
§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§

§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§

State University of New York Physics Department—University of Maryland Center for String and Particle Theory & Physics Department—Delaware State University DAMTP

University of Washington Mathematics Department—Pepperdine University Natural Sciences Division—Bard College Mathematics Department

� �� �
September 25, 2015 UMDEPP 08-010, SUNY-O/667

Topology Types of Adinkras and the Corresponding

Representations of N -Extended Supersymmetry

C.F. Dorana, M.G. Fauxb, S.J. Gates, Jr.c, T. Hübschd,
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ABSTRACT

We present further progress toward a complete classification scheme for describing

supermultiplets of N -extended worldline supersymmetry, which relies on graph-

theoretic topological invariants. In particular, we demonstrate a relationship

between Adinkra diagrams and quotients of N -dimensional cubes, where the

quotient groups are subgroups of (Z2)N . We explain how these quotient groups

correspond precisely to doubly even binary linear error-correcting codes, so that

the classification of such codes provides a means for describing equivalence classes

of Adinkras and therefore supermultiplets. Using results from coding theory we

exhibit the enumeration of these equivalence classes for all cases up to 26 super-

charges, as well as the maximal codes, corresponding to minimal supermultiplets,

for up to 32 supercharges.
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1 Introduction, Review and Synopsis

In the past decade there has been a renewed interest among physicists in certain basic questions

in supersymmetry and, in particular, the classification of supersymmetric theories. Dualities and

advances in string theory and its M- and F-Theory extensions have raised an awareness of a range

of supersymmetric theories that were not previously well-studied. In many cases, dimensional re-

duction has been a useful—and sometimes the only—way to analyze these theories. In particular,

dimensional reduction to one dimension (time) is often particularly enlightening. This reduction

may, in fact, retain all the information necessary to reconstruct its higher-dimensional preimage, by

the reverse process of dimensional “oxidization” [1]. Independently, N -extended worldline super-

symmetry also governs the dynamics of wave functionals in supersymmetric quantum field theories

and so applies to all of them also in this other, more fundamental way.

In addition, the past decade has seen a renewed interest by mathematicians in physical su-

persymmetry, in part due to the corresponding interest by physicists, and in part because of new

induced advances in algebraic geometry [2,3,4,5] and four-dimensional topology [6,7,8] (see Ref. [9]

for a survey accessible to physicists). This has brought about a desire to approach the foundations

of the subject more systematically.

1.1 Adinkras

Studies of one-dimensional supersymmetric theories have led to the development of the GR(d,N)

algebras [10,11,12], to the Adinkras [13], and to other efforts [14,15,16,17,18,19,20]. The main goal of

these works is a comprehensive, constructive and conveniently usable classification of representations

of supersymmetry. Herein, we focus on supersymmetry with no central charge, and examine those

representations which may be described using Adinkras.

Adinkras are directed graphs with various colorings and other markings on vertices and edges,

which in a pictorial way encode all details of the supersymmetry transformations on the component

fields within a supermultiplet [13]. They can be related to superspace constructions [21,22], aid the

understanding of complex systems of transformation rules [23,24], and provide a more systematic

and complete classification tool for representations of supersymmetry.

The study of Adinkras, then, naturally leads to the question of their classification.1 This clas-

sification of Adinkras naturally falls into four steps:

1. Determine which topologies are possible (the topology of an Adinkra is the underlying graph

of vertices and edges without colorings, as, for instance, in Ref. [21]).

2. Determine the ways in which vertices and edges may be colored. The topology of the Adinkra,

together with the colorings of vertices and edges, will be called the chromotopology of the

Adinkra. It is chromotopologies that are classified in this paper.

1 It must be cautioned that there are two ways in which a classification of Adinkras falls short of classifying
D = 1 off-shell supermultiplets: first, not every such supermultiplet can be described by an Adinkra, and
second, sometimes such a supermultiplet can be described by more than one Adinkra. Nevertheless, the
classification of Adinkras is an important step in such a program.
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3. Determine the ways in which edges may be chosen as dashed or solid. This is closely related

