed for Magellanic Cloud clusters.
There is also an increasing body of observational evidence
that the IMF in young star clusters is more-or-less invariant
(see e.g., Kroupa 2001; de Grijs et al. 2002c).

Wilkinson et al. (2003) used N-body simulations of
small star clusters to investigate whether the radius-age
trend could reflect core expansion induced by populations
of binary stars, or by time-varying tidal fields such as those
which clusters on highly elliptical orbits might experience.
They observed similar core radius evolution for model clus-
ters on both circular and elliptical orbits, and therefore con-
cluded that the tidal fields of the Magellanic Clouds have not
yet significantly influenced the evolution of the intermediate-
age clusters in these systems. Furthermore, while they found
that the presence of large numbers of hard primordial bina-
ries in their small clusters did lead to a degree of core radius
expansion, the magnitude of the effect was insufficient to
explain the observed radius-age trend.

Hunter et al. (2003) suggested that rather than repre-
senting the results of dynamical evolution, the radius-age
trend might instead have its origins in a size-of-sample ef-
fect. They measured a very large sample of Magellanic Cloud
clusters with masses 10 . Mcl . 106 M⊙ and found the sig-
nature of such an effect in their data. On a log-abscissa plot
such as Fig. 1, older ages correspond to larger time intervals
and hence to more clusters forming in each log-time inter-
val. Since the star cluster mass function decreases steeply
with increasing cluster mass, this results in the maximum
observed cluster mass in each log-time interval increasing
with age. The clusters in the sample of Hunter et al. (2003)
also showed a weak dependence of size on total mass in that
more massive clusters have larger characteristic radii. Com-
bined with the size-of-sample effect, this leads to a size-age
distribution with an upper envelope not dissimilar to that
evident in Fig. 1. However, it is not clear how applicable this
argument is to the cluster sample considered in Fig. 1, be-
cause all these clusters have masses M & 104 M⊙, and show
no coherent link between total mass and core radius (e.g.,
Mackey & Gilmore 2003a). Indeed, restricting the sample of
Hunter et al. (2003) to clusters with M & 104 M⊙, their
relationship between size and mass is no longer evident.
Hence, a size-of-sample effect apparently does not explain
the radius-age trend visible in Fig. 1.
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Finally, Merritt et al. (2004) examined the formation of
cores in primordially cusped clusters (i.e., objects which ini-
tially have rc ≈ 0) due to the presence of populations of
massive stellar remnants. They used analytic calculations in
combination with simplified N-body models (composed of
equal-mass non-evolving particles) to show that the orbits
of the remnants decay due to dynamical friction so that they
sink to the cluster centres, heating the stellar background in
the process and turning the cusp into a core. The authors
also note that further heating of the core may continue over
a longer time-scale, due to subsequent evolution of the sub-
system of massive remnants. The rates of core growth de-
termined by Merritt et al. (2004) are moderately successful
in reproducing the observed radius-age trend; however their
models seem to require a range of initial densities which
is significantly larger than that found for young clusters in
the Magellanic Clouds. It is also not clear how their results
would respond to the introduction of a mass spectrum and
stellar evolution into the simulations, or the introduction of
more realistic initial conditions including the possibility of
primordial mass segregation.

As demonstrated above, the radius-age trend is indis-
tinguishable in the LMC and SMC, and the end-points of
the trend are consistent with the core radius distributions
of the Galactic globular clusters as well as of globular clus-
ters belonging to the Fornax and Sagittarius dwarf galaxies
(Mackey & Gilmore 2003c). These galaxies cover a very wide
range of masses and morphological types, and hence pos-
sess very different tidal fields and possible external torques.
This strongly suggests that the radius-age trend is primar-
ily driven by internal cluster processes, rather than external
influences (cf. Wilkinson et al. 2003). To this end, we have
conducted a series of large-scale, realistic N-body simula-
tions of Magellanic Cloud clusters with the aim of investi-
gating an internal dynamical origin for the radius-age trend.
More specifically, we have examined the influence of stellar-
mass black holes (BHs), formed in the supernova explosions
of the most massive cluster stars, on the long-term evolution
of massive stellar clusters. We have also investigated the role
played by primordial mass segregation in shaping the early
evolution of massive stellar clusters. The basic results from
several of our key simulations have been outlined in a re-
cent Letter (Mackey et al. 2007); in the present paper, we
describe in detail the complete results of our modelling.

2 NUMERICAL SETUP

2.1 N-body code and initial conditions

We use direct, realistic N-body modelling in order to investi-
gate the structural and dynamical evolution of massive star
clusters in the Magellanic Clouds. Simulations of this type
are a powerful tool for such work because they incorporate
all the relevant physical processes with a minimum of simpli-
fying assumptions. Recent technological developments mean
that it is now feasible to run models with N sufficiently large
so as to be directly comparable to observed clusters. This
has a number of advantages, discussed below.

For the present study, we have used the nbody4

code (Aarseth 1999, 2003) in combination with a 32-chip
GRAPE-6 special purpose computer (Makino et al. 2003) at

the Institute of Astronomy, Cambridge. This code uses the
fourth-order Hermite scheme (Makino 1991) and fast evalua-
tion of the force and its first time derivative by the GRAPE-
6 to integrate the equations of motion. Close encounters be-
tween stars, including stable binary systems and hierarchies,
are integrated via state-of-the-art two-body and chain reg-
ularization schemes (Mikkola & Aarseth 1993, 1998). Also
included in nbody4 are routines for modelling the stel-
lar evolution of both single and binary stars. For single
stars these take the form of the analytical formulae de-
rived by Hurley, Pols & Tout (2000) from detailed stellar
evolution models, following stars from the zero-age main se-
quence through to remnant phases (such as white-dwarfs,
neutron stars and black holes). Binary star evolution is cal-
culated in a similar manner, following the prescription of
Hurley, Tout & Pols (2002) and allowing for such phases
as the tidal circularization of orbits, mass transfer, and
common-envelope evolution. The stellar and binary evolu-
tion is calculated in time with the dynamical integration so
that interaction between the two is simulated in a consistent
fashion (e.g., Hurley et al. 2001, 2005). The stellar evolution
routines allow a spread in stellar masses covering the range
0.1−100 M⊙, so that one can construct any desired IMF for
a model cluster. In addition, a uniform metallicity for the
cluster may be selected in the range Z = 0.0001 − 0.03. A
mass-loss prescription is included such that evolving stars
lose gas through winds and supernova explosions. This gas
is instantaneously removed from the cluster. Such mass-loss
can rapidly alter the gravitational potential of a star cluster,
strongly affecting its early structural and dynamical evolu-
tion.

When constructing the initial conditions for our sim-
ulated clusters, we were careful to develop models as sim-
ilar as possible to the youngest massive clusters observed
in the LMC and SMC2. In general, young massive Magel-
lanic Cloud clusters possess radial surface brightness pro-
files best described by three-parameter models of the form
(Elson, Fall & Freeman 1987; EFF models hereafter):

µ(rp) = µ0

(

1 +
r2

p

a2

)−
γ

2

, (1)

where rp is the projected radius, µ0 is the central surface
brightness, γ determines the power-law slope of the fall-off
in surface brightness at large radii, and a is the scale length.
These models are a subset of the more general family of mod-
els presented by Zhao (1996). The scale length, a, is related
to the observational core-radius, rc, defined here as the pro-
jected radius at which the surface brightness has dropped to
half µ0, by:

rc = a(2
2
γ − 1)

1
2 . (2)

Some of the global properties observed for young massive
Magellanic Cloud clusters are summarized in Fig. 3. In this
plot, we have taken the structural parameters rc and γ
from Mackey & Gilmore (2003a,b), who constructed surface
brightness profiles from HST photometry and fit EFF mod-
els as defined above. We have also taken the central density

2 Although we again note the possibility that the initial condi-
tions for massive clusters which formed at high redshift may be
different to those for clusters forming today.
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and total mass estimates of McLaughlin & van der Marel
(2005), which were computed in a more robust manner than
those provided by Mackey & Gilmore (2003a,b).

All young LMC and SMC clusters are observed to have
cored (rather than cusped) profiles – even the ultra-compact
cluster R136 exhibits a small core (see e.g., the discus-
sion in Mackey & Gilmore 2003a, and references therein).
Their profiles are well fit by EFF models with γ ∼ 2.5:
Elson et al. (1987) found a median value of γ = 2.6 and
a range 2.2 . γ . 3.2 for their ten young LMC clusters,
while the larger sample plotted in Fig. 3 covers the range
2.05 6 γ 6 3.79 and has a median value γ = 2.67. Ex-
cluding R136, the young LMC and SMC clusters typically
have central densities in the range 1.6 . log ρ0 . 2.8 (where
ρ0 is in units of M⊙ pc−3), and total masses in the range
4 . log Mtot . 5 (where Mtot is in units of M⊙). R136 is
the youngest cluster in the sample, with τ ∼ 3 Myr, and
also has the greatest central density: log ρ0 ≈ 4.8.

Our model clusters are generated such that they ini-
tially have structural parameters in projection which are
consistent with those observed for the youngest LMC and
SMC clusters. This is achieved by selecting stellar positions
randomly from the density distribution of an EFF model
with γ = 3. Each star is assigned a velocity drawn from a
Maxwellian distribution, where the velocity dispersion σ is
calculated using the Jeans equations assuming an isotropic
velocity distribution. In applying this generation algorithm
it is important to know that for the EFF family of models,
the deprojected density profile is given by:

ρ(r) = ρ0

(

1 +
r2

a2

)−
γ+1
2

, (3)

where ρ0 is the central volume density. From this, we can
derive expressions for the isotropic velocity dispersion as a
function of radius. The γ = 3 case is the closest value of γ
to the median γ = 2.67 observed for young LMC clusters for
which the expression for σ is analytic (see Appendix A).

We assign the stars in each cluster a range of masses
according to the IMF of Kroupa (2001), which is a multiple-
part power-law ξ(m) ∝ m−αi , where ξ(m)dm is the number
of single stars falling in the mass interval m to m + dm.
Kroupa (2001) derived his IMF from a large compilation of
measurements of young stellar clusters, including many in
the LMC. This is in contrast with many other widely used
IMFs – for example, the Kroupa, Tout & Gilmore (1993)
IMF, which was derived from observations of Galactic field
stars in the local neighbourhood and towards the Galactic
poles. Therefore, we prefer the Kroupa (2001) IMF for direct
modelling of Magellanic Cloud clusters.

We impose a stellar mass range of 0.1 − 100 M⊙ for
our N-body clusters. The extremes of this range are set
by the lowest and highest mass stars for which reliable
stellar evolution routines are incorporated in nbody4. Al-
though stars more massive than 100 M⊙ do form in large
star clusters (e.g., Weidner & Kroupa 2006), this upper limit
is perfectly acceptable for our present models. For exam-
ple, Massey & Hunter (1998) found only ∼ 10 − 20 stars
with M > 80 M⊙ in the extreme LMC cluster R136 (de-
pending on the adopted stellar evolution models), while
the revised calculations in Massey et al. (2004, 2005), which
incorporate improved spectroscopy and modelling, suggest

Figure 3. Properties of the young massive clusters ob-
served in the LMC and SMC. Structural data are taken
from Mackey & Gilmore (2003a,b), while the central den-
sity (ρ0) and total mass (Mtot) estimates are taken from
McLaughlin & van der Marel (2005), as discussed in the text.

significant reductions in these estimated masses. In prac-
tice, we expect that increasing our upper mass limit to the
inferred fundamental maximum stellar mass ∼ 150 M⊙ of
Weidner & Kroupa (2004) would have essentially no dis-
cernible effect on the global evolution we observe for our
models. We note that our lower mass limit means that in
practice we only utilise the exponents α1−α3 in the Kroupa
(2001) IMF.

Our adopted IMF and stellar mass range, along with
the requirement that our model clusters have masses com-
mensurate with those observed for young Magellanic Cloud
clusters (Fig. 3), allows the total number of stars in each
given model to be assigned. Choosing N ≈ 105 stars results
in initial total cluster masses of log Mtot ∼ 4.75.

It is only relatively recently, with the advent of special-
purpose hardware, that it has been possible to follow models
with such large N over more than a Hubble time of evolu-
tion. There are several advantages to running simulations of
this size. First, the model star clusters are directly compa-
rable in terms of total mass and central density (see below)
to the massive clusters observed in the LMC and SMC. We
are therefore now moving into the regime where many of
the scaling-with-N issues which it has been necessary to
account for in previous studies when applying the results of
N-body simulations to the evolution of real clusters (see e.g.,
Aarseth & Heggie 1998) are circumvented. In addition, with
such large N , fluctuations in the global evolution of the N-
body model are reduced to the point where they are not sig-
nificant. For small-N models, it has been standard practice
to average the results of a number of simulations to reduce
such fluctuations, the amplitudes of which increase with
decreasing N (e.g., Giersz & Heggie 1994; Wilkinson et al.
2003; Heggie, Trenti & Hut 2006). For large-N models, this
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process is not necessary (see e.g., Hurley et al. 2005)3. Fi-
nally, with N ∼ 105 we are able to perform detailed sim-
ulated observations of our models. This allows us to derive
quantities from the simulations which are directly compa-
rable to the genuine observations of LMC and SMC star
clusters. As we discuss more fully in Section 3, this step is a
vital ingredient in the analysis of realistic N-body models.

Star clusters in the LMC are observed at galactocen-
tric radii between ∼ 0 − 14 kpc. We therefore evolve our
model clusters in a weak external tidal field, rather than
in isolation. This external field is incorporated by impos-
ing the gravitational potential of a point-mass LMC with
Mg = 9 × 109 M⊙, and placing the clusters on circular or-
bits of galactocentric radius Rg = 6 kpc. Wilkinson et al.
(2003) give a more detailed description of the implementa-
tion of the external field within nbody4, which is done by
integrating the equations of motion in an accelerating but
non-rotating reference frame, centred on the cluster’s centre-
of-mass. Adopting a point-mass LMC is a significant over-
simplification; however, as noted by Wilkinson et al. (2003),
the gradient of this potential is within a factor of two of that
in the LMC mass model of van der Marel et al. (2002) at our
orbital radius. More importantly however, our aim is not to
examine the effect of tidal fields on the evolution of star
cluster cores – Wilkinson et al. (2003) demonstrated that
external fields comparable to those experienced by Magel-
lanic Cloud clusters do not result in strong core evolution.
Rather, we impose an external tidal field so that the gradual
evaporation of stars from the cluster may be simulated in a
self-consistent fashion, and the rates of evaporation between
different models with the same external potential and escape
criterion may be easily compared.

In an external potential, the tidal radius of a star cluster
on a circular orbit may be estimated from the relationship
(King 1962):

rt = Rg

(

Mcl

3Mg

) 1
3

, (4)

where Mcl is the cluster mass. In nbody4 stars are deemed
to have escaped the cluster when they reach a radius 2rt.
This is a legitimate approximation – for example Heggie
(2001) shows that although cluster stars may on occasion
possess orbits which allow them to move far beyond rt and
yet return to the cluster, in practice the vast majority of
stars which move beyond a few rt are permanently lost.
In our models rt is a non-static quantity (since the clus-
ter mass is monotonically decreasing with time); therefore,
the instantaneous value is used when assessing the above
escape criterion. We caution that other different recipes for
the implementation of tidal fields exist, which can lead to
significantly different escape rates and thus cluster lifetimes
(e.g., Baumgardt 2001; Trenti, Heggie & Hut 2007).

Within the N-body code the equations of motion are
integrated in scaled units such that G = 1 and the virial
radius and total mass of the cluster are also set to unity

3 We caution, however, that small-number statistics may still be
subject to significant fluctuations between simulations – an ex-
ample in the present work are the properties of ejected binaries,
as discussed in Sections 4.1 and 4.2.

(Heggie & Mathieu 1986). For a star cluster in virial equilib-
rium the initial energy in these units is −1/4 and the cross-
ing time is 2

√
2. Given the total mass of the cluster in so-

lar masses and an appropriately chosen length-scale (which
determines the conversion from N-body units to physical
units) it is simple to obtain the conversion factors for time
and velocity from N-body units to Myr and kms−1, respec-
tively.

Since the chosen length-scale sets the conversion from
N-body units to physical units, it controls the physical den-
sity of the cluster and hence the physical time-scale on which
internal dynamical processes occur. We assume that a model
cluster initially just fills its tidal radius. The value of this
radius at time τ = 0, determined via Eq. 4 with Mcl = Mtot,
therefore sets the ratio between the length scale in N-body
units and in physical units (pc). EFF profiles formally have
no outer bound, so when randomly generating the initial
stellar positions we only accept stars lying within the esti-
mated tidal radius of the cluster under consideration.

The above process determined a length scale of 8.26 pc
for our model clusters. This results in an initial central mass
density of log ρ0 = 2.31 and a core radius rc = 1.90 pc for
these objects, values which match well those observed for
many young Magellanic Cloud clusters (Fig. 3). We note
that the clusters described here are not in any way mass
segregated; however we also ran simulations of clusters in-
corporating various degrees of primordial mass segregation,
the details of which are described below in Section 2.2. Those
objects have the same length scale as the clusters described
here, but smaller core radii and much higher central densi-
ties, more in line with those of the very young LMC cluster
R136. Given this correspondence between our models and
the properties of young Magellanic Cloud clusters, we are
confident in our selection of an appropriate length scale.

In order to allow investigation of the effects of a popu-
lation of stellar-mass BHs on cluster evolution, we modified
nbody4 to allow control of the production of BHs in su-
pernova explosions. For the present modelling this is imple-
mented in a relatively simplistic manner; however in princi-
ple the relevant code could be altered to cover more complex
formation scenarios. We define three variable parameters –
the minimum initial mass of BH progenitor stars, the masses
of the BHs themselves, and the sizes of the natal velocity
kicks which they receive. In each run, all stars initially more
massive than 20 M⊙ produce BHs, with masses uniformly
distributed in the range 8 < MBH < 12 M⊙ so that the
mean BH mass is 10 M⊙. This range is consistent with dy-
namical masses obtained from observations of X-ray binaries
(e.g., Casares 2006). We generate model clusters using the
same random seed, so that they initially contain identical
stellar populations. Our adopted IMF and total number of
particles result in the formation of 198 BHs in all clusters.

The retention fraction of BHs in a given cluster, fBH, is
strongly dependent on the natal kicks given to the BHs at
formation. If a kick is too strong (i.e., vkick larger, roughly,
than the escape velocity of the cluster, vesc), a BH will
quickly cross the limiting radius of the cluster and be re-
moved from the simulation. Under our modifications to
nbody4, BH kicks can vary from zero (fBH = 1) to very
large (fBH = 0) and can be set as a constant, or selected
randomly from a uniform distribution with specified limits,
or a Maxwellian distribution with a specified mean. By vary-
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ing these aspects of natal BH kicks, it is straightforward to
control the BH retention fraction in any given model.

Although nbody4 allows the inclusion of primordial bi-
nary stars in cluster models, in the present paper we investi-
gate only models with no primordial binaries. The inclusion
of such objects would introduce a very large new area of
parameter space for investigation, beyond the scope of the
time available for our simulations. Even so, any complete
modelling of Magellanic-type clusters should undoubtably
incorporate binary star populations as these are observed –
for example, Elson et al. (1998) observed the binary fraction
in the young massive LMC cluster NGC 1818 to be 35 ± 5
per cent in the cluster core, decreasing to 20± 5 per cent in
the outer regions. We anticipate that future simulations by
us will investigate the effects of a binary star population on
the results presented in this paper.

Finally, the youngest LMC and SMC clusters typically
have metallicities not far from the solar value – for exam-
ple, the literature compilation in Mackey & Gilmore (2003a)
suggests a range −0.4 . [Fe/H] . 0.0 in the LMC. There-
fore, for consistency, in all simulations we set our clusters
to have solar metallicity, Z = 0.02. However, we note that
there is a strong age-metallicity relationship present in both
Magellanic Clouds (see e.g., Pagel & Tautvaǐsienė 1998), in
that older clusters are typically much more metal-poor than
younger clusters. This may have important implications for
our results. Hurley et al. (2004) have demonstrated that dif-
ferences in metallicity can result in some weak variation in
the global structural and dynamical evolution of open clus-
ters, mainly due to differences in stellar winds and mass
loss. Furthermore, variations in metal abundance may have
a strong effect on the number and mass of BHs produced in
supernova explosions (e.g., Zhang et al. 2007). We discuss
these aspects further in Section 5.

2.2 Primordial mass segregation

Almost all young massive star clusters which have been ob-
served with sufficient resolution are seen to exhibit some
degree of mass segregation. This is true for clusters in the
LMC (e.g., NGC 1805, NGC 1818, R136) and SMC (e.g.,
NGC 330), as well as in the Galaxy (e.g., Orion Nebula
Cluster, Arches, Quintuplet) (e.g., de Grijs et al. 2002a,b;
Sirianni et al. 2002; Malumuth & Heap 1994; Brandl et al.
1996; Hunter et al. 1996; Kim et al. 2006). Detailed simu-
lations of star cluster formation (see e.g., Bonnell & Bate
2006, and references therein) are consistent with these ob-
servations, suggesting that mass segregation in young mas-
sive clusters may well be a product of the formation pro-
cess, in that more massive stars are preferentially formed at
the bottom of local potential wells where the gas density is
greatest.

Irrespective of whether the observed properties of young
massive clusters are truly “primordial”, we would like to in-
clude the possibility of very early mass segregation in our
models in order to investigate its effects on their subsequent
evolution. To produce initially mass segregated clusters in
a “self-consistent” fashion (i.e., close to virial equilibrium,
with all members having appropriate velocities) we devel-
oped the following procedure. For a given model, we first
generate a cluster as described in the previous Section. This
object represents the case where there is no primordial mass

segregation. We then implement a mass-function truncation,
setting all stars in the cluster with masses greater than 8M⊙

to have mass 8M⊙. Next, the cluster is evolved dynami-
cally using nbody4, but with the stellar evolution routines
turned off. Hence the cluster begins to dynamically relax
and mass segregate. The degree of primordial mass segrega-
tion is then easily controlled using a single parameter – the
length of time, TMS, for which the cluster is “pre-evolved”.
We selected the truncation limit of 8 M⊙ empirically so that
the pre-evolution can extend for a reasonable duration (a few
hundred Myr) without the most massive stars sinking to the
cluster centre, interacting, and ejecting each other. Once the
desired pre-evolution time is reached, we halt the simulation,
replace the mass-truncated stars with their original masses,
and take the positions and velocities in the pre-evolved clus-
ter as the initial conditions for the full run including stellar
evolution. It is straightforward to read in the pre-evolved
cluster using nbody4, without applying any re-scaling.

Because we replace the mass-truncated stars with their
original masses after the pre-evolution is complete, these
stars (which number a few hundred in any given model)
have slightly incorrect velocities at the beginning of the sim-
ulation proper. However, since they almost all reside in the
densest part of the cluster, once the full simulation begins
these velocities change rapidly and, within the first few lo-
cal dynamical times, become consistent with the mass dis-
tribution in the cluster. Hence this small inconsistency has
a negligible effect on the long-term evolution. We also note
that during the pre-evolution a small fraction of stars escape
from the cluster. This is usually in the form of low-mass
stars drifting slowly across the limiting radius, after which
they are removed from the simulation. This process is very
gradual however, and even the clusters with the longest pre-
evolution times (TMS = 450 Myr) always retain more than
96 per cent of the mass of the initial non-segregated object.
Occasionally, despite the mass-truncation of stars, a massive
object will interact strongly with another massive object
during the pre-evolution, and be ejected from the cluster.
Since we are very interested in how the most massive stars
in the cluster affect its evolution, and would like to maintain
a high level of consistency between the BH populations of
different model clusters, we always replace these objects at
the end of the pre-evolution period using their positions and
velocities from a few output times before the ejection. Since
this is necessary for at most a handful of stars per cluster,
the introduced inconsistencies are again negligibly small.

The initial central densities and core radii of our pri-
mordially mass segregated model clusters depend on the
duration of the pre-evolution. We selected our longest pre-
evolution times (TMS = 450 Myr) so that the resulting clus-
ters possess properties very similar to those observed for
R136, which is the most compact Magellanic Cloud cluster.
These models have rc = 0.25 pc and log ρ0 = 4.58 (cf. Fig.
3). In addition to these global properties, we examined in
detail the radial variation in mass function slope for such
models and compared the results with those observed for
several young Magellanic Cloud clusters. This process is de-
scribed in detail in Section 4.2; here, we simply note the ex-
cellent agreement between the models and the real clusters,
as verification of the validity of our pre-evolution algorithm.
We also ran simulations using clusters with more intermedi-
ate pre-evolution durations (TMS = 115 and 225 Myr) – as
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might be expected, these objects possess intermediate core
radii and central densities: rc = 0.83 pc and log ρ0 = 2.70,
and rc = 0.37 pc and log ρ0 = 3.61, respectively.

3 “OBSERVING” THE SIMULATIONS

Since the radius-age trend is defined observationally (i.e., by
Fig. 1), a vital ingredient in our analysis is to derive mea-
surements from the simulations which are fully consistent
with these observations. This requirement highlights a key
advantage in running direct, realistic N-body models. Be-
cause the positions, velocities, masses and luminosities of
all stars are explicitly followed, and because we do not have
to worry about scaling our results with N , we are able to
perform simulated observations of a model cluster at each
output time which lead to measured quantities that are di-
rectly comparable to those obtained for the real Magellanic
Cloud clusters. More specifically, we calculate the observa-

tional core radius of each model cluster rather than using
the traditional N-body definition (see below), and further,
we incorporate many of the subtleties of the actual HST
measurements which have defined Fig. 1.

Consider Fig. 4, where we have plotted the detection
limits in the HST WFPC2 and ACS imaging from which
Fig. 1 was constructed, against cluster age. The brighter
limits represent saturation on the images (very bright stars,
while recorded on the images, are generally not measured
by photometry software), while the lower limits represent
the approximate 50 per cent detection completeness levels
(faint stars are not always detected above background noise
by photometry software). We have split the clusters into four
age bins according to approximately constant detection lim-
its – these are delineated on the plot with solid vertical lines.
Within each bin, we mark the mean bright and faint detec-
tion limits with dashed lines, and the approximate maximum
scatter about these means with dotted lines.

A number of things are evident from Fig. 4. First, for
any given cluster, the observations sample only a portion
of the range of stellar masses present in the cluster. Hence,
the surface brightness profile, from which the structural pa-
rameters for that cluster are measured, is based only on the
spatial distribution of stars within this range. Second, the
sampled range varies systematically with cluster age. This
is due to the fact that observations of star clusters in the
LMC and SMC are commonly aimed at targeting stars near
the main-sequence turn-off. Consequently, the required ex-
posure time increases with cluster age, meaning that both
the brighter and fainter detection limits become deeper with
age. Looking at the two oldest bins, one can also see the in-
creased capabilities of the ACS instrument compared with
WFPC2. While the saturation limits are comparable for all
clusters in these two bins, the ACS-imaged objects have faint
detection limits ∼ 2 mag fainter than those of the WFPC2-
imaged objects – indicative of the increased sensitivity and
dynamic range of ACS over WFPC2.

Given the above, when deriving structural measure-
ments from our N-body simulations we must account for
the fact that in the real observations for any given cluster,
only a portion of the stellar mass function was sampled, and
the fact that this range changes with the age of the target

Figure 4. Bright and faint stellar detection limits on the
HST/WFPC2 and ACS images of LMC and SMC clusters used
for the measurements presented in Fig. 1. Circular symbols mark
LMC clusters, while SMC objects are triangles. Filled symbols
represent the WFPC2 imaging described in Mackey & Gilmore
(2003a,b) while open symbols are the ACS imaging from Mackey
et al. (2008, in prep.). Clusters are split into four age bins, de-
lineated with solid vertical lines. Within each age bin, the mean
bright and faint detection limits are marked by dashed lines, while
the approximate maximum scatter about each mean is marked by
a pair of dotted lines. For ease of reference, absolute magnitudes
MV = (−5, 0, 5) correspond to zero-age main sequence stellar
masses of M∗ ∼ (45.0, 4.20, 1.06) M⊙ at solar metallicity.

cluster. Since we know the details of the sampling from Fig.
4, this is simple to achieve.

To “observe” a model cluster, we pass the N-body data
through a measurement pipeline essentially identical to that
we used to obtain structural quantities for the LMC and
SMC samples (full details of the observational pipeline may
be found in Mackey & Gilmore 2003a). For the data pro-
duced at a given output time, we first convert the lumi-
nosity and effective temperature of each star in the clus-
ter to UBV RI standard magnitudes, using the bolometric
corrections of Kurucz (1992) supplemented with those of
Bergeron, Wesemael & Beauchamp (1995) for white dwarfs.
We also convert the position and velocity of each star to
physical units using the appropriate length and velocity scale
factors (see Section 2.1). With this complete, we next impose
the bright and faint detection limits appropriate to the out-
put time (these are the dashed mean limits in Fig. 4). This
leaves an ensemble of stars with which to construct a surface
brightness profile, which we do following Mackey & Gilmore
(2003a,b). We project the three-dimensional position of each
star onto a plane, construct annuli of a given width about the
cluster centre, and calculate the surface brightness in each
annulus. For consistency with the observational pipeline, we
use a variety of annulus widths so that both the bright inner
core and the fainter outer regions of the cluster are well mea-
sured. Next, we account for the fact that both the WFPC2



Core expansion in massive star clusters 9

and ACS cameras have fields-of-view which are considerably
smaller than the area on the sky filled by a Magellanic Cloud
cluster, which might typically have rt ∼ 40 − 50 pc (i.e.,
rt ∼ 160−200′′ at the LMC distance) (see e.g., Mateo 1987;
Olsen et al. 1998). This results in surface brightness profiles
generally being truncated beyond projected radii rp ∼ 25 pc
(Mackey & Gilmore 2003a,b). After imposing this limit, we
finally fit an EFF model of the form of Eq. 1 to the result-
ing surface brightness profile, and from this model derive
the structural parameters – in particular the core radius, rc,
and the power-law slope at large radii, γ. To reduce noise we
repeat this process for three orthogonal planar projections
at each output time and average the results.

It is worth noting the difference between the quantity rc

and the ‘core radius’ usually defined in N-body simulations.
This has been discussed in some detail by Wilkinson et al.
(2003); however, in the interests of clarity we re-iterate a
few of the most salient points. Traditionally, observers, the-
orists, and numericists have employed different interpreta-
tions of the ‘core radius’. That for observers is as defined
above (Eq. 2), as the projected radius at which the surface
brightness (or density) has dropped to half the central value.
Theoretically defined, the core radius is the natural scale-
length of the model under consideration – for example, in
EFF models a is the scale-length. Eq. 2 provides a general
relation between a and rc. It should be noted however, that
as a cluster evolves, the EFF parameters are not static, and
therefore the ratio between a and rc is variable with time.

In N-body simulations the numerically calculated ‘core
radius’ is more correctly termed the density radius, rd. The
implementation in nbody4 is based on a quantity described
by Casertano & Hut (1985), so that rd is defined as the
density-weighted average of the distance of each star from
the density centre of the cluster (Aarseth 2001). The local
density at each star is computed from the mass within the
sphere containing the six nearest neighbours. As noted by
Wilkinson et al. (2003), there is no general relationship be-
tween rd and rc, and in fact the behaviour of rc and rd may
be quite different throughout a simulation.

As a final remark, we briefly consider the appropriate-
ness of fitting a power-law profile (Eq. 1), which formally
has no outer limit, to a simulated cluster evolving in a tidal
field. There are two reasons why this is acceptable. First,
because of the radial truncation imposed to mimic the field-
of-view limitations of the WFPC2 and ACS cameras, our
derived surface brightness profiles do not reach as far as the
cluster tidal radius. Following Mackey & Gilmore (2003a,b),
it is therefore legitimate to fit EFF models to these observed
profiles, even when a cluster is dynamically old enough to
exhibit a tidal truncation – in the interests of obtaining mea-
surements of γ which are, like those for rc, directly compa-
rable to the real observations, we choose to employ the same
methodology. Even without the truncation of our radial pro-
files, an EFF model would still have been the most appro-
priate choice. This is due to the treatment of stellar escapers
in nbody4, as discussed in Section 2.1. While the tidal ra-
dius rt is estimated from Eq. 4, stars are not removed from
the simulation until they reach 2rt. Hence they are free to
populate the region rt < r < 2rt, and there is no truncation
in the density profile at (or near) rt, even for dynamically
old clusters.

4 SIMULATIONS AND RESULTS

The properties of our N-body runs are listed in Table 1.
Our main set of models are labelled Runs 1–4. These cover
the extremes of the parameter space we are interested in
investigating, spanned by BH retention fractions fBH = 0
and fBH = 1, and the pre-evolution durations TMS = 0
Myr (i.e., no primordial mass segregation) and TMS = 450
Myr (strong primordial mass segregation, matching that ob-
served in young LMC and SMC objects). These runs are
therefore expected to represent the extremes of cluster evo-
lution induced by variation of the BH retention fraction and
the degree of primordial mass segregation. The global prop-
erties of these four Runs have already been presented in a
short Letter (Mackey et al. 2007); in the present paper we
examine their evolution in considerably more detail.

In addition to our four primary runs, we performed sev-
eral additional simulations in order to sample the parameter
space more completely, and in particular verify that models
with intermediate values of fBH and TMS exhibited evolution
intermediate between that displayed by Runs 1–4. To this
end, Runs 4a and 4b explore the effects of primordial mass
segregation in more detail, while Run 5 highlights the effects
of natal kicks on BH retention and the subsequent cluster
evolution. Finally, Run 6 is used to address the question of
whether we can reproduce the cluster evolution induced by a
significant BH population by retaining neutron stars (NSs)
instead of the BHs.

For each run, we measured the initial cluster mass, cen-
tral density, and observed structural parameters rc and γ –
these are all listed in Table 1. It is important to re-emphasize
how closely these correspond to the observed quantities for
the youngest massive clusters in the Magellanic Clouds. This
can be seen explicitly by comparing the values listed in Ta-
ble 1 with the plots in Fig. 3. The model clusters with no
primordial mass segregation have rc ∼ 1.9 pc, γ ∼ 3.0, and
log ρ0 ∼ 2.3. These clusters therefore appear very similar
to a number of Magellanic Cloud clusters with ages of ∼ 20
Myr. In contrast, the heavily mass segregated model clusters
have much smaller cores and higher central densities, with
rc ∼ 0.25 pc and log ρ0 ∼ 4.6. They also have flatter power-
law fall-offs, with γ ∼ 2.3. In this respect, they strongly re-
semble the very compact massive young LMC cluster R136,
which has an age of ∼ 3 Myr. The total masses of all mod-
els are very similar, in the range 4.728 6 log Mtot 6 4.746.
The variation is due to the pre-evolution procedure used to
develop the mass segregated initial conditions, as described
in Section 2.2. From comparison with Fig. 3, it is clear that
our N-body clusters have masses typical of the youngest
clusters in the observed sample. We also note that the “ob-
served” integrated colours of our models at early times are
consistent with measurements for young Magellanic Cloud
clusters from the literature – for example, the integrated
(B − V ) colours compiled by Bica et al. (1996).

Given the close correspondence between the properties
of our model clusters and those observed for young LMC and
SMC objects, we are confident that our N-body simulations
are directly modelling the evolution of massive Magellanic
Cloud clusters.

Output data was produced for each Run at intervals
of ∆τ = 1.5 Myr for τ <= 100 Myr, and at intervals of
∆τ = 15 Myr for τ > 100 Myr. It is worth noting that no
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Table 1. Details of N-body runs and initial conditions. Each cluster begins with N0 stars with masses summing to Mtot, and
initial central density ρ0. Initial cluster structure is “observed” to obtain rc and γ. Each model is evolved until τmax.

Name N0 log Mtot log ρ0 rc γ Initial MSeg BH Retention τmax

(M⊙) (M⊙ pc−3) (pc) (TMS) (fBH) (Myr)1

Run 1 100 881 4.746 2.31 1.90 ± 0.09 2.96 ± 0.17 None 0.0 19 987
Run 2 100 881 4.746 2.31 1.90 ± 0.09 2.96 ± 0.17 None 1.0 10 668

Run 3 95 315 4.728 4.58 0.25 ± 0.04 2.33 ± 0.10 450 Myr 0.0 11 274
Run 4 95 315 4.728 4.58 0.25 ± 0.04 2.33 ± 0.10 450 Myr 1.0 10 000

Run 4a 98 605 4.738 2.70 0.83 ± 0.07 2.45 ± 0.14 115 Myr 1.0 4 274
Run 4b 97 209 4.733 3.61 0.37 ± 0.05 2.34 ± 0.10 225 Myr 1.0 4 457

Run 5 95 315 4.728 4.58 0.25 ± 0.04 2.33 ± 0.10 450 Myr 0.5 10 059

Run 6 100 881 4.746 2.31 1.90 ± 0.09 2.96 ± 0.17 None 0.0, NS2 19 987

1 As described in Section 4, no special significance should be attached to the listed values of τmax.
2 Run 6 is identical to Run 1, except with natal neutron star kicks set to zero so that fNS = 1.0.

special significance should be attached to the listed values
of τmax in Table 1. The main criterion for our primary Runs
(Runs 1–6, excluding Runs 4a and 4b) was that τmax be
larger than ∼ 10 Gyr, to approximate the ages of the oldest
Magellanic Cloud globular clusters. The listed τmax simply
represent the most convenient termination points beyond
this time. For interest’s sake, Runs 1 and 6 were evolved for
significantly longer periods (τmax = 20 Gyr) than the other
models, so that the clusters passed through the core-collapse
phase. In contrast, Runs 4a and 4b were evolved only as
long as necessary (i.e., just long enough for the effects of
intermediate values of TMS to become evident), to save on
computation time.

4.1 Runs 1 and 2: No mass segregation

We first consider the pair of simulations labelled Run 1 and
Run 2. Neither of these two model clusters have primordial
mass segregation, and both start with identical initial con-
ditions, to the extent that they share the same random seed.
The sole difference between them is that in Run 1 the natal
BH kicks are set to be vkick ≈ 200 kms−1, whereas in Run 2
they are set to be zero. Thus, every BH formed in a super-
nova explosion in Run 1 is provided with a sufficiently large
random velocity that it very rapidly escapes from the clus-
ter, so the retention fraction is fBH = 0. Conversely, in Run
2 all 198 BHs are retained in the cluster and the retention
fraction is fBH = 1. The purpose of these runs is twofold.
First, Run 1 lets us consider the long-term evolution of our
simplest cluster set-up – no primordial mass segregation, and
zero BH retention. This model therefore constitutes a con-
trol run against which the evolution of all our other models
may be compared. Second, by making such a comparison,
Run 2 lets us isolate the effects of a population of stellar-
mass black holes on the structural and dynamical evolution
of a massive star cluster.

The progress of Runs 1 and 2 across the radius-age plane
is displayed in Fig. 5 (left panel). Also shown is the evolu-
tion of these two runs in the γ-age plane (right panel). First
consider Run 1, which behaves exactly as expected for a
classical massive stellar cluster. At very early times, extend-
ing to roughly τ ∼ 100 Myr, there is a period of severe

mass loss due to the rapid evolution of the most massive
stars in the cluster. By τ ∼ 100 Myr, approximately 25 per
cent of the initial cluster mass has been lost. The 198 BHs
are formed in supernova explosions between 3.5-10 Myr and,
since they are born with vkick ≈ 200 km s−1, all are immedi-
ately ejected from the cluster. From Fig. 5, it is clear that the
violent relaxation experienced by the cluster when τ . 100
Myr is not reflected in its core-radius evolution, presumably
because the mass loss is distributed evenly throughout the
cluster. Similarly, there is no evidence of the violent relax-
ation phase in the evolution of γ.

As the cluster grows older, the rate of mass loss de-
creases and the cluster settles into a quasi-equilibrium state,
where dynamical evolution is dominated by two-body re-
laxation processes. The median relaxation time for this
N = 105 star cluster is given by trh ≈ 1.9×105 M

1/2
cl m−1

∗ r
3/2
h

(Binney & Tremaine 1987) where m∗ is the typical stellar
mass and rh is the 3-dimensional radius containing 0.5Mcl.
At τ = 100 Myr, when the rapid early mass loss is mostly
complete, Mcl ≈ 43 500 M⊙, m∗ ≈ 0.45 M⊙ and rh ≈ 8 pc,
so that trh ∼ 2 Gyr. Mass segregation develops in the cluster
on roughly this time-scale: this is evident in Fig. 5 as a grad-
ual contraction in rc as the most luminous stars in the mag-
nitude range used to measure the structural parameters (cf.
Fig. 4) sink towards the cluster centre. As two-body relax-
ation proceeds and mass segregation becomes more promi-
nent, the core radius steadily shrinks with time. The power-
law fall-off, γ, slowly becomes steeper during this phase;
however as the core becomes increasingly more compact, so
γ becomes increasingly flatter after τ ∼ 10 Gyr.

Eventually, after many Gyr of evolution, Run 1 en-
ters the core-collapse phase. The point of greatest collapse
(smallest rc) occurs at τ ≈ 17.4 Gyr, when the central
mass density reaches log ρ0 ≈ 4.5 – a value commensurate
with those inferred for NGC 2005 and 2019, the most likely
core collapsed clusters in the LMC (e.g., Mackey & Gilmore
2003a; McLaughlin & van der Marel 2005). The point of
greatest collapse coincides with a spate of binary star for-
mation in the core – by τ = 17.5 Gyr there are seven newly-
formed binary stars. Subsequently, up until the end of the
simulation at τ = 20 Gyr, there is no significant change in
the observed value of rc. Defining the cluster age in terms
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Figure 5. Structural evolution of N-body Runs 1 and 2. Neither has primordial mass segregation; the only difference between them
is the BH retention fraction (fBH = 0 and 1, respectively). Left panel: Evolution of rc, observed as described in Section 3. Run
1 evolves exactly as expected for a classical massive star cluster, with the main trend being a slow contraction in rc as the system
relaxes dynamically and moves towards core collapse. In stark contrast, Run 2 evolves very similarly to a point, after which strong
expansion in the core radius is observed. The presence of 198 stellar-mass black holes in this cluster thus leads to strikingly different
core radius evolution. Right panel: Evolution of the power-law fall-off, γ, again observed as described in Section 3. As with rc, Run 2
evolves identically to Run 1 until the BH population becomes dynamically active, after which the evolution strongly diverges with Run
2 developing a steep fall-off in its outer regions. In this panel, only data points from the WFPC2 observations of Mackey & Gilmore
(2003a,b) are plotted. Measurements of γ from the recent ACS observations of Mackey et al. (2008, in prep.) are not yet finalised.

of an integrated median relaxation time, which is necessary
because trh is a constantly evolving quantity, we find that
at τ = 17.4 Gyr, 8.37 trh has elapsed.

Fig. 6 illustrates the evolution of Run 1 in more detail.
In the top panel a series of Lagrangian radii are plotted –
here, we define Rx% to be the 3-dimensional radius contain-
ing x per cent of the stellar mass in the cluster – that is,
excluding BHs. This exclusion is not important for Run 1,
since all BHs are gone from the cluster by ∼ 15 Myr; how-
ever it is crucial for examining the evolution of the stellar
component of Runs in which fBH > 0. Unlike rc, the inner-
most Lagrangian radii in Run 1 do show an increase in size in
reaction to the early mass-loss phase; however, this increase
is only very modest. In addition, the innermost Lagrangian
radii do not show any sign of contraction until much later
than does rc – this is an indication of the luminosity (and
hence mass) weighting inherent in the calculation of rc. The
half-mass radius of the cluster shows only a small amount of
variation throughout its evolution. The outer radii also show
only very gradual evolution. The main feature is an expan-
sion in the 90% radius during the mass-loss phase. This is
due to stars in the very outer regions of the cluster drift-
ing beyond rt as the cluster rapidly loses mass. Eventually
these objects are removed from the simulation (once they
get beyond 2rt) and the 90% radius slowly contracts. This
contraction continues as the cluster slowly loses mass for the
rest of its lifetime, and rt gradually shrinks accordingly.

In the lower panel of Fig. 6, the mean stellar mass in
shells encompassed by selected Lagrangian radii is plotted.
This plot therefore shows the development of mass segrega-

tion in Run 1. This process is inhibited by the early violent
relaxation phase, and there is only a very small degree of seg-
regation present in the cluster’s central regions by τ = 100
Myr. Subsequently however, the stratification becomes very
well established. As expected, this occurs more rapidly in
the central regions of the cluster, where the relaxation time
is shortest. By the time the core-collapse phase is reached,
there is a large degree of mass segregation present in the
model cluster. One notable feature, exhibited by both the
outermost shell and the full cluster mean, is an increase in
the mean stellar mass after τ ∼ 10 Gyr. This is due to the
preferential removal of low-mass cluster stars by the external
tidal field. These stars typically reside in the outer cluster
regions at late times, and are hence far more susceptible to
tidal effects than are the more massive objects which inhabit
the cluster core. At late times, stellar evolution has all but
slowed to a halt so that the tidal stripping of low-mass stars
has a significant effect on the mean stellar mass.

Now consider Run 2, in which the BH kicks vkick =
0kms−1 so that fBH = 1. From inspection of Fig. 5, it is
clear that the evolution of both rc and γ is indistinguishable
from that seen in Run 1 up to log τ ∼ 8.8, after which strong
expansion of rc is observed for Run 2, in conjunction with
a significant steepening in γ. A careful comparison between
the two models reveals that this divergence begins at τ ≈
650 Myr. The expansion of rc in Run 2 continues for the
remainder of the simulation, until τmax = 10.67 Gyr. Since
Runs 1 and 2 are identical apart from the kicks imparted to
the BHs on their formation, the strongly different evolution
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Figure 6. Evolution of various Lagrangian radii (top panel) and
the mean stellar mass in the shells encompassed by selected La-
grangian radii (lower panel) for Run 1. The radii displayed in
the top panel are, from inner to outer, the 1%, 5%, 10%, 30%,
50% = rh (dashed line), 70%, 80%, and 90% radii. In the lower
panel the shells are defined by: r 6 R1%, R1% < r 6 R5%,
R5% < r 6 R10%, R10% < r 6 R30%, and R70% < r 6 R80%

(these are listed in order from the upper to lower solid lines at
the right hand side of the panel). The dashed line is the mean
mass for all stars in the cluster.

observed for these two models must be due to the presence
of the 198 BHs in Run 2.

The properties of this BH population as a function of
time are illustrated in Fig. 7. As in Run 1, by τ ≈ 100 Myr,
the most violent phase of stellar evolution is essentially com-
plete. At this time, the BHs (of typical mass mBH = 10M⊙)
are already significantly more massive than any other cluster
members (of typical mass m∗ ≈ 0.45 M⊙), and are hence be-
ginning to sink to the cluster centre via dynamical friction,
on a time-scale of ∼ (m∗/mBH) trh ≈ 90 Myr.

This is evident from panels b and c in Fig. 7. Panel b
shows the number of BHs within the shells encompassed by
the stellar Lagrangian radii r 6 R1%, R1% < r 6 R5%, and
r > R10%. The evolution of these Lagrangian radii them-
selves may be seen in Fig. 8, which is discussed in more
detail below. Panel c shows the evolution of the black hole

Lagrangian radii B10%, B25%, B50%, and B75%, where, by
analogy with the stellar Lagrangian radii, Bx% is the 3-
dimensional radius containing x per cent of the BH mass
in the cluster.

By 200 Myr, the mass density of BHs at the centre of
the cluster is already roughly equal to that of the stars, and
by 400 Myr it is about three times larger. Shortly after, this
central BH subsystem becomes unstable to further contrac-
tion (see Spitzer 1987, Eq. 3-55) and decouples from the
stellar core in a runaway gravothermal collapse, leading to a
very rapidly increasing central BH density – by 490 Myr, the
central density of the BH subsystem is ∼ 80 times that of

Figure 7. Properties of the BH population in Run 2 as a function
of time: (a) the number of single BHs (upper line) and binary BHs
(lower line) in the cluster; (b) the number of BHs within the shells
encompassed by the stellar Lagrangian radii (cf. Fig. 6) r 6 R1%,
R1% < r 6 R5%, and r > R10% (the upper, middle and lower
lines, respectively, at the right of the plot); (c) the black hole 10%,
25%, 50% and 75% Lagrangian radii (respectively, the innermost
to outermost lines); (d) the cumulative numbers of escaped single
BHs (upper) and binary BHs (lower), along with fits of the form
Ne = A0 + A1τ − A2τ log τ (dashed lines); and (e) the radial
positions of three typical BHs. The vertical dotted line indicates
τ = 650 Myr, the approximate time when core expansion begins.
The evolution of rc is plotted (dot-dashed line) in panel (e). Note
the different axis scales on either side of panels (a) and (d).

the stars. This is sufficiently dense for the creation of stable
BH binaries in three-body interactions to be initiated – the
first such object is formed at ∼ 510 Myr, and by ≈ 650 Myr
there are several (see Fig. 7a). At this point, the collapse of
the BH subsystem is halted: the BH Lagrangian radii cease
their inward movement and become roughly constant, while
the number of BHs within the inner stellar Lagrangian radii
also level off. It is at this time that the evolution of the ob-
servational structural parameters rc and γ in Run 2 begins
to strongly deviate from that in Run 1.

As noted above, prior to this point the evolution of Run
2 is observationally identical to that of Run 1. Neither the
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retention of the BH population at τ ≈ 10 Myr, nor the
subsequent orbital decay of these objects and the result-
ing formation of a compact central BH subsystem leads to
differential evolution of rc. This appears at odds with the
models presented by Merritt et al. (2004), who investigated
the possibility that the radius-age trend results from the for-
mation of cores in primordially cusped star clusters due to
the sinking and central accumulation of massive stellar rem-
nants. We attribute our differing results to the much higher
degree of central mass concentration in the cusped models of
Merritt et al. (2004), which thereby respond more strongly
and more rapidly to the perturbations induced by sinking
remnants than does our initially cored, relatively low density
Run 2. Merritt et al. (2004) also mentioned the possibility
of additional cluster expansion due to the subsequent evolu-
tion of the BH population, once the central subsystem had
formed. As discussed below, all of the expansion observed in
our models is the result of such processes.

The number of stable BH binaries in Run 2 peaks at 5
at τ ≈ 890 Myr. After this point, there are 0 − 5 BH bina-
ries at any given time (Fig. 7a). Once formed, a BH binary
undergoes superelastic collisions with other, usually single,
BHs in the central core (although BH binaries do also occa-
sionally collide with each other). On average, as BH binaries
participate in such interactions they become “harder” (more
tightly gravitationally bound), with the released binding en-
ergy being carried off by the interacting BHs (e.g., Heggie
1975; Heggie & Hut 2003). In each such interaction, the bi-
nary BH also has a recoil velocity imparted to it, the magni-
tude of which is dependent on how energetic the interaction
has been. Together, these processes result in the scattering of
BHs outside rc, often into the cluster halo. As a given binary
becomes increasingly tightly bound, so too can the collisions
in which it is involved become increasingly energetic, such
that an interacting BH carries off sufficient kinetic energy
that it escapes from the cluster altogether. Eventually the
BH binary is sufficiently hard that the recoil velocity it re-
ceives during a collision is larger than the cluster escape
velocity, and the binary escapes as well. Hence, interactions
in the central compact BH subsystem also result in the ejec-

tion of BHs from the cluster. For clarity we will retain the
italicised terminology (scattering and ejection) henceforth.

These processes are evident in Fig. 7e, which shows the
movement of three typical BHs during Run 2. Each of the
three is born well outside rc, but all sink to the central core
via dynamical friction, as described above. Two are already
present there by the time the first BH binaries are formed.
All three of the BHs are frequently scattered to rc (dot-
dashed line) during their evolution in the cluster, and at
least once each into the cluster halo. One is ejected from
the cluster at τ = 7900 Myr due to a strong interaction
in the core. Another becomes a member of a BH binary at
τ = 6200 Myr, and subsequently undergoes four strong in-
teractions (including one in which its partner is exchanged),
with increasing recoil velocity each time until this is suffi-
cient for ejection at τ = 8200 Myr.

Considering Fig. 7c, it is clear that at any given time
there are always a handful of BHs outside the 10 per cent
stellar Lagrangian radius. This is an indication of the on-
going scattering of BHs to outside ∼ rc, since any ejected
BHs tend to escape the cluster quite rapidly. As is evident
from Fig. 7e, a scattered BH gradually sinks back into the

Figure 8. Evolution of various Lagrangian radii (top panel) and
the mean stellar mass in the shells encompassed by selected La-
grangian radii (lower panel) for Run 2. The radii displayed in
the top panel are, from inner to outer, the 1%, 5%, 10%, 30%,
50% = rh (dashed line), 70%, 80%, and 90% radii. In the lower
panel the shells are defined by: r 6 R1%, R1% < r 6 R5%,
R5% < r 6 R10%, R10% < r 6 R30%, and R70% < r 6 R80%

(these are listed in order from the upper to lower solid lines at
the right hand side of the panel). The dashed line is the mean
mass for all stars in the cluster. The evolution of Run 1 is marked
by dotted lines, for comparison (note that the abscissa does not
extend to such late times as are plotted in Fig. 6).

cluster centre via dynamical friction, thus transferring its
newly-gained energy to the stellar component of the clus-
ter. Most is deposited within rc, where the stellar density
is greatest. The ejection of BHs also transfers energy to the
cluster, since a mass m escaping from a cluster potential well
of depth |Φ| does work m|Φ| on the cluster. This mechanism
is particularly effective in heating the stellar core, since BHs
are ejected from the very centre of the cluster, and the en-
ergy contributed to each part of the cluster is proportional
to the contribution which that part makes to the central po-
tential (see e.g., Heggie & Hut 2003). In addition, here mBH

is significantly larger than m∗.
Together these two processes heat the stellar core of the

cluster, resulting in significant core expansion. This becomes
evident observationally at τ ≈ 650 Myr, and continues as
long as the BH population is dynamically active – in the case
of Run 2, the simulation was halted before the expansion
ceased. From Fig. 5, the size of rc is roughly proportional
to log τ , consistent with the shape of the upper envelope of
the observed cluster distribution. However, in this N-body
model the expansion begins too late for the evolution to
trace the upper envelope exactly; rather, it runs parallel.

The evolution of the stellar Lagrangian radii in Run 2
is illustrated in Fig. 8, along with the evolution of the mean
stellar mass in the same Lagrangian shells examined earlier
for Run 1. The progress of Run 1 is also marked on Fig. 8
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for comparative purposes (dotted lines). As noted above, the
initial infall and accumulation of BHs in the cluster centre
does not cause any differential expansion of Run 2 over Run
1 at any radii. It is only after BH binaries are formed and
the BH population becomes dynamically active that expan-
sion occurs in Run 2. This expansion is evident at all radii,
although the magnitude is greatest in the central regions
of the cluster. None of the Lagrangian radii expand by as
great a factor over the simulation as does rc. The explana-
tion for this can be seen in the lower panel of Fig. 8 – the
development of mass segregation amongst the stellar com-
ponent in Run 2 is severely inhibited by the activity of the
BH population, compared to Run 1. This results in a larger
apparent expansion in rc than in the innermost stellar La-
grangian radii because of the luminosity weighting inherent
in the measurement of rc.

The process of mass segregation in Run 2 is only sup-
pressed after the BH population becomes dynamically ac-
tive. Up until this point, segregation has been proceeding
just as in Run 1; however, after τ ≈ 650 Myr, no further
stratification occurs. Stellar evolution subsequently reduces
the mean mass in each Lagrangian shell with time. This
interpretation is consistent with the cluster expansion pro-
cesses due to BH scattering and ejection which were de-
scribed above. In particular, the repeated BH scattering-
sinking cycles constantly stir up the stellar component of
the cluster and hence hinder the development of mass segre-
gation, particularly in the inner cluster regions. The strat-
ification which occurs before the BH population becomes
dynamically active is not reversed however – there is still
clearly a mean-mass gradient from the inner to the outer
regions of the cluster at all times.

A useful quantity for examining the evolution of
the cluster structures in Runs 1 and 2 is the ratio of
the core radius to half-light (or half-mass) radius (e.g.,
Vesperini & Chernoff 1994; Trenti et al. 2007; Heggie et al.
2007; Hurley 2007). In regards to the latter of these radii, the
relevant observational parameter is the projected radius con-
taining half the cluster light (rh,l). This is straightforward to
calculate for the EFF family of models. The enclosed lumi-
nosity as a function of projected radius rP may be obtained
by integrating Eq. A2 within a cylinder of radius rP along
the line of sight (e.g., Eq. 11 in Mackey & Gilmore 2003a):

L(rP ) =
2πµ0

γ − 2

[

a2 − aγ
(

r2
P + a2

)−(γ−2)/2
]

. (5)

When rP = rh,l the enclosed luminosity is half of the total
luminosity, i.e. L(rh,l)/Ltot = 1/2. Substituting this into Eq.
5 and rearranging the result leads to an expression for rh,l:

log(r2
h,l + a2) =

2

2 − γ
log

(

1

aγ

[

Ltot(2 − γ)

4πµ0
+ a2

])

. (6)

Projected half-light radii, along with the ratios rc/rh,l may
hence be calculated for the LMC and SMC cluster samples
of Mackey & Gilmore (2003a,b) using their best-fitting EFF
models and total luminosity estimates. Directly comparable
quantities may also be calculated at each output time for
our N-body Runs using the “observed” EFF models. In this
procedure, for the purposes of direct comparison we do not
use Ltot as calculated by the N-body code, but rather the
total luminosity enclosed within some limiting observational
radius, as specified in Mackey & Gilmore (2003a).

Figure 9. Evolution of the ratio of core radius to projected half-
light radius rc/rh,l for N-body Runs 1 and 2, compared with
measurements for LMC and SMC clusters. Note that the mea-
sured ratios for the oldest, most compact LMC clusters are upper
limits, reflecting the upper limits to the core radius measurements
for these clusters (cf. Fig. 1).

The evolution of rc/rh,l for Runs 1 and 2, compared
with the measurements for LMC and SMC clusters, may
be seen in Fig. 9. For much of Run 1, this ratio is a sta-
ble quantity at rc/rh,l ≈ 0.45. As this model enters core
collapse, however, the ratio shrinks to become very small.
This is very similar behaviour to that observed by previous
authors – in particular Hurley (2007), who measured the
evolution of an identical (observationally defined) quantity
in his large N-body models. Very different behaviour is ob-
served for Run 2, however. As soon as the BH population
in this model becomes active and core expansion begins,
rc/rh,l begins to steadily increase. This presumably reflects
the increased heating efficiency of the BH population within
the stellar core, as compared with the heating efficiency at
larger radii in the cluster (cf. Fig. 8). By the end of Run
2 rc/rh,l ∼ 0.8, matching the values observed for several
of the most extended Magellanic Cloud clusters. These ob-
servations are consistent with the results of Hurley (2007),
who found that even the presence of one BH-BH binary can
prevent the expected decrease in rc/rh,l – in our models the
presence of many BHs results in a significant increase in this
ratio. It has been suggested that a cluster with a large value
of rc/rh,l may harbour a central IMBH (see the extensive
discussion presented by Hurley 2007); however, our Run 2
clearly demonstrates that the presence of a population of
stellar-mass BHs can also lead to large values of this ratio.

Returning to Fig. 8, one significant point of note is that
although the spatial distribution of stellar mass is quite dif-
ferent in Run 2 compared to Run 1, the overall mean stellar
mass in Run 2 (dashed line) remains almost exactly the same
as that in Run 1 throughout the simulation. Given that the
initial stellar populations in the two models were identical,
this indicates that the typical mass of a star escaping across
the tidal radius in the two runs is very similar. Calculat-
ing the mean mass of all escaping stars in Run 1 between
τ = 100 Myr (when the early violent relaxation is essentially
complete) and τ = 10667 Myr (when Run 2 is terminated)
reveals a value of 0.328 M⊙, while the same calculation for
Run 2 results in 0.332 M⊙. These two values are indistin-
guishable, which is remarkable given the strong divergence
in the structural evolution of the two clusters. Inspection
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of the distribution of velocities with which stars escape be-
tween τ = 100− 10667 Myr in each simulation reveals these
also to be indistinguishable. Together these results imply
that both models lose stars solely due to relaxation pro-
cesses. There is only a tiny group of ∼ 20 relatively high
velocity stellar escapers in Run 2 (i.e., which have an escape
velocity greater than that of the fastest escaper in Run 1)
out of a total of more than 55 000 stellar escapers, indicat-
ing that stars interact closely with BH binaries only very
rarely. Heating of the stellar component via close interac-
tions between stars and BH binaries is therefore negligible
– the hardening of BH binaries is driven solely through in-
teractions with other BHs in the central subsystem.

It is also enlightening to consider the properties of the
escaping BHs in Run 2. The cumulative number of escaped
single and binary BHs is plotted in Fig. 7d. The approxi-
mate time at which core expansion begins, τ = 650 Myr,
is marked with a vertical dotted line. Some single BHs es-
cape before this point – these are BHs which are formed in
the outer regions of the cluster and drift across the tidal
boundary due to the early violent fluctuations in the clus-
ter’s gravitational potential. After τ = 650 Myr, once BHs
begin to be ejected solely due to interactions in the central
subsystem, it is clear that the cumulative numbers Ne of es-
caping single and binary BHs increase more slowly at later
times – that is, that the escape rates decrease with time.
Hypothesising that the time derivatives of these rates vary
as −1/τ (i.e., that dNe/dτ ∝ − log τ ) suggests a fit of the
form Ne(τ ) = A0 +A1τ −A2τ log τ to the cumulative distri-
butions, where the Ai are coefficients derived in the fitting
process. Best-fit curves of this form are also plotted in Fig.
7d (dashed lines). Clearly these are excellent matches to the
observed cumulative distributions, indicating that the rates
of single and binary BH escape do indeed both have time
derivatives which vary as −1/τ .

The BH escape rates decrease with time because the
density of the central BH subsystem is also decreasing with
time – this is evident from Fig. 7c, which shows that the in-
ner BH Lagrangian radii follow a generally increasing trend
throughout the majority of the simulation. The typical num-
ber of BHs in the central subsystem falls with time be-
cause of BH ejections (Fig. 7b), and these ejections also
heat the BH core. Simultaneously, the stellar component of
the cluster is becoming more extended, meaning that the
gravitational potential at the centre of the cluster due to
this component is becoming increasingly shallow. Together
these processes lead to the density of the central BH sub-
system decreasing, on average, with time. The mean BH-BH
encounter rate also therefore decreases with time, meaning
that the BH binary hardening rate decreases, as does the
BH ejection rate, as observed.

The decreasing BH binary hardening rate also means
that the BH scattering rate decreases with time. Together
with the slowing BH ejection rate, this means that the stel-
lar core is also less efficiently heated with time. This is re-
flected in the roughly logarithmic dependence of rc on τ . Be-
cause the BH scattering and ejection rates decrease through-
out the lifetime of Run 2, by the end of the simulation at
τmax = 10.67 Gyr, there is still a sizeable population of
65 single BHs and 2 binary BHs remaining in the cluster.
This contrasts strongly with the results from early, more
analytic, studies of the evolution of BH subsystems in glob-

Figure 10. Separations and eccentricities of the ejected BH bi-
naries in Run 2 as a function of cluster age. Eccentricity is repre-
sented by point style: BH binaries with e 6 0.8 are asterisks, those
with 0.8 < e 6 0.95 are open circles, while those with e > 0.95
are filled circles. The asterisk marked with ‘Tr’ is the innermost
binary in the one ejected triple BH system (see text).

ular clusters, which predicted depletion of any BH popu-
lations on timescales much less than the cluster lifetimes
(Kulkarni, Hut & McMillan 1993; Sigurdsson & Hernquist
1993). The fact that the BH encounter rate decreases due
to the interplay between the stellar component of the clus-
ter and the BH population, as seen in our detailed numerical
modelling, prolongs the life of the BH subsystem in a massive
star cluster for much longer than previously appreciated.

The properties of the ejected BH binaries in Run 2 com-
plete the picture of BH evolution in this model. Over the
course of the simulation, 15 BH binaries are ejected. Their
separations (ab) and eccentricities (e) are displayed in Fig.
10 as a function of cluster age. The hardest binaries are
clearly ejected at the earliest times. This is when the cluster
escape velocity (vesc) is largest – that is, when the binaries
can be hardened to the greatest extent before the recoil ve-
locity imparted during close interactions ejects them from
the cluster. Typical separations are ab ≈ 4 − 6 AU for bi-
naries ejected when τ < 2.5 Gyr. As the cluster expands
and loses mass, vesc decreases and BH binaries are ejected
before becoming this hard. For τ > 5 Gyr, ab is typically
10 − 30 AU. There is no strong pattern in eccentricities of
ejected BH binaries – there are six with e 6 0.8, seven with
0.8 < e 6 0.95, and only two with e > 0.95. The maxi-
mum eccentricity of an ejected binary is e = 0.972. The BHs
which are members of ejected binaries have a mean mass of
10.98 M⊙. This is more massive than the overall mean for
BHs in Run 2, which have masses distributed uniformly in
the range 8 6 mBH 6 12 M⊙.

In addition to the 15 BH binaries, one triple BH system
is ejected from Run 2, at τ ≈ 4100 Myr. This consists of a
tight low-eccentricity binary (ab = 8 AU, e = 0.376) with a
single BH bound in a wider low-eccentricity orbit (ab = 149
AU, e = 0.370).

Previous studies have demonstrated that binary BHs
ejected from massive star clusters can have orbital prop-
erties that would lead them to coalesce within a Hub-
ble time due to the emission of gravitational radiation
(see e.g., Portegies Zwart & McMillan 2000). Such objects
may therefore be possible candidates for detection by
gravitational wave experiments. An approximate formula
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for the time-scale for a BH binary to coalesce due to
the emission of gravitational radiation is given by (e.g.,
Portegies Zwart & McMillan 2000):

Tcoal ≈ 3.2 × 108
(

M⊙

mBH

)3 ( ab

AU

)4
(

1 − e2
) 7

2 Gyr. (7)

It is easy to show that none of the ejected BH binaries in
Run 2 would merge within a meaningful time-scale (here
we adopt ∼ 12 Gyr, which is the approximate age of the
Universe minus the delay of ∼ 1.5 Gyr before the first BH
binary ejections occur in Run 2). The most tightly bound
ejected binary has ab = 4.2 AU and e = 0.839, while the
most eccentric ejected binary has ab = 8.2 AU and e =
0.972. Even so, the orbital parameters of these objects are
not vastly different from those which would lead to merging
events on an interesting time-scale. For example, the binary
with e = 0.972 would need ab = 1.06 AU to merge in 12
Gyr, while that with ab = 4.2 AU would need e = 0.994. We
consider this topic further in Sections 4.2 and 5.

Recent large-scale N-body simulations have demon-
strated comprehensively that when an intermediate-
mass black hole (IMBH; mass ∼ a few×103M⊙) is
present in a massive star cluster, a central stellar den-
sity and velocity cusp develops about this object (e.g.,
Baumgardt, Makino & Ebisuzaki 2004a,b). It is natural to
ask whether a similar cusp develops in Run 2, where a com-
parable BH mass is concentrated in the cluster centre, but
in the form of many relatively small objects rather than one
massive object.

Fig. 11 summarises the structural and dynamical state
of the stellar component of Run 2 at two output times: τ = 5
Gyr and τ = 10 Gyr. These are late enough that any cusp
should have had sufficient time to form (see e.g., the time-
scales in Baumgardt et al. 2004a,b). The top panels in Fig.
11 show the 3-dimensional radial mass density profile of the
cluster at the two output times (solid circles). All luminous
matter in the cluster was counted in each profile (i.e., BHs
were excluded). The radial bins contain 50 stars for radii
closest to the cluster centre, graduating to 100 stars, then
500 and 1000 stars at increasingly large radii.

For comparative purposes, we have also plotted depro-
jected EFF models in these panels. These models are of the
form of Eq. A2. In calculating them, we used the values of
µ0, a, and γ observed from the projected brightness pro-
file at the appropriate time, as described in Section 3. The
maximum radial extent of the projected brightness profiles
is marked in Fig. 11 by vertical dotted lines. Agreement be-
tween the models and data is not necessarily expected be-
yond these radii; in addition, tidal effects become important
at the largest radii. For convenience (see below), we took γ
in the deprojected models to be the closest integer value to
that observed – that is, γ = 4 at τ = 5 Gyr, and γ = 6
at τ = 10 Gyr. In each deprojected EFF model, the central
surface luminosity density, µ0, was converted to the volume
luminosity density j0 via Eq. A2. For example, at τ = 5 Gyr,
we measured µ0 = 0.55 mag pc−2 = 51.05 L⊙ pc−2, which
corresponds to j0 = 4.59 L⊙ pc−3. To obtain a mass density
from this value requires multiplication by a global mass-to-
light ratio appropriate for the age and metal abundance of
the cluster. We determined this empirically by fitting the
deprojected EFF model to the measured data. The result-
ing mass-to-light ratios (M/L = 1.33 at τ = 5 Gyr, and

Figure 11. Radial mass density profiles and 1D velocity disper-
sion profiles for Run 2 (upper and lower panels, respectively) at
cluster ages of 5 Gyr and 10 Gyr (left and right panels, respec-
tively). In all panels, data from the simulation are marked with
solid black circles. Only stars were used to derive these measure-

ments – BHs were excluded. In the upper panels, the solid line
indicates a deprojected EFF model fit using parameters set by
those observed from the simulation at the appropriate output
time. The vertical dotted lines indicate the maximum radius used
in the construction of projected brightness profiles when obtain-
ing these observations (see Section 3). In each lower panel, the
dashed line represents the velocity dispersion profile predicted by
the EFF model plotted in the matching upper panel, while the
solid lines represent the same models with rescaled central densi-
ties to fit the data (see text).

M/L = 2.01 at τ = 10 Gyr) are a good match for those cal-
culated by directly summing the mass and luminosity of all
stars in the cluster, excluding BHs (M/L = 1.35 at τ = 5
Gyr, and M/L = 2.10 at τ = 10 Gyr). We note that the
assumption of a globally constant mass-to-light ratio is a
reasonable approximation for Run 2 at these late times due
to the relatively low degree of mass segregation amongst the
stellar component of this cluster.

It is clear from Fig. 11 that no significant cusps are
present in the cluster’s stellar density profile at either time.
At the most, it is possible that very marginal cusps exist,
since the density profiles rise slightly above the EFF models
(which have constant density cores) at the innermost few
data points; however the significance of this “density excess”
is very low. Certainly, striking cusps of the form of those
observed by Baumgardt et al. (2004a,b) to develop about
central IMBHs in clusters are not present.

In the lower panels of Fig. 11, we plot the 1D stellar
velocity dispersion as a function of radius at the two output
times. The same radial bins as in the density profiles were
used. Again, although the central regions of these profiles
show some point-to-point scatter, there is no evidence at
either time of a significant central velocity cusp analogous
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to the type observed by Baumgardt et al. (2004a,b) when
an IMBH is present.

It seems likely that the absence of a stellar density and
velocity cusp about the central BH subsystem in Run 2 is
due to the fact that scattered and ejected BHs are constantly
moving through the region where a cusp would be expected
to develop. This region is hence constantly being disturbed
so that stars cannot settle into a stable distribution about
the central concentrated mass as they can when only a single
high-mass object is present. Such a process is similar to the
destruction of cusps in galactic nuclei by supermassive black
holes; except in that case a single very massive binary BH
typically does the damage (e.g., Merritt & Cruz 2001).

Since there is no evidence from the 3D radial profiles
for any large central density or velocity cusps, the projected
profiles which it is possible to observe for real clusters will
certainly show no evidence for any cusps. This is supported
by the surface brightness profiles calculated at each output
time in Run 2 to measure rc and γ, which exhibit constant
density cores as observed for the majority of LMC and SMC
clusters (Mackey & Gilmore 2003a,b).

Is there therefore another means by which we might in-
fer observationally the presence of the significant central BH
population in Run 2? The lower panels in Fig. 11, together
with Fig. 12 sketch the principles of one potentially viable
method. In each of the lower panels in Fig. 11, we plot the
stellar velocity dispersion profile predicted by taking the pa-
rameters (ρ0, a, γ) from the nicely-fitting deprojected EFF
density model marked in the respective top panel. Since we
chose integer values of γ, the predicted velocity dispersion
profiles are analytic, and easily computed. That for γ = 6
is given by Eq. A14, while the γ = 4 case is the well known
Plummer sphere:

σ2(r) =
2πGρ0a

2

9

√

1 + r2

a2

. (8)

The resulting velocity dispersion profiles are plotted with
dashed lines in the lower panels of Fig. 11. Clearly they are
a very poor fit to the measured profiles. However, simply
rescaling the central density ρ0 so that the central veloc-
ity dispersion predicted by the deprojected EFF model is
consistent with the innermost measured data points results
in rather nice fits (solid lines), at least out to large radii
where the external tidal field begins to affect the stellar dy-
namics. The required central densities at 5 and 10 Gyr are,
respectively, ≈ 3.4 and ≈ 2.1 times those determined from
the density profiles in the upper panels. This clearly implies
that unseen matter (i.e., the BH population) is influencing
the stellar dynamics in the cluster. By measuring the veloc-
ities of stars in an extended cluster, we might therefore be
able to infer the presence of a retained BH population.

Such measurements are difficult. Apart from any tech-
nical intricacies, we are limited to working in projection and,
with present technology, to using line-of-sight velocities only.
The left panel of Fig. 12 shows the dispersion in the line-
of-sight velocities in Run 2 at τ = 5 Gyr as a function of
projected radius. As previously, all luminous matter in the
cluster was counted in the profile, but BHs were excluded.
The radial bins contain 50 stars for radii closest to the clus-
ter centre, graduating to 100 stars, then 500 and 1000 stars
at increasingly large projected radii. Wilkinson et al. (2002)

Figure 12. Dispersion in the line-of-sight velocities in Run 2 at
τ = 5 Gyr, as a function of projected radius. In the left panel, data
from the simulation are marked with solid black circles. Only stars

were used to derive these measurements – BHs were excluded.
The dashed line represents the dispersion profile predicted by a
Plummer sphere with central density taken from the profile in
the upper left panel of Fig. 11. The solid line represents the same
model with a rescaled central density (see text). In the right panel
dispersion profiles from two stellar sub-samples are plotted: solid
dots are for a sample of 1000 upper main sequence stars, and
crosses are for a sample of 150 red giant branch stars. The two
models from the left-hand panel are also marked.

provide an expression for σlos(rp) in a Plummer sphere (their
Eq. 27 and 28). In the simplest case of an isotropic mass-
follows-light model their expression reduces to:

σ2
los(rp) =

π2Gρ0a
2
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√

1 +
r2

p

a2

, (9)

which has the same functional form as σ2(r), but a slightly
smaller central value: σ2

los(0) ≈ 0.88σ2(0). This suggests that
the dynamical signature we observed from the lower panels
of Fig. 11 should still be visible in projection, and indeed
we find this to be the case. In the left panel of Fig. 12 we
fit a model of the form Eq. 9 to the data (solid line), again
leaving ρ0 as a free parameter. In this case we find ρ0 =
19.5M⊙, which is very similar to the value required to fit the
deprojected velocity data, but very different from the value
implied from the radial density profile. We also computed
a model using this latter value (ρ0 = 6.1M⊙); this is the
dashed line in the left panel of Fig. 12.

The difference between the two models is sufficiently
large that it may be detectable in clusters using presently
available technology. In the right panel of Fig. 12 we plot
σ2

los(rp) determined using two samples of stars randomly se-
lected from Run 2. The first is a sample of 1000 upper main
sequence stars grouped into six bins of 125 stars, while the
second is a sample of 150 red giant branch stars grouped into
five bins of 30 stars. Both samples clearly favour the model
with the larger mass-to-light ratio. The red-giant sample
is of a size which could feasibly be measured by a modern
multi-object spectrograph such as VLT/FLAMES, although
it must be borne in mind that the typical measurement er-
rors in radial velocities observed with such a facility will
be at least comparable in magnitude to the dispersion in a
diffuse cluster (∼ 1 − 2 kms−1) – a sophisticated analysis
would be required to properly account for these.

While somewhat crude, our results demonstrate that
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in a cluster such as that modelled in Run 2, where there
is a relatively large BH population present, the stellar dy-

namics should imply the presence of significantly more mass

than is evident from observations of the luminous compo-

nent of the cluster. This arms us with a means of searching,
albeit indirectly, for BH populations in massive LMC and
SMC star clusters. Even so, we expect such observations to
be extremely challenging due to the small velocity disper-
sions involved, the necessity of working in projection, and
the general sparsity (in terms of numbers of bright stars) of
the extended clusters observed in the Magellanic Clouds.

4.2 Runs 3 and 4: Strong mass segregation

We next consider the pair of simulations labelled Run 3 and
Run 4. These are both strongly primordially mass segregated
clusters, created as described in Section 2.2 using a pre-
evolution duration of TMS = 450 Myr. This duration was
selected so that Runs 3 and 4 possess initial properties very
similar to those observed for the very young, compact cluster
R136 in the 30 Doradus complex in the LMC (see below).

Like Runs 1 and 2, Runs 3 and 4 start with identical
initial conditions, to the extent that they share the same
random seed. Once again, the sole difference between them
is that in Run 3 the natal BH kicks are set to be vkick ≈ 200
kms−1, whereas in Run 4 they are set to be zero – this
results in fBH = 0 and fBH = 1, respectively.

The primary aim of Runs 3 and 4 is to try and follow
the evolution of models which look more similar to the very
youngest (τ . 20 Myr) massive LMC and SMC clusters than
do Runs 1 and 2. In particular, as discussed in Section 2.2, a
number of very young Magellanic Cloud clusters have been
observed to be mass segregated to some degree. However,
significant mass segregation does not develop in Runs 1 and
2 until τ ∼ 100 Myr or so. In addition, the projected bright-
ness profiles of Runs 1 and 2 (and particularly the structural
parameters rc and γ) do not resemble observed young LMC
and SMC clusters until τ ≈ 20 Myr (e.g., Fig. 5). These
differences mean that the observed early evolution of Runs
1 and 2 may not accurately reflect the processes occurring
in the youngest massive Magellanic Cloud clusters.

Furthermore, in Run 2 we found that the BH population
did not influence the structural evolution of the cluster until
after the formation of the first BH binaries in the core at τ ≈
510 Myr. Since Fig. 1 shows that there is clearly evolution
in the observed radius-age trend on time-scales shorter than
this, it is important to examine whether it is possible for the
BH population to become dynamically active earlier than
seen in Run 2. One might naively expect this to occur if BHs
are formed preferentially at the centre of a cluster, such as
they would be in a primordially mass segregated object.

It is important to first assess the suitability of the initial
conditions we constructed for Runs 3 and 4 before moving
on to an examination of the evolution of these Runs. One
simple but useful indication is provided by the observed ini-
tial structural parameters rc, γ, and ρ0. The measured val-
ues for Runs 3 and 4 are listed in Table 1. As described
previously, these quantities are an excellent match for those
determined for R136; see also Fig. 3. We note however, that
R136 is nearly an order of magnitude more massive than our
N-body models. Scaling issues are discussed in Section 5.

One of the major differences between Runs 3 and 4 and

Figure 13. Early evolution of the central density ρ0 for Run 1
and Run 3. Run 1 has no primordial mass segregation while Run
3 is strongly primordially segregated. Run 3 appears very similar
to R136 at early times; however by a few tens of Myr its central
density has decreased significantly and is a good match to LMC
and SMC clusters of this age. Run 1 starts with a much lower
central density, which it maintains throughout its early evolution.
Together these two models span the observed density ranges for
the youngest LMC and SMC objects.

Runs 1 and 2 is that the former have very much larger cen-
tral densities than the latter. This is simply due to the strong
central concentration of the most massive stars in Runs 3
and 4 as a result of the initial mass segregation. It is enlight-
ening to examine the early evolution of the central densities
in these differing models – this evolution is plotted for Runs
1 and 3 in Fig. 13. At the start of the simulation, the density
of Run 3 is directly comparable to that of R136; however,
as the early phase of severe mass loss due to stellar evo-
lution begins, the central density drops rapidly so that by
∼ 10 Myr it matches the densities observed for other young
LMC and SMC clusters. This rapid drop in central density
implies that the central regions of the cluster expand dur-
ing this early period of evolution, and indeed this is what is
observed (see below). In comparison, the initial central den-
sity of Run 1 is much lower than that of R136, and does not
change much as the rapid early stellar evolution progresses.
This is consistent with the fact that Run 1 shows little or no
central expansion during this phase. Together, Runs 1 and 3
span the range of central densities observed for the youngest
LMC and SMC clusters – we are therefore confident of the
applicability of our models in this regard.

It is also possible to assess how well the primordial mass
segregation generated in Runs 3 and 4 matches that ob-
served in genuine young Magellanic Cloud clusters. We do
this by performing simulated observations of the radial vari-
ation of the stellar mass function (MF) in the models, and
comparing the results to those determined from the detailed
observational studies of Hunter et al. (1995, 1996) for R136
(∼ 3 Myr old); that of de Grijs et al. (2002a) for NGC 1805
(∼ 10 Myr old) and NGC 1818 (∼ 20 Myr old); and that of
Sirianni et al. (2002) for NGC 330 (∼ 30 Myr old).

In performing the simulated observations, we follow the
individual cluster studies as closely as possible. That is, we
use the same projected radial bin widths and the same stel-
lar detection limits within each such bin as were used in
the original observational study. This ensures that our mea-
surements are closely comparable to those obtained in each.
Consider, for example, the work of Sirianni et al. (2002).
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Figure 14. Mass and luminosity function slopes as a function of projected radius for various young massive LMC and SMC clusters,
compared with results from simulated observations of N-body Run 3. The plots have been reproduced to match those presented for each
cluster by the original authors. Left: Mass function slope Γ as a function of projected radius in R136 in the LMC from Hunter et al.
(1995, 1996), compared with Run 3 at age 3 Myr. Centre: Luminosity function slopes β as a function of projected radius for NGC
1805 and NGC 1818 in the LMC from de Grijs et al. (2002a), compared with Run 3 at age 15 Myr. Right: Mass function slope Γ as
a function of projected radius in NGC 330 in the SMC from Sirianni et al. (2002), compared with Run 3 at age 30 Myr.

These authors used five annuli of 5′′ width to span the range
0 − 25′′ in projected radius in their study of NGC 330, fol-
lowed by ten annuli of 10′′ width to span the range 25−125′′

in projected radius. Ultimately, however, they decided to
employ a maximum projected radius of 95′′ for their MF
calculations, due to a significant contaminating population
of field stars. Within their radial bins, the stellar mass lim-
its used to calculate the MF were from the top of the main
sequence in this cluster (∼ 7 M⊙) to the 50 per cent com-
pleteness level – at ∼ 1.3 M⊙ in the cluster centre, decreas-
ing to ∼ 0.8 M⊙ at a projected radius of 25′′ and beyond.
When measuring our model cluster for a comparison with
the results of Sirianni et al. (2002), we took the data from
the output time nearest to 30 Myr, projected the positions
of all stars onto a plane, converted the projected radial scale
from parsecs to arcseconds by applying the SMC distance
modulus of 18.85 assumed by Sirianni et al. (2002), and then
applied exactly the same bin widths and mass limits per bin
as Sirianni et al. (2002) to obtain the stellar samples for MF
fitting. Sirianni et al. (2002) corrected their star counts for
completeness variations, so we assumed 100 per cent com-
pleteness in each radial bin. At our chosen output time, the
core radius and central density of our model are within ∼ 15
per cent of the values measured for NGC 330 (see Figs. 13
and 15), so the bins are sampling equivalent regions in the
cluster.

The results of our simulated observations may be seen
in Fig. 14, along with the original measurements for R136,
NGC 1805 and 1818, and NGC 330. For R136 and NGC
330, the mass functions are represented by ζ(m), which is
the number of stars per logarithmic mass interval, as op-
posed to the mass function ξ(m) defined in Section 2.1. If
the mass function ξ(m) has a power-law exponent −αi, then
the mass function ζ(m) will have exponent Γi = −αi + 1.
In the case of NGC 1805 and 1818, we calculate and fit lu-
minosity functions (LFs) rather than MFs, so as to match
the work of de Grijs et al. (2002a). The assumed form of
the LFs, defined here as the number of stars per logarithmic
luminosity bin, is a power law of slope β.

From Fig. 14 it is clear that the results obtained via our
simulated observations of Run 3 are generally an excellent
match for those measured for the real LMC and SMC clus-
ters. The greatest differences occur for the innermost radial
bin of R136, and the outermost radial bins of NGC 330. The
former discrepancy suggests that the very centre of Run 3
(within ∼ 0.1 pc) may initially be somewhat more mass seg-
regated than R136, although we note that the rest of our
measurements are highly consistent with the real observa-
tions of R136, and that the region taken by Hunter et al.
(1996) to obtain their measurement at the innermost radius
is extremely crowded with bright stars. The latter discrep-
ancy may be related to the necessity for significant field
star decontamination in the outermost regions of NGC 330
by Sirianni et al. (2002) – again, we note that the majority
our measurements of Run 3 are in excellent agreement with
those obtained by these authors for NGC 330.

Overall, these results are strongly suggestive that the
initial conditions we constructed for Runs 3 and 4, and in
particular of the algorithm we developed to generate the
primordial mass segregation in these models, are valid. We
note however, that we are not able to place any similar ob-
servational constraints on the initial velocity distributions
in these models. As an aside, it is extremely interesting to
observe the progression of the radial mass/luminosity func-
tion profile of Run 3 from age τ = 3 Myr to 30 Myr, in
comparison with the profiles observed for four genuine LMC
and SMC clusters. While there has previously been noth-
ing to link the measurements of these four objects, the early
evolution of Run 3 clearly demonstrates that a cluster which
initially possesses a core radius, central density and radial
MF profile very similar to that of R136 can evolve to look
very much like NGC 1805 and NGC 1818 after 15 Myr and
then further to look like NGC 330 after another 15 Myr,
simply via internal cluster dynamical processes under the
influence of rapid mass loss due to stellar evolution.

In Fig. 15, we show the evolution of Runs 3 and 4 across
the radius-age and γ-age planes. Unlike Runs 1 and 2, both
Runs 3 and 4 exhibit dramatic core expansion right from the
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Figure 15. Structural evolution of N-body Runs 3 and 4. Both possess significant primordial mass segregation; the only difference
between them is the BH retention fraction (fBH = 0 and 1, respectively). Left panel: Evolution of rc, observed as described in Section
3. Both models experience significant expansion over the first ∼ 200 Myr of evolution, due to the early phase of severe mass loss due to
stellar evolution. This is in contrast to Runs 1 and 2, where the mass loss was spread throughout the cluster rather than being centrally
concentrated. Subsequently, Run 3 begins to relax dynamically and slowly contracts, whereas the BH population retained in Run 4
becomes dynamically active, leading to further core expansion in this model. By τmax = 10 Gyr, the core radius for Run 4 has moved
off the top of the plot, to rc ≈ 11 pc. Right panel: Evolution of the power-law fall-off, γ, again observed as described in Section 3.
Both models develop increasingly steep γ values as they evolve; however, that for Run 3 reaches a plateau once the core expansion in
this model ceases. In contrast, Run 4 develops a very steep fall-off in its outer regions.

beginning of their evolution. This is in response to the early
phase of severe mass-loss due to stellar evolution, which in
Runs 3 and 4 is highly centrally concentrated because of
the primordial mass segregation. Fig. 16 shows the radial
distributions of all supernovae in Runs 1 and 3 – the more
centralized location of these events in Run 3 compared with
Run 1 is clearly evident. The central concentration of the
mass-loss, together with the high central density in Runs
3 and 4, means that the amount of heating per unit mass
lost is maximised in these models, hence leading to the ob-
served dramatic core expansion. This core expansion is at
least partly responsible for the rapid decrease in the central
density of Run 3 which we noted in Fig. 13 (the demise of the
most massive cluster stars also contributes to this decrease).

It is interesting that Runs 3 and 4 do not undergo
an early core collapse despite their high central densities.
Early core collapse in a massive cluster may lead to a run-
away merger event, which is one possible formation chan-
nel for a central intermediate-mass black hole (IMBH) (e.g.,
Portegies Zwart & McMillan 2002; Portegies Zwart et al.
2004). Previous work has demonstrated that clusters with
a very short initial median relaxation time are susceptible
to early collapse – Portegies Zwart & McMillan (2002) sug-
gest trh < 25 Myr. It is not clear whether a similar thresh-
old is applicable to our primordially mass segregated models.
These have very much longer initial median relaxation times
(trh ≈ 1.2 Gyr), but rather short central relaxation times
(tr0 ≈ 9 Myr). It is possible that expansion of the clus-
ter core due to mass-loss from rapid stellar evolution acts
against the tendency of the core to collapse more strongly

in our models than in previous models, due to the initial
preferentially central location of many massive stars.

By τ ≈ 100 Myr the rate of mass-loss from stellar evo-
lution has significantly decreased, and by τ ≈ 200 Myr the
core expansion in Runs 3 and 4 has largely stalled. Even
though both models initially contain identical stellar popu-
lations, Run 3 loses more mass up to this point than does
Run 4, because the 198 BHs in Run 3 escape from the clus-
ter immediately after formation, whereas those in Run 4 are
retained. This difference is reflected in the larger degree of
early core expansion observed in Run 3 compared to Run 4.
Up until an age of roughly a few hundred Myr, Run 3 closely
traces the observed upper envelope of the radius-age trend.

In both models, the early mass-loss and core expan-
sion is accompanied by a significant steepening in the outer
power-law fall-off. This is again in contrast to the evolution
observed for Runs 1 and 2 during the early mass-loss phase,
where γ remains essentially constant. Similarly to the core-
radius evolution in Runs 3 and 4, the steepening of γ stalls
beyond τ ≈ 100 Myr in these models, once the rate of mass-
loss has decreased. Furthermore, the evolution of γ up to
this point is slightly different in the two models, due to the
retention of BHs in Run 4 and their expulsion in Run 3.

Thereafter, Runs 3 and 4 begin to evolve quite differ-
ently. Run 3 progresses in exactly the fashion of Run 1
– the cluster settles into a quasi-equilibrium state where
the dynamical evolution is dominated by two-body relax-
ation processes, leading to the gradual development of mass
stratification. Because Run 3 is far less dense than Run 1
by this stage, its relaxation time-scale is much longer. By
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Figure 16. Radial distributions of supernova explosions in Run
1 (solid line) and Run 3 (dashed line). All supernova explosions
in both models have occurred by τ ≈ 50 Myr. The significantly
greater central concentration of the mass loss in Run 3 compared
to Run 1 is quite evident.

τmax = 10.27 Gyr, only 3.1 integrated median relaxation
times have elapsed in this model, compared with 4.7 median
relaxation times in Run 1 at the same age. Hence, while Run
3 is evolving towards core collapse when the simulation is
terminated, we would expect it to enter this phase at a much
older age than observed for Run 1.

In contrast, at τ ≈ 750 Myr, core expansion resumes in
Run 4. This continues until the end of the simulation, which
is terminated at τmax = 10.0 Gyr. By this time, the core
radius of Run 4 has evolved off the top of Fig. 15, to reach
almost 11 pc. This is roughly comparable in size to the core
radii observed for the most extended old Magellanic Cloud
clusters, such as Reticulum in the LMC and Lindsay 1 in
the SMC (Mackey et al. 2007, in prep.).

The second, prolonged, period of core expansion in Run
4 is due to the dynamical activity of its retained BH pop-
ulation. The evolution of this BH subsystem, illustrated in
Fig. 17, is qualitatively identical to that which we observed
in Run 2. The BHs, once formed, sink via dynamical friction
and begin to accumulate at the centre of the cluster (panels
b and c). The density of this central BH subsystem increases
until it becomes sufficiently high as to initiate the creation
of stable BH binaries in three-body interactions (panel a).
The first such object is formed in Run 4 at ∼ 570 Myr. Sub-
sequently, these binaries undergo superelastic collisions with
other BHs in the cluster centre, which leads to the harden-
ing of the binaries, the scattering of BHs beyond rc, and the
ejection of BHs (panels d and e). These processes in turn
result in the observed long-term core expansion.

One intriguing aspect of the evolution of the BH subsys-
tem in Run 4 is that even though this cluster was strongly
primordially mass segregated, so that the majority of the
BHs were created in its very inner regions (cf. Fig. 16), the
first BH binary does not form until a similar time as that
in the non-segregated Run 2. From Fig. 17, it is also clear
that the peak central BH density occurs at a similar time
as it does in Run 2. Fig. 18 shows an expanded view of
the early evolution of the BH Lagrangian radii in Run 4,
with those for Run 2 plotted for comparison. As expected,
the majority of BHs are formed near the centre of the clus-
ter – the BH Lagrangian radii are initially much smaller
than in Run 2. However, unlike Run 2, Run 4 suffers signif-

Figure 17. Properties of the BH population in Run 4 as a func-
tion of time: (a) the number of single BHs (upper line) and binary
BHs (lower line) in the cluster; (b) the number of BHs within
the shells encompassed by the stellar Lagrangian radii r 6 R1%,
R1% < r 6 R5%, and r > R10% (the uppermost to lowermost
lines, respectively, at the right of the plot); (c) the black hole 10%,
25%, 50% and 75% Lagrangian radii (respectively, the innermost
to outermost lines); (d) the cumulative numbers of escaped single
BHs (upper line) and binary BHs (lower line), along with fits of
the form Ne = A0 + A1τ − A2τ log τ (dashed lines) and the cu-
mulative numbers of escaped single and binary BHs measured for
Run 2 (dotted lines); and (e) the radial positions of three typical
BHs. The vertical dotted line indicates τ = 750 Myr, the approx-
imate time when core expansion due to BH activity begins. The
evolution of rc is plotted (dot-dashed line) in panel (e). Note the
different axis scales on either side of panels (a) and (d).

icant early core expansion due to the rapid stellar evolution
phase. The BH subsystem does not escape this – the early
centrally concentrated mass-loss is severe enough that the
resulting expansion overcomes the natural tendency of the
BHs to sink to the cluster core. This is reflected in the swift
outward movement of the BH Lagrangian radii in Run 4, un-
til the mass-loss phase is mostly complete around τ ≈ 100
Myr. Subsequently, the BHs do begin to sink to the cluster
centre via dynamical friction, and the evolution of the BH
Lagrangian radii in Run 4 closely follows that in Run 2.
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Figure 18. Evolution of the 10%, 25% and 50% BH Lagrangian
radii in Run 4 (solid lines). The evolution of the same radii in Run
2 are plotted for comparison (dotted lines). This plot clearly shows
that the BH subsystem in Run 4 expands at early times along with
the rest of the core, in response to the rapid mass-loss from stellar
evolution which is occurring. Once this phase is mostly complete
(τ ≈ 100 Myr), the evolution of the BH subsystem is very similar
to that in Run 2.

This result suggests that, contrary to expectations, the
BH population in a primordially mass segregated or cen-
trally concentrated cluster does not become dynamically
active at significantly earlier times than does an identical
population in a non-segregated cluster. In turn, this implies
that the evolution in the radius-age trend observed on time-
scales shorter than ≈ 500 Myr is not due to the influence of
a BH population, unless such populations are comprised of
BHs with masses significantly in excess of 10M⊙. Instead,
the early evolution of the radius-age trend most probably
reflects centrally concentrated mass-loss in dense clusters
due to rapid stellar evolution. Never the less, Runs 3 and
4 clearly demonstrate that this process cannot alone propel
clusters to the upper right corner of Fig. 1, since it oper-
ates on a time-scale which is much too short. Our N-body
models which possess core radii larger than ∼ 6 pc after a
Hubble time of evolution do so only because they have ex-
perienced prolonged core expansion due to the activity of a
retained BHs, irrespective of whether they also experienced
core expansion at ages τ . 100 Myr.

As with Run 2, by τmax = 10.0 Gyr there is still a
significant BH population remaining in Run 4: 95 single BHs
and 2 binary BHs. In fact, this population is rather larger
than that in Run 2 at the same age. From Fig. 17d, it is clear
that, while the cumulative numbers of escaped single and
binary BHs in Run 4 follow the same functional dependence
on age as in Run 2, they are, at all times, smaller than those
in Run 2. That is, the rates of escape of BHs are always
somewhat lower in Run 4 than they are in Run 2.

We attribute this variation to the different overall struc-
tures of Runs 2 and 4 when their respective BH populations
become dynamically active. In Run 2 the core radius and
central density remain nearly constant from the beginning
of the simulation until this point (cf. Figs. 5 and 13); in
contrast, Run 4 undergoes significant early core expansion.
By τ = 500 Myr, Run 4 is a considerably more diffuse clus-
ter than is Run 2. The shallower gravitational potential in
Run 4 affects the distribution of the BHs within this cluster
(cf. Fig. 17c and Fig. 7c). This leads to a slower interaction

Figure 19. Separations and eccentricities of the ejected BH bi-
naries in Run 4 as a function of cluster age. Eccentricity is repre-
sented by point style: BH binaries with e 6 0.8 are asterisks, those
with 0.8 < e 6 0.95 are open circles, while those with e > 0.95 are
filled circles. The ejected BH binaries from Run 2 are plotted for
comparison (small crosses). The arrow marks the ejection time of
one additional Run 4 BH binary, which has separation ab = 56.4
AU and eccentricity e = 0.609.

rate between BHs in Run 4 than in Run 2, and hence the
observed lower BH escape rates. The same effect is primar-
ily responsible for the BH escape rate in a model cluster
decreasing as the core radius increases (see Section 4.1), al-
though in that case the decreasing size of the BH population
contributes in addition.

The more diffuse nature of Run 4 also affects the prop-
erties of the ejected BH binaries in this simulation com-
pared with those in Run 2. In Run 4, there are 12 BH bi-
naries ejected over the course of the simulation. Their sepa-
rations and eccentricities are plotted in Fig. 19, along with
the ejected BH binaries from Run 2 for comparison. Because
Run 4 is always more diffuse than Run 2 at times when bi-
nary BHs exist, these objects are more easily ejected in Run
4 than in Run 2. Hence, the ejected BH binaries in Run 4 are
generally not as tightly bound as those in Run 2. This can
be seen in terms of the binary separations in Fig. 19, which
are typically larger for the ejected binaries in Run 4 than
for those in Run 2 at similar times. In addition, the ejected
BH binaries in Run 4 are typically less eccentric than those
in Run 2 – of the 12 ejected Run 4 BH binaries, only one
has e > 0.95, while there are three with 0.8 < e 6 0.95 and
eight with e 6 0.8. The maximum eccentricity of an ejected
binary is e = 0.981, while the minimum is e = 0.225. As in
Run 2, the members of ejected binaries are typically more
massive than the average mass for the full BH population –
the mean mass of members in escaping binaries in Run 4 is
11.20 M⊙. In Section 4.1, we showed that none of the ejected
BH binaries from Run 2 would merge due to the emission of
gravitational radiation within a Hubble time (Eq. 7). This
is also, unsurprisingly, the case in Run 4.

Fig. 20 shows the evolution of the ratio of core radius to
projected half-light radius, rc/rh,l, for Runs 3 and 4. Runs 1
and 2 are also plotted, for comparative purposes. The initial
value of rc/rh,l for Runs 3 and 4 is significantly smaller than
that for Runs 1 and 2, reflecting the primordial mass segre-
gation in these models. However, the early core expansion
in Runs 3 and 4 results in a rapid and significant increase in
rc/rh,l. Overall, Runs 3 and 4 better match the observed dis-
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Figure 20. Evolution of the ratio of core radius to projected
half-light radius rc/rh,l for N-body Runs 3 and 4, compared with
measurements for LMC and SMC clusters. The evolution of Runs
1 and 2 is also plotted, for comparative purposes.

tribution of young and intermediate-age Magellanic Cloud
clusters than do Runs 1 and 2. By the end of Run 3, rc/rh,l is
beginning to decrease as two-body relaxation begins to dom-
inate in this model; however, for the majority of this Run
rc/rh,l ∼ 0.7. This demonstrates that a large observed value
of rc/rh,l in a physically old star cluster need not reflect the
presence of a central massive body (such as an IMBH) or
a central accumulation of many less-massive bodies (such
as stellar-mass BHs), but rather may reflect the fact that
such a cluster is not very dynamically old. Run 4, which un-
dergoes prolonged core expansion due to its BH population,
finishes with rc/rh,l ∼ 0.8, matching Run 2 closely.

4.3 Runs 4a and 4b: Variable mass segregation

As described at the beginning of Section 4, our four primary
simulations cover the extremes of the parameter space we are
investigating (spanned by 0 6 fBH 6 1 and 0 6 TMS 6 450
Myr), and are therefore expected to represent the extremes
of cluster evolution induced by variation of these particu-
lar initial conditions. However, it is important to sample
intermediate values of both fBH and the degree of primor-
dial mass segregation to check that the parameter space is
well behaved and that the models evolve as we expect (i.e.,
intermediate between the extremes of Runs 1-4).

With this in mind, we completed two additional simula-
tions with fBH = 1, and degrees of primordial mass segrega-
tion spaced between that for Run 2 and that for Run 4. Be-
cause the initial conditions for these new models were taken
from two different output times during the pre-evolution of
Run 4, at TMS = 115 Myr and 225 Myr, we denote them as
Runs 4a and 4b, respectively. We only ran these models to
τmax ∼ 4.3 Gyr, as this was more than sufficient to observe
the progress of the clusters’ evolution.

The initial properties of Runs 4a and 4b are listed in
Table 1. As expected, the values of rc, γ, and ρ0 all lie be-
tween those of Runs 2 and 4. The longer the duration of the
pre-evolution, the smaller the initial value of rc, the higher
the initial value of ρ0, and the flatter the initial value of
γ. This latter, in particular, is expected due to the devel-
opment of a core-halo structure in a dynamically evolving
cluster (see e.g., Spitzer 1987).

The core radius evolution of Runs 4a and 4b is illus-

Figure 21. Core radius evolution of N-body Runs 4a and 4b,
with the evolution of Runs 2 and 4 plotted for comparison. Runs
4a and 4b, with pre-evolution durations of TMS = 115 Myr and
TMS = 225 Myr, possess primordial mass segregation of degrees
intermediate between those of Runs 2 and 4. This initial condition
is the only difference between each of the four plotted Runs – all
four form 198 BHs and have a BH retention fraction of fBH = 1.

trated in Fig. 21. Just as with Run 4, these two models
undergo two main stages of core expansion. The first, last-
ing until a little after ∼ 100 Myr, is in response to the early
rapid stellar evolution. The second, which begins around
τ ≈ 600 − 800 Myr is due to the influence of the retained
BH population. In between these two phases, there is a pe-
riod during which the core radius is roughly constant.

As expected, the core radius evolution seen for both
Runs 4a and 4b lies between the limits defined by Runs
2 and 4. The amount of early expansion apparently varies
directly with the degree of primordial mass segregation – the
more mass segregated a cluster, the larger the core expansion
seen at ages less than ∼ 100 Myr. From Fig. 15, for Runs
3 and 4, we saw that the amount of mass lost during the
early period of rapid stellar evolution also influences to some
extent the degree of the observed core expansion. However,
all four models in the present case were specifically designed
to possess identical populations of massive stars and retained
BHs, and all therefore lose essentially identical amounts of
mass due to stellar evolution at early times. The variation
in the core expansion observed during this phase in Fig.
21 therefore cannot be caused by differing amounts of mass-
loss and must solely be a result of the different initial cluster
structures. More centrally concentrated mass-loss, in a more
tightly-bound cluster core, clearly leads to a greater degree
of core expansion during the early period of a cluster’s life.

After the first stage of core expansion is complete in the
four model clusters, their core radii remain roughly constant
until the BH populations have accumulated at the cluster
centres and started to form BH binaries, after which point
the second phase of core expansion begins. From Fig. 21,
the rates of observed expansion in this second phase are
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Figure 22. Evolution of the 10%, 25% and 50% BH Lagrangian
radii in Runs 4a (upper panel, solid lines) and 4b (lower panel,
solid lines). The evolution of the same radii in Run 4 are plotted
for comparison in both panels (dotted lines). The BH subsystems
in Run 4a and 4b both expand at early times in response to the
rapid mass-loss from stellar evolution which is occurring, although
the expansion is greater in the more heavily mass segregated Run
4b. Once the early mass-loss phase is mostly complete (τ ≈ 100
Myr), the evolution of the BH subsystems are very similar to that
in Run 4 (and Run 2 – cf. Fig. 18).

approximately equivalent in all four clusters, so that the
tracks on the radius-age plane run close to parallel for the
remainder of the simulations.

Fig. 21 shows that the second stage of core expansion
begins at an approximately equivalent time in each of the
four models. We already noted this fact for Runs 2 and 4 in
Section 4.2 and concluded that in a primordially mass seg-
regated cluster the BH population does not become dynam-
ically active significantly earlier than in a non-segregated
cluster, because the strong expansion experienced by the
mass segregated cluster at early times affects the BH pop-
ulation sufficiently strongly to negate the natural tendency
of the BHs to sink to the cluster centre. In Fig. 22 we plot
the evolution of the BH Lagrangian radii in Runs 4a and
4b, with those for Run 4 plotted for comparison. It is clear
from this plot that even though the BHs tend to form closer
to the cluster centres in more primordially mass segregated
models, these models also suffer greater degrees of early ex-
pansion, hence delaying the central accumulation of BHs.
This results in very similar evolution of the BH Lagrangian
radii in Runs 2, 4, 4a, and 4b after the early rapid stel-
lar evolution phase is complete, and leads to the formation
of the first BH binaries at very similar ages – 510 Myr, 570
Myr, 540 Myr, and 460 Myr, in the four models respectively.
Given that this is by nature a stochastic process, the agree-
ment between these times for four models with such a wide
range of early structural evolution is quite close. This ob-
servation strengthens our earlier conclusion that primordial

mass segregation in a cluster does not lead to the earlier de-
velopment of a dynamically active BH subsystem compared
to a cluster which is not primordially mass segregated.

4.4 Run 5: Intermediate BH retention

Together with Runs 4a and 4b, we computed one additional
model possessing properties intermediate between those of
our four primary Runs. In this case, instead of intermediate
degrees of primordial mass segregation, we set up the sim-
ulation (labelled Run 5) so that fBH ≈ 0.5. Its initial con-
ditions were otherwise identical to to those in Runs 3 and 4
(i.e., strong primordial mass segregation set by TMS = 450
Myr). One aim of Run 5 is to check that, as should be ex-
pected, its core radius evolution lies between that observed
for Run 3 (where fBH = 0) and that observed for Run 4
(where fBH = 1). More importantly however, this model ex-
plores whether the extreme case that fBH ≈ 1 is necessary

for significant core expansion to occur, or if such expansion
can still develop in a system which loses a large fraction of
its BHs at formation. We set the duration of Run 5 to be
roughly a Hubble time (τmax = 10.06 Gyr) so that we could
observe the full long-term core evolution of this model.

To generate a retention fraction of roughly 50 per cent
in Run 5, we examined the formation of BHs in Run 4 with
the aim of determining a suitable distribution of natal kicks.
More specifically, we calculated the potential energy (UBH)
of each given BH at the moment of its formation in Run 4,
and estimated the escape velocity vesc =

√

−2UBH / mBH.
Under the assumption that the inherited kinetic energy of
the BH at formation (KBH) does not contribute to its ejec-
tion, this escape velocity corresponds to the minimum natal
kick required to remove the BH from the cluster. However,
this assumption is not always justified – for example, the
natal kick may be in the same direction as the inherited
motion of the BH, in which case the minimum required ve-
locity would be significantly smaller than the original esti-
mate, and closer to vesc =

√

−2(UBH + KBH) / mBH.
The two calculated distributions of BH escape velocities

in Run 4 may be seen in Fig. 23. The upper left panel is the
binned distribution neglecting the inherited kinetic energy
of the BH, while the upper right panel is the binned dis-
tribution under the assumption that the kick velocity is in
the same direction as the inherited velocity. The lower panel
shows the two distributions in cumulative form. The most
tightly bound BHs require natal kicks of order ≈ 12 kms−1

to escape the cluster, while the least tightly bound BHs re-
quire only tiny natal kicks to escape. Note from the upper
right panel that two BHs are unbound from the cluster at
their formation – this is a result of their progenitor stars
becoming unbound shortly before exploding as supernovae,
because of the recent rapid mass-loss occurring in the pro-
genitor star as well as the violent fluctuations occurring in
the cluster potential due to mass-loss from other stars.

For interest’s sake, we also calculated the same distri-
butions for Run 2, which, in contrast to Run 4, was not pri-
mordially mass segregated. The distributions for this model
are plotted in the lower panel of Fig. 23 as dashed lines. As
might be expected, BHs formed in the mass segregated Run
4 are significantly more tightly bound than are BHs formed
in the non-segregated Run 2. Hence, the initial structure of
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Figure 23. Calculated distributions of escape velocities at forma-
tion for all 198 BHs in Run 4. The upper left panel is the binned

distribution assuming vesc =
√

−2UBH / mBH, while the upper
right panel is the binned distribution if the inherited kinetic en-

ergy is also included so that vesc =
√

−2(UBH + KBH) / mBH.
The distributions may be interpreted as the minimum natal kicks
required to remove the respective BHs from Run 4 under the two
different assumptions listed above. The lower panel shows the two
distributions in cumulative form (solid lines, where the distribu-
tion including KBH is to the left of that where KBH is neglected).
Also marked are the equivalent distributions for Run 2, which has
no primordial mass segregation (dashed lines).

a cluster can have some effect on the retention fraction of
BHs. We discuss this issue in more detail in Section 5.

The distributions observed for Run 4 in Fig. 23 allowed
us to determine a suitable distribution of natal kicks in Run
5 in order to set fBH ≈ 0.5. We did this by noting that the
retention fraction fBH is approximately the mean probabil-
ity of retention calculated over the full BH subsystem – that
is, fBH ≈

∑

Pi(retain) / NBH where NBH is the number of
BHs in the subsystem and Pi(retain) is the probability that
the i-th BH will not be ejected by the natal kick it receives
at formation. For simplicity, we set the natal kicks in Run 5
to be selected randomly from a uniform distribution spread
between vkick = 0 kms−1 and vkick = vk,max kms−1. In this
case, for the i-th BH at formation the retention probability
is given by Pi(retain) = P (vkick,i < vesc,i) = vesc,i / vk,max

if vk,max > vesc,i, or unity otherwise. Assuming that vk,max

is larger than vesc,i for all BHs in the subsystem under con-
sideration, in order to obtain a given retention fraction we
require vk,max =

∑

vesc,i / (fBHNBH). For Run 5 we have
that NBH = 198, and require that fBH = 0.5, and we com-
pute the sum using the distributions displayed in Fig. 23.
We found that in this scenario vk,max = 17.5 kms−1, de-
termined by adopting the mean of the results for the two
measured distributions (i.e., with and without the inherited
BH kinetic energy). No physical meaning should be read into
our choice of a uniform kick distribution – we selected it here

Figure 24. Core radius evolution of N-body Run 5, with the
evolution of Runs 3 and 4 plotted for comparison. All three models
possess identical initial conditions, including strong primordial
mass segregation (TMS = 450 Myr) and the formation of 198 BHs.
The only difference between them is the BH retention fraction,
which is zero for Run 3, unity for Run 4, and approximately 0.485
for Run 5 – i.e., in Run 5 96 BHs are still present after 100 Myr.

simply for convenience. The above process could easily be
generalized to any desired probability distribution.

With the natal kick distribution described above im-
plemented in Run 5, as expected we observed a significant
number of BHs escaping from the cluster shortly after their
formation. All 198 BHs in the simulation are created by
τ = 10 Myr, and the first BH escapes occur at τ = 14
Myr. By τ = 100 Myr, 102 BHs have left the cluster, and
the escape rate has dropped to approximately one BH ev-
ery 100 Myr. Subsequently, BHs appear to be leaving the
cluster due to straightforward relaxation and evaporation
processes – by the time of the creation of the first stable
BH binary at τ ≈ 1350 Myr, a further 9 BHs have been
removed. Hence, we estimate the BH retention fraction in
this realization of Run 5 to be fBH = 0.485, but it could be
as low as fBH = 0.440 depending on whether BHs escaping
between τ ≈ 100 − 1350 Myr are included in the definition.
We note that re-running this simulation with a new random
seed would result in a different retention fraction, since, in
contrast to all our previous models, the ejection of BHs due
to natal kicks is a stochastic process in Run 5.

The evolution of Run 5 on the radius-age plane is plot-
ted in Fig. 24, along with the evolution of Runs 3 and 4 for
comparison. All three models possess identical initial condi-
tions – the only difference between them is the BH retention
fraction. At all times, the core radius of Run 5 lies in be-
tween those measured for Runs 3 and 4. During the first,
early, phase of core expansion, this is a consequence of the
intermediate BH retention fraction in Run 5 – this model
loses less mass than Run 3 but more than Run 4. The sec-
ond phase of core expansion, due to BH activity, begins at
τ ≈ 1400 Myr in Run 5. This is noticeably later than in
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Figure 25. Early evolution of the 10%, 25% and 50% BH La-
grangian radii in Run 5 (solid lines). The evolution of the same
radii in Run 4 are plotted for comparison (dotted lines). The BH
subsystem in Run 5 expands significantly at early times primarily
due to the non-zero natal kicks, although the BHs do also share
in the general expansion of the cluster due to the rapid mass-loss
from stellar evolution which is occurring during this period.

Figure 26. Properties of the BH population in Run 5 as a func-
tion of time: (a) the number of single BHs (upper line) and binary
BHs (lower line) in the cluster; (b) the cumulative numbers of es-
caped single BHs (upper line) and binary BHs (lower line); and
(c) the black hole 10%, 25%, 50% and 75% Lagrangian radii (re-
spectively, the innermost to outermost lines). The vertical dotted
line indicates τ = 1400 Myr, the approximate time when core ex-
pansion due to BH activity begins. Note the different axis scales
on either side of panels (a) and (b).

the previous models; furthermore, the rate of expansion is
clearly not as great as is observed in Run 4 where twice as
many BHs are retained.

The evolution of the BH population in Run 5 is illus-
trated in Figs. 25 and 26. The first of these shows the very
early evolution of the 10%, 25% and 50% BH Lagrangian
radii, compared to Run 4. Upon formation of the BHs, the
BH Lagrangian radii are initially identical in Runs 4 and

5 because they share identical initial conditions and ran-
dom seeds. However, the Lagrangian radii in Run 5 immedi-
ately undergo a large degree of expansion. This is primarily
in response to the non-zero natal kicks given to the BHs,
although the BH subsystem does share in the general ex-
pansion of the cluster which is occurring during this period
due to the rapid mass-loss from stellar evolution. For com-
parison, the Run 4 Lagrangian radii are expanding only in
response to this mass-loss. The Lagrangian radii in Run 5
exhibit large bumps at early times – these are most promi-
nent in the 25% radius at τ < 30 Myr and the 50% radius
at τ < 50 Myr. These features are due to the large number
of BHs moving outward in the cluster on their way to escap-
ing. The majority of these BHs have been removed from the
cluster by ∼ 50 Myr. After this point, the Lagrangian radii
are still greatly inflated compared to those for Run 4. This
is due to the extra kinetic energy received by the retained
BHs in Run 5 at their creation.

Fig. 26 shows the long-term evolution of the BH sub-
system in Run 5. Because of the extra kinetic energy the
retained BHs in this model receive at birth, they take sig-
nificantly longer to sink to the cluster centre via dynamical
friction than do the BHs in previous models. In addition,
there are fewer BHs retained in Run 5, so once they have
accumulated in the cluster core, they interact more infre-
quently than in previous comparable models such as Run 4.
The first BH binary does not form in Run 5 until τ = 1350
Myr, much later than in our previous models. Binary hard-
ening, BH scattering and BH ejection subsequently begin;
however, the rates of all these processes are considerably re-
duced compared to previous simulations. The first ejection
of a single BH after the formation of the first BH binary
does not occur until τ = 2050 Myr, while the first ejection
of a BH binary does not occur until τ = 4000 Myr.

By the end of Run 5, at τmax = 10.06 Gyr, only six BH
binaries have been ejected. In common with earlier models,
a significant population of BHs still remains in Run 5 at
this point, consisting of 44 single BHs and one BH binary.
The ejected BH binaries possess properties very similar to
those observed for Run 4. Two have eccentricities in the
range 0.8 < e < 0.95 while the remaining four have e <
0.8. The closest ejected BH binary has separation ab = 7.55
AU, while the least tightly bound has ab = 61.0 AU. The
mean mass of individual BHs in the ejected binaries is again
greater than the ensemble average, at 10.65 M⊙.

The reduced activity of the central BH subsystem in
Run 5 compared with our other models explains the some-
what slower expansion of the core radius in this simulation.
Despite this, the evolution of rc/rh,l is very similar to earlier
models with retained BH populations. Once the late, pro-
longed phase of core expansion begins in Run 5 (i.e., after
τ ≈ 1400 Myr), the locus traced by rc/rh,l lies exactly on top
of that for Run 4, reaching rc/rh,l ∼ 0.8 by the end of the
simulation. This indicates that despite the reduced heating
rate due to the BH population (and hence slower expansion
of rc), the distribution of this heating within the cluster is
similar to that for Runs with larger numbers of BHs. Over-
all, Run 5 clearly demonstrates that complete BH retention
is not necessary for significant and prolonged core expan-
sion to occur – even with half the number of retained BHs
as Run 4, Run 5 still reaches the upper right-hand corner of
the radius-age plane after ∼ 10 Gyr of evolution.
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4.5 Run 6: Can neutron stars replace BHs?

Finally, we computed one further model, designed to inves-
tigate whether the influence of a population of BHs is nec-
essary for prolonged core expansion to develop in a cluster,
or whether such expansion can also result from similar dy-
namical processes involving larger numbers of less massive
stellar remnants such as neutron stars (NSs). To this end
we set up the new simulation, named Run 6, so that it was
initially identical to Run 1 – that is, possessing no primor-
dial mass segregation and retaining no BHs. However, unlike
Run 1 where NSs were formed with large kicks so that the
NS retention fraction fNS = 0, in Run 6 we set the natal NS
kicks to be zero in order to achieve the extreme case that
fNS = 1. In all, 425 NSs are formed in Run 6 from supernova
explosions occurring between τ ≈ 10 − 43 Myr. The masses
of these NSs lie in the range 1.30 6 mNS 6 2.32 M⊙. We ex-
tended the duration of Run 6 to be as long as that for Run
1 (i.e., τmax ≈ 20 Gyr), to enable a comparison between the
full long-term development of the two models.

The evolution of Run 6 on the radius-age plane may
be seen in Fig. 27. Clearly, the retention of a large num-
ber of NSs in this model does not result in core expansion
at any stage during the lifetime of the cluster. In fact, the
evolution is remarkably similar to that of Run 1, with the
cluster undergoing many Gyr of gradual contraction before
entering the core collapse phase. By the end of the early
rapid mass-loss period at roughly τ ∼ 100 Myr, the median
relaxation time in Run 6 is very similar to that in Run 1
at the same age – i.e., trh ∼ 2 Gyr. In the absence of any
retained BHs, the NSs are the most massive objects in the
system and hence begin to sink to the cluster centre on a
time-scale of ∼ (m∗/mNS) trh ≈ 500 Myr. However, the NSs
are not very many times more massive than the otherwise
most massive stars in the cluster, and so the central density
of NSs never exceeds that of the other cluster members by
a sufficient degree that the NS subsystem is unstable to a
runaway collapse (Spitzer 1987, Eq. 3-55). Hence, the NS
subsystem evolves quite differently to the BH subsystems
in our previous models, which did become unstable to run-
away collapse. No NS binaries are formed in the central core,
and consequently, widespread scattering and ejection of NSs
does not occur. As a result, Run 6 proceeds towards core
collapse rather than undergoing prolonged core expansion.

From Fig. 27 it is evident that Run 6 enters the core
collapse phase at a significantly earlier time than does Run
1 – observationally, the point of deepest collapse (smallest
core radius) occurs at τ ≈ 12.8 Gyr in Run 6, compared
with τ ≈ 17.4 Gyr in Run 1. At any given age, the median
relaxation time in Run 6 is very similar to that in Run 1,
so that the point of deepest collapse in Run 6 occurs after
significantly fewer integrated median relaxation times than
in Run 1 – 4.40 trh as opposed to 8.37 trh. More enlightening
is to examine the relaxation time in the central core of each
cluster, tr0 ∝ vsr

2
cm−1

∗0 , where vs is the velocity scale in
the core and m∗0 is the mean mass of all the particles in
thermal equilibrium in the central parts (e.g., Meylan 1987).
Calculating for each model the integrated number of central
relaxation times which have elapsed by the time the point
of deepest collapse occurs, the two values are within ∼ 10
per cent of each other. The central relaxation time in Run

Figure 27. Core radius evolution of N-body Run 6, with the evo-
lution of Run 1 plotted for comparison. These two models possess
identical initial conditions – neither has any primordial mass seg-
regation, and fBH = 0 in both. The only difference between them
is that in Run 6 neutron stars are formed with no natal kicks so
that fNS = 1, whereas in Run 1 they are formed with large natal
kicks so that fNS = 0. Hence, Run 6 retains 425 neutron stars,
which are not present in Run 1. Unlike a BH population, the NS
population in Run 6 does not lead to core expansion, but does
cause the cluster to enter the core collapse phase at an earlier age.

6 is generally much shorter than in Run 1, due to the larger
mean mass of the centralmost objects (predominantly NSs).

It is also evident from Fig. 27 that during collapse, the
smallest observed core radius in Run 6 is larger than the
smallest observed core radius in Run 1. This is due to the
luminosity cut-offs inherent in the calculation of rc. In Run
1, the stars contributing most of the light for the calculation
of rc are also among the most massive remaining members,
and hence typically reside in the innermost cluster regions
during the core collapse phase. In Run 6 however, the cen-
tralmost members are the NSs, which do not contribute light
for the calculation of rc. The most luminous stars in Run
6 therefore appear to constitute a more widely distributed
“core” during the late phases of evolution than do those in
Run 1. The larger core radius during collapse in Run 6 is
also reflected in the evolution of rc/rh,l for this model. While
the behaviour of this ratio is very similar to that for Run 1,
during collapse rc/rh,l oscillates around ∼ 0.2 rather than
the smaller values (rc/rh,l . 0.05) observed for Run 1.

Just as in Run 1, the point of deepest collapse in Run
6 coincides with a spate of binary formation in the core.
This time, the binaries generally possess at least one NS
member; several of them are NS-NS binaries. These are the
first binary objects involving NSs to be created in Run 6 –
no such objects are formed at earlier times in this model.
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Figure 28. Our full suite of eight N-body Runs plotted together for comparative purposes. In combination, the two core expansion
processes described in this paper lead to a wide variety of evolutionary paths on the rc versus age plane, which fully cover the observed
distribution of massive Magellanic Cloud star clusters.

5 DISCUSSION AND SUMMARY

In this paper we have presented an ensemble of eight large-
scale N-body simulations aimed at directly modelling the
evolution of massive star clusters like those observed in the
Magellanic Clouds. Figure 28 shows the core radius evolu-
tion of all eight models plotted on the same set of axes,
for the purposes of direct comparison. Using these models
we have identified two physical processes which can occur
in such clusters and result in substantial core expansion –
mass-loss due to rapid stellar evolution in a cluster which
is mass-segregated or otherwise centrally concentrated, and
heating due to a significant population of retained stellar-
mass (∼ 10 M⊙) BHs formed in the supernova explosions of
the most massive cluster stars. These two processes operate
over different time-scales and at different stages in a clus-
ter’s life. The former only occurs during the first ∼ 100−200
Myr after the formation of a cluster, when massive stars are
still present. These evolve rapidly, losing a large fraction of
their mass as they do so. The latter begins, at the earliest,
several hundred Myr after the formation of the cluster but
may remain active for at least a Hubble time beyond this
starting point. In combination, these two processes can lead
to a wide variety of evolutionary paths on the core-radius
versus age plane, which fully cover the observed distribution
of massive star clusters. They therefore define a physically-

motivated dynamical explanation for the radius-age trend
observed for the star cluster systems belonging to the Mag-
ellanic Clouds.

Our N-body modelling has allowed us to examine in
more detail the behaviour of each of these core-expansion
mechanisms. As stated above, the phase of severe mass-
loss due to rapid stellar evolution is mostly complete by
∼ 100 − 200 Myr into a cluster’s life, by which time all the
most massive stars in the cluster have expired. Mass-loss due
to stellar evolution still occurs after this point; however, it
is from much less massive stars and therefore proceeds at a
far more gradual rate without noticeably affecting the core
radius evolution of the host cluster. Our simulations show
that the amount of observed core expansion in a cluster due
to the early mass-loss phase depends on both the degree of
primordial mass segregation in the cluster, and the amount
of mass lost in relation to the total cluster mass. In models
where the former parameter is held constant and the latter
parameter is varied (e.g., Runs 3, 4, and 5), the cluster los-
ing the most mass expands the fastest. In models where the
latter parameter is held constant and the former parame-
ter is varied (e.g., Runs 2, 4, 4a, and 4b), the cluster with
the most significant degree of primordial mass segregation
expands the fastest. Furthermore, the early rapid phase of
mass-loss does not cause any significant core expansion in
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our models unless the mass-loss is centrally concentrated
– models which do not possess any primordial mass seg-
regation exhibit essentially no early expansion. In models
where early expansion occurs, the ratio of the core radius
to half-light radius rc/rh,l increases significantly. This is in
contrast to models which do not undergo early expansion,
where rc/rh,l remains fairly constant with time. Inflated val-
ues of rc/rh,l may remain for & 10 Gyr in some clusters (cf.
Run 3), since the central and median relaxation times in
these objects become rather long.

Since the amount of mass lost in the early rapid stellar
evolution phase is an important contributor to the amount
a cluster core expands during this phase, the expansion is
effectively regulated by the cluster’s stellar IMF, modulated
by second order effects such as BH retention. A steep IMF re-
sults in proportionally few high-mass members and hence a
small amount of early expansion, whereas a flat IMF results
in proportionally many high-mass members and hence a
large amount of early expansion. In principle, therefore, sig-
nificant inter-cluster IMF variations could lead to a variety
of dramatically different paths across the radius-age plane
at ages τ . 200 Myr, and consequently induce a large spread
in the observed cluster distribution (e.g., Elson et al. 1989).
However, there is an increasing body of evidence that large-
scale variations in the stellar IMF between Magellanic Cloud
clusters are not present (e.g., Kroupa 2001; de Grijs et al.
2002c). This in turn suggests that inter-cluster variations in
the degree of primordial mass segregation or central concen-
tration may be the primary driver of the observed spread in
the radius-age distribution at young ages. The sharp upper
envelope of the distribution at ages less than a few hun-
dred Myr therefore most likely reflects an upper limit to
the degree of primordial mass segregation present in Magel-
lanic Cloud clusters. Indeed, our model with an IMF match-
ing that generally observed for Magellanic Cloud clusters
(Kroupa 2001), and an initial structure (including mass seg-
regation) matching that observed for R136 (which is the
most extreme young object presently observed in the Mag-
ellanic Clouds) evolves along a path closely matching the
upper envelope of the radius-age distribution at early times.

One important process which can affect the early evo-
lution of a massive star cluster, but which is not included
in our N-body models, is the expulsion of gas left over
from the star formation process. This residual gas is re-
moved from the cluster within the first ∼ 10 Myr due to
the combined effect of massive stellar winds and supernova
explosions. Just as with the early mass-loss due to stellar
evolution, mass-loss due to gas expulsion can cause clus-
ter core expansion, although typically on an even shorter
time-scale of ≈ 10−20 Myr (e.g., Bastian & Goodwin 2006;
Goodwin & Bastian 2006). The larger the mass of expelled
gas, the larger the degree of core expansion; if the mass of
expelled gas is too great, the cluster may become unbound.
In cases where the star formation efficiency is relatively high,
and in the absence of sustained mass-loss due to stellar evo-
lution, clusters soon settle into new equilibrium states with
core radii generally not much larger than their initial values
(see Goodwin & Bastian 2006, Fig. 2). Therefore, gas expul-
sion may be affecting the core radius evolution of clusters
younger than ∼ 50 Myr in our radius-age plot, but is unlikely
to be of relevance to cluster evolution on longer time-scales.
To correctly model the effects of gas loss occurring in com-

bination with early stellar mass loss on the evolution of the
various types of clusters studied in the present work will re-
quire more sophisticated codes than are presently available.

Core expansion due to the dynamical influence of a pop-
ulation of retained stellar-mass BHs in a cluster occurs over
a much longer timescale than that due to early mass loss.
Our simulations show that the BH population in a cluster
only induces core expansion once the BHs have accumulated
in a sufficiently dense central subsystem that BH binaries are
created. These binaries are the catalyst for core expansion,
since it is the interactions between them and other single
and binary BHs which lead to BH scattering and ejection,
and subsequent heating of the central cluster regions. We do
not observe core expansion due to the BH population prior
to the formation of BH binaries in any of our simulations.
In particular, the sinking and accumulation of BHs in the
core does not appear to affect the observed core radius.

In our models, the time at which the first BH binaries
are formed is relatively independent of the early evolution
of the cluster. Models which are identical but for widely
varying degrees of primordial mass segregation and hence
widely varying amounts of early expansion (Runs 2, 4, 4a,
and 4b) all form their first BH binaries at ages of roughly
∼ 500−600 Myr. Even though BHs are preferentially formed
very centrally in a model with a significant degree of pri-
mordial mass segregation compared to a model with no pri-
mordial mass segregation, the former object undergoes very
significant early expansion compared to the latter. The BH
subsystem does not escape this expansion, and by τ ∼ 200
Myr it has roughly the same distribution within the cluster
as does the BH subsystem in the initially non-segregated
model. The subsequent evolution of the two BH populations
is very similar. The time of formation of the first BH bina-
ries is, however, strongly sensitive to the natal kicks received
by the BHs at formation. In the case of non-zero kicks, re-
tained BHs take longer to accumulate in the cluster centre
than in the case of no kicks, due to the extra kinetic en-
ergy they receive at birth. In addition, non-zero natal kicks
generally result in the expulsion of some fraction of the BH
population, leading to a smaller retained BH subsystem and
a smaller probability per unit time of BH binary formation.
Although our modelling did not test it, the time of formation
of the first BH binaries is also expected to be sensitive to the
mean BH mass. More massive BHs will sink to the cluster
centre much more rapidly than less massive BHs, and hence
form a dense central core at a significantly earlier time.

Once BH binaries have formed in a cluster and core ex-
pansion begins, the rate of expansion is dependent on the
number of BHs in the cluster. A cluster with fewer BHs ex-
pands more slowly than an otherwise identical cluster with
more BHs (cf. Runs 4 and 5). This is because the interaction
rate between BHs in the cluster centre is much lower for the
model with the smaller number of BHs, so that fewer BHs
are scattered and ejected per unit time and the rate of heat-
ing of the cluster is reduced. The interaction rate between
BHs in the cluster centre is also apparently sensitive to the
density of the surrounding stellar core – it is significantly
reduced in lower density clusters (cf. Runs 2 and 4). These
observations have important implications for the survivabil-
ity of BH subsystems within clusters. As the number of BHs
in a cluster decreases due to the ejection of BHs after close
encounters, and the central density of the cluster decreases
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due to the expansion of its core, the interaction rate between
BHs in the cluster centre also decreases. This in turn results
in a lower BH ejection rate, allowing the BH population in a
cluster to survive much longer than previously believed. All
our long-duration simulations with retained BHs still possess
a sizeable BH population after a Hubble time of evolution.
As a result, some degree of core expansion is still occurring
in these models at late times.

We emphasize that even though most of our models
examine the scenario where all BHs are retained in a cluster,
such an extreme case is not required for core expansion to
occur. We still observe significant expansion in the more
moderate case of ∼ 50 per cent retention, although the rate
of expansion is reduced due to the factors outlined above.

It is also worth emphasising that while rapid mass-loss
due to stellar evolution is the dominant cluster core expan-
sion process at early times (τ . 200 Myr), that expansion
ceases as the mass-loss rate slows. This process therefore
cannot drive the full observed radius-age distribution, which
still exhibits a significantly increasing spread in core size at
much later times. A cluster which has expanded during its
first few hundred Myr of evolution, but which has not re-
tained a BH population sufficient to induce additional late-
time expansion, begins to contract again as two-body relax-
ation processes take over (Run 3). Our models only achieve
core sizes matching those observed for the most extended
∼ 10 Gyr old Magellanic Cloud clusters if expansion due
to a retained BH population also occurs. This long-term
expansion cannot be reproduced by other types of stellar
remnants such as neutron stars (Run 6). Such remnants are
not of high enough mass to accumulate in a central subsys-
tem of sufficient density to allow frequent formation of the
binary objects which drive the cluster heating.

The ratio rc/rh,l evolves very similarly in all of our mod-
els where core expansion due to a retained population of BHs
occurs, once this phase has started. By τ ∼ 10 Gyr, the ra-
tio approaches a large value of rc/rh,l ≈ 0.8, comparable to
the largest values observed for old Magellanic Cloud clus-
ters, and Galactic globular clusters. This is irrespective of
the early evolution of a cluster (i.e., whether expansion due
to early mass-loss occurs or not), the time of onset of the
expansion due to BHs, and the subsequent rate of this ex-
pansion. As described in Section 4, these observations are
compatible with those presented recently by Hurley (2007).

Several other mechanisms are known to be able to sus-
tain large or expanding cores in massive clusters. For exam-
ple, the presence of primordial binary stars may stall core
collapse, while the presence of a central IMBH may result in
cluster expansion (Baumgardt et al. 2004a,b). The heating
effect of stellar-mass BHs, as considered in this paper, is far
more efficient than the heating effect due to primordial bina-
ries in comparable clusters. To transfer binding energy from
primordial binaries to other cluster members requires fre-
quent interactions and hence a dense environment. For most
of their lives, Magellanic Cloud clusters are not sufficiently
dense, as has been demonstrated from N-body modelling
by Mackey (2003)4. Furthermore, heating due to primordial
binaries is self-regulated: a dense core will expand, reducing
the interaction rate and switching the heating off until the

4 This Ph.D. Thesis can be supplied by ADM on request.

core contracts again. Primordial binaries therefore cannot
sustain the type of core expansion observed in our N-body
models. It is more difficult to estimate the relative heating
efficiency of stellar mass BHs compared to that of a central
IMBH. Baumgardt et al. (2004a,b) display the evolution of
the Lagrangian radii of their large N-body models, which do
show significant expansion. However, it is difficult to disen-
tangle the amount of heating due to mass-loss from stellar
evolution from the amount due to the central IMBH. Based
on the material presented by Baumgardt et al. (2004a,b), we
estimate that heating due to stellar-mass BHs is probably
at least as efficient as that due to a central IMBH.

The scenario outlined above as a dynamical explanation
for the radius-age trend observed in the Magellanic Clouds
requires significant variations in BH population size (i.e., in
the BH retention fraction) between otherwise very similar
clusters. Clusters which have developed very large core radii
by the time they are & 12 Gyr old (e.g., the LMC clusters
NGC 1841 and Reticulum) must have managed to retain a
significant BH population. Conversely, clusters which have
entered core collapse at late times (e.g., the LMC clusters
NGC 2005 and 2019) are unlikely to have retained very many
BHs – for example, Hurley (2007) showed that even one BH
binary in a cluster can prevent the collapse of its core.

There are a number of possibilities which could lead
to inter-cluster variability in the BH population size. First,
we note that the number of BH-forming stars in a given
cluster is only a tiny fraction of the total number of stars in
the cluster, so there will always be sampling-noise variations
between clusters. In addition, the formation of a BH in a su-
pernova explosion is sensitive to many features of the prior
evolution of the progenitor star, in particular how much
mass it loses as it evolves. Factors which introduce mass-
loss variations, such as binarity, chemical inhomogeneities
or a dispersion in stellar rotation, are therefore likely to fur-
ther accentuate the stochastic fluctuations in BH population
size between clusters. In principle, inter-cluster variations in
the stellar IMF would also strongly affect BH population
sizes; however, as we noted earlier, such variations are not
observed. Observations do suggest that the maximum stellar
mass in a cluster correlates with the total cluster mass (e.g.,
Weidner & Kroupa 2006). Hence, even if the stellar IMF is
universal between clusters, smaller clusters will have a lower
maximum stellar mass and thus fewer BHs relative to the
total cluster mass than will larger clusters.

Natal BH kicks are also critical. At present, these are
poorly constrained both by theory and observation. Typical
estimates lie in the range 0 . vkick . 200 kms−1, with kicks
of a few tens of km s−1 possibly favoured (e.g., Willems et al.
2005, and references therein). If BH natal kicks are indeed
typically a few tens of km s−1 in magnitude, then they are
roughly comparable to the escape velocity of a massive stel-
lar cluster. In this case, the structure of the host cluster when
the BHs are formed (i.e., before τ ≈ 10 Myr) can strongly
affect the retention fraction. For example, BHs formed in a
dense, strongly mass segregated cluster are more easily re-
tained that BHs formed in a comparably massive but less
dense, non-segregated cluster (e.g., Fig. 23). The retention
fraction will also be sensitive to the overall initial mass of the
cluster, as well as to factors which affect the very early evo-
lution of the cluster such as residual gas expulsion. Stellar
binarity may also play an important role.
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It is interesting to note that theoretical models sug-
gest BH formation to be a strongly sensitive function of
metal abundance, in that BH production is apparently more
frequent, and mBH is typically greater for metal poor pro-
genitor stars than for metal rich progenitor stars (see e.g.,
Zhang et al. 2007). Hence, the BH populations formed in
clusters of very different metallicities are likely to be quite
distinct. The strong age-metallicity relationships observed
in both the LMC and SMC mean that this factor prob-
ably cannot cause differences between the BH population
sizes in compact and extended LMC or SMC clusters of a
given age, since such objects will have approximately equal
metallicities. However, the LMC and SMC age-metallicity
relationships do suggest that any BH populations forming
in present-day young Magellanic Cloud clusters are likely to
be quite different to those which may have existed in Mag-
ellanic Cloud clusters that are now & 12 Gyr old.

The possibility of large-scale and prolonged core expan-
sion has important implications for the study of all massive
star clusters, including the globular clusters in our Galaxy
and others. Many such objects are at least an order of magni-
tude more massive than the models presented in this paper.
Even so, we expect the physical processes which we have
described will still operate in larger systems.

Neglecting any stochastic fluctuations between clusters,
the number of BHs formed in a cluster is, to first order, de-
pendent only on the stellar IMF and the minimum progen-
itor mass. We do not expect these to change with cluster
mass, so with all other parameters held constant, the mass
fraction of BHs should remain the same for clusters of in-
creasing mass. Similarly, the mass fraction lost due to rapid
stellar evolution early on in a cluster’s life should also re-
main the same for clusters of increasing mass. Assuming
that natal BH kicks are also not a function of cluster mass,
the BH retention fraction should increase with increasing
cluster mass, since it is more difficult to eject BHs from the
deeper gravitational well of a more massive cluster. Overall,
we therefore expect the relative size of retained BH popula-
tions should be larger for more massive clusters. Given the
above, more massive clusters have at least the same poten-
tial for core expansion as do less massive clusters.

In terms of the dynamics of the expansion, the central
densities of the model clusters we have studied in this pa-
per are directly comparable to the central densities of more
massive objects such as globular clusters. The central and
median relaxation times in our models are also commen-
surate with those calculated for typical globular clusters.
Given this, we expect similar dynamical processes to oper-
ate on similar time-scales in clusters larger than our present
models, so that early mass-loss and BH heating will both
still be effective at inducing core expansion. The main dif-
ference is that it becomes more difficult to eject BHs as the
cluster mass increases. Therefore, the mean time a BH re-
mains in a cluster will increase with the total mass. This will
increase the potential of each BH to heat the cluster through
additional scattering-sinking cycles, and will allow BH bina-
ries to harden further than they would do in a less massive
object. BH heating in more massive clusters is hence likely
to be even more efficient than it is in less massive clusters.

We therefore predict that some degree of core expansion
is possible in any massive stellar cluster due to the processes
outlined in this paper, irrespective of the total mass of the

cluster. In many aspects of star cluster research, this possi-
bility is not usually considered. However, under a wide vari-
ety of circumstances, it could have an important effect on the
problem under consideration. As a simple example, it is well
known that diffuse extended clusters are far more suscepti-
ble to tidal disruption than are compact clusters. Prolonged
core expansion in clusters could result in many more such
diffuse extended objects in a given population than would
otherwise be expected. This possibility is vital to incorporate
into modelling where destruction rates are important, such
as studies designed to investigate the evolution of the globu-
lar cluster mass function (e.g., Fall & Zhang 2001), the past
and future dissolution of globular clusters in the Galactic
system (e.g., Gnedin & Ostriker 1997), or whether the su-
per star clusters observed in starburst galaxies will eventu-
ally evolve into objects resembling classical globular clusters
(e.g., de Grijs & Parmentier 2007).

Another example involves the measurement of dynam-
ical mass estimates for young massive clusters in external
galaxies. Such measurements are sometimes used to infer the
stellar IMF in such clusters. Bastian & Goodwin (2006) and
Goodwin & Bastian (2006) have demonstrated that very
young clusters (τ . 50 Myr) may be out of virial equilibrium
due to the rapid expulsion of residual gas, so that dynamical
mass measurements assuming virial equilibrium may be in
error. Our modelling has shown that significant core expan-
sion due to stellar evolution occurs on a timescale close to
∼ 100 Myr. Researchers should be aware of this additional
possibility when evaluating the properties of young clusters
in external galaxies, although we note that it is not yet clear
to what extent any signal due to such expansion would man-
ifest in integrated cluster spectra. This is an avenue worthy
of further investigation.

As a final example, consider the cluster half-mass ra-
dius, rh. This quantity is often assumed to be relatively
stable for much of a cluster’s life (cf. Fig. 6), and is hence
sometimes used to infer information about cluster formation
(e.g., van den Bergh & Mackey 2004). However, if a cluster
undergoes prolonged core expansion, rh is certainly not a
stable quantity (Fig. 8). Caution should therefore be exer-
cised in the use of this parameter.

The possibility of core expansion may also help explain
the properties of some of the more exotic star clusters dis-
covered in recent years – for example, the “faint fuzzies”
uncovered in several lenticular galaxies (Brodie & Larsen
2002), the luminous extended clusters found in the halo of
M31 (Huxor et al. 2005; Mackey et al. 2006), and the diffuse
star clusters located in a number of Virgo early-type galax-
ies (Peng et al. 2006). All these newly-discovered clusters
possess unusually extended structures compared to those of
classical globular clusters. Core expansion, particularly the
prolonged variety due to retained BHs, may offer a viable
formation channel for these objects.

We conclude with a note on the possibility of test-
ing observationally our prediction of retained populations
of stellar-mass BHs in some massive star clusters. While
these BHs cannot be observed directly, there are a num-
ber of means by which their presence might be inferred in
a cluster. One possibility is that a BH in a close binary
with an evolved star is likely to be an X-ray source, as
the star overflows its Roche limit and transfers gas onto
the BH. Such BH X-ray sources are known in the field (see



32 A. D. Mackey et al.

e.g., Casares 2006) and one is known in an extra-Galactic
globular cluster (Maccarone et al. 2007; Zepf et al. 2007);
however, none have been found in Galactic globular clusters
(Verbunt & Lewin 2006). From our modelling, we know that
clusters which do retain significant BH populations are, for
most of their lives, objects in which the timescale for en-
counters between BHs and stars is very long (due to the low
stellar density in the extended core), but the timescale for
encounters between BHs is comparatively short. Hence the
creation of long-lived BH-star binaries is rare – we did not
observe any such objects in our simulations. It is therefore
unsurprising that no BH X-ray sources are known in the
Galactic globular cluster system, and only one is known in
an external cluster.

The most promising means of inferring the presence of
a BH population in a cluster is through the dynamical ef-
fect it causes on the stellar component of the cluster. As we
demonstrated in Section 4.1, unlike in the case of an IMBH,
a significant stellar density and velocity cusp does not de-
velop about the compact central BH subsystem. None the
less, the effect of the central concentration of unseen mass
should be evident in the stellar motions – the velocity disper-
sion of the cluster should be larger than is to be expected
solely from the observed luminous mass. Observations to
test this will be difficult, primarily because the target clus-
ters should be extended, diffuse objects with low velocity
dispersions. In addition, many will have relatively few tar-
gets suitable for spectroscopic radial velocity measurements,
such as luminous red giants. Even so, it may be possible to
make sufficiently precise observations with presently avail-
able 8 − 10 m-class facilities.

Finally, it seems likely that at least some BH bina-
ries ejected from very massive clusters will merge on a
timescale . 12 Gyr, and will therefore be sources of grav-
itational radiation detectable by interferometers such as
LIGO, and in future, LISA. This possibility has previously
been investigated in more detail by other authors (see e.g.,
Portegies Zwart & McMillan 2000). As described in Sections
4.1 and 4.2, the BH binaries ejected from our model clusters
will not merge on a timescale . 12 Gyr; however several
have orbital parameters not far from the required thresh-
old. A subset of the BH binaries ejected from more massive
clusters than those studied here would almost certainly have
orbital parameters well within this threshold.
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APPENDIX A: ANALYTIC PROPERTIES OF THE EFF FAMILY OF MODELS

In this Appendix we present analytic expressions for the properties of a number of members of the general family of EFF
models. As demonstrated in the present work, with the recent rapid increase in computing power and software sophistication,
and hence the size and degree of realism feasible for N-body simulations, it may occur that such models represent more
appropriate initial conditions for a given scenario than do the frequently adopted Plummer spheres or King models. With
the formulae presented below, it is reasonably straightforward to develop procedures such as that described in Section 2.1 to
generate the desired initial conditions.

A1 General properties

The EFF models, after Elson, Fall & Freeman (1987), are a family of models originally defined through empirical fitting to
the observed surface brightness profiles of young massive star clusters in the LMC. These objects do not exhibit tidal cut-offs
in their outer regions, and are therefore most appropriately described by projected three-parameter models of the form:

µ(rp) = µ0

(

1 +
r2

p

a2

)−
γ

2

, (A1)

where rp is the projected radius, µ0 is the central surface brightness, a is the scale radius, and γ represents the power-law
fall-off of the profile at large radii. These models can easily be deprojected to obtain the three-dimensional density:

ρ(r) = ρ0

(

1 +
r2

a2

)−
γ+1
2

where ρ0 =
µ0 Γ

(

γ+1
2

)

a
√

π Γ
(

γ
2

) . (A2)

In the above equation, Γ is a standard gamma function. Since µ0 is the central surface brightness, here ρ0 is the central
luminosity density – to obtain the central mass density it is necessary to multiply by the global mass-to-light ratio Υ. It can
be seen that the three-dimensional density has exactly the same functional form as the projected density, but with index
γ + 1. By comparison with the more general spherically symmetric family of (α, β, δ) models described by Zhao (1996)5, it is
straightforward to see that the EFF models represent the subset with (α, β, δ) = ( 1

2
, γ + 1, 0) and break radius r = a.

Assuming now that ρ0 is a mass density, substituting Eq. A2 into Eq. 2-22 from Binney & Tremaine (1987) and integrating
yields a general expression for the gravitational potential of EFF models:

Φ = −4

3
πGρ0

[

3a2

γ − 1

(

1 +
r2

a2

)−
(γ−1)

2

+ r2
2F1

(

3

2
,

γ + 1

2
;

5

2
; − r2

a2

)

]

, (A3)

where 2F1(a, b; c; z) is Gauss’s hypergeometric function.
Similarly, the enclosed mass (or luminosity if ρ0 is a luminosity density) as a function of radius can be derived by

integrating Eq. A2:

M(r) = 4π

∫ r

0

ρ(r′)r′2dr′ =
4

3
πρ0r

3
2F1

(

3

2
,
γ + 1

2
;
5

2
;− r2

a2

)

. (A4)

In the limit where r → ∞, this expression converges only if γ > 2. The asymptotic mass is given by M∞ = 2πµ0Υa2/(γ − 2).
Finally, rearranging and integrating the Jeans equations for a steady-state, spherically symmetric, non-rotating cluster

(i.e., Binney & Tremaine (1987) Eq. 4-54) yields a general expression for the radial dependence of the isotropic velocity
dispersion:

σ2(r) =
1

ρ(r)

∫

∞

r

ρ(r′)
dΦ(r′)

dr′
dr′, (A5)

which can, in principle, be evaluated numerically for all γ. However, for integer values of γ, the hypergeometric functions in
Eqs. A3 and A4 reduce to elementary functions, resulting in straightforward analytic expressions for M(r) and σ2(r) which
may be written into the computer code to generate initial conditions. The best known of the analytic subset is the case when
γ = 4 – the Plummer (1911) sphere. The properties of this model have been investigated extensively by Dejonghe (1987) for
mass-follows-light scenarios, while the more general study of Wilkinson et al. (2002) includes the possibility of a dark halo.
Below, we consider the less-well studied cases of γ = 3, 5, and 6.

A2 The γ = 3 case

The case where γ = 3 has been studied in passing as special cases of a general ellipsoidal form by de Zeeuw (1985a,b), who
labelled the profiles “perfect spheres”. This particular case is of interest since it represents the EFF model with analytic
expressions for M(r) and σ2(r) which, in projection, is closest in form to the observed profiles of young massive star clusters

5 Zhao (1996) labelled these (α, β, γ) models; however, we alter his nomenclature here to avoid ambiguity in the definition of γ.
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in the LMC and SMC. Elson et al. (1987) found a median value of γ = 2.6 and a range 2.2 . γ . 3.2 for their ten young LMC
clusters, while the 18 young LMC and SMC clusters plotted in Fig. 3 in the present paper cover the range 2.05 6 γ 6 3.79 and
have a median value γ = 2.67. We started all the N-body simulations described in the present work with initial conditions
generated from the following equations.

When γ = 3, the Gauss hypergeometric function in Eqs. A3 and A4 reduces to:

2F1

(

3

2
, 2;

5

2
;− r2

a2

)

= −3a2

2r2

(

[

1 +
r2

a2

]−1

−
√

−a2

r2
arctanh

[

√

− r2

a2

])

=
3a3

2r3

(

arctan
[

r

a

]

− r

a

[

1 +
r2

a2

]−1
)

(A6)

Substituting into Eq. A4, the enclosed mass M(r) is then given by:

M(r) = 2πρ0 a3

(

arctan
[

r

a

]

− r

a

[

1 +
r2

a2

]−1
)

, (A7)

while carrying out the integration in Eq. A5 provides the isotropic velocity dispersion:

σ2 = −πGρ0

8a2
(a2 + r2)2

(

3π2 − 1

r(a2 + r2)2

[

4

(

ar + (a2 + r2) arctan
[

r

a

]

)(

4a3 + 3ar2 + 3r(a2 + r2) arctan
[

r

a

]

)

])

(A8)

A3 Steeper cases: γ = 5 and γ = 6

Cluster models with steep density fall-offs do not seem to have been well studied in the literature, if at all. For this reason,
the properties of two such models are derived here. These γ = 5 and γ = 6 cases do correspond to real objects – old globular
clusters can have observed brightness profiles which fall off this steeply. For example, Mackey & Gilmore (2003a,b,c) found
the LMC globular cluster NGC 1841 to have γ = 4.55 ± 0.61, the SMC cluster NGC 339 to have γ = 5.21 ± 0.99, and the
diffuse cluster 1 in the Fornax dSph to have γ = 7.52 ± 0.64. It may well be desirable in future to model the evolution of
clusters such as these. In this case, the equations below will allow suitable initial conditions to be simply constructed.

If γ = 5, the hypergeometric function in Eqs. A3 and A4 reduces to:

2F1

(

3

2
, 3;

5

2
;− r2

a2

)

=
3a2

8r2

(

√

− r2

a2
(a2 + r2)2

)−1(

a2

√

− r2

a2
(r2 − a2) + (a2 + r2) arctanh

[

√

− r2

a2

])

=
3a3

8r3

(

ar3 − a3r

(a2 + r2)2
+ arctan

[

r

a

]

)

(A9)

Substituting into Eq. A4, as before, yields the enclosed mass M(r):

M(r) =
1

2
πρ0 a3

(

ar3 − a3r

(a2 + r2)2
+ arctan

[

r

a

]

)

, (A10)

while evaluating Eq. A5 provides the isotropic velocity dispersion as a function of radius:

σ2(r) =
πGρ0

384a4r(a2 + r2)

[

5a8r(64 − 9π2) + 4a6r3(173 − 45π2) + 30a4r5(20 − 9π2) − 180a2r7(π2 − 1) − 45π2r9

+ 12(a2 + r2)2 arctan
[

r

a

]

(

16a5 + 50a3r2 + 30ar4 + 15r(a2 + r2)2 arctan
[

r

a

]

)

]

. (A11)

The γ = 6 case is of particular interest as its properties are comparable in simplicity to those of the widely used Plummer
sphere (γ = 4). With γ = 6, the hypergeometric function in Eqs. A3 and A4 can be written:

2F1

(

3

2
,
7

2
;
5

2
;− r2

a2

)

=
a3

5

[

5a2 + 2r2

(a2 + r2)
5
2

]

(A12)

which leads to the following straightforward expressions for the enclosed mass and isotropic velocity dispersion:

M(r) =
4

15
πρ0 a3r3

[

5a2 + 2r2

(a2 + r2)
5
2

]

(A13)

σ2(r) =
1

75
πGρ0 a3

[

11a2 + 5r2

(a2 + r2)
3
2

]

. (A14)

In principle, it is possible to continue deriving similar analytic expressions for increasing integer values of γ; however we
note that the expressions become correspondingly more complicated as γ increases.


	Introduction
	Numerical setup
	N-body code and initial conditions
	Primordial mass segregation

	``Observing'' the simulations
	Simulations and Results
	Runs 1 and 2: No mass segregation
	Runs 3 and 4: Strong mass segregation
	Runs 4a and 4b: Variable mass segregation
	Run 5: Intermediate BH retention
	Run 6: Can neutron stars replace BHs?

	Discussion and Summary
	Analytic properties of the EFF family of models
	General properties
	The = 3 case
	Steeper cases: = 5 and = 6


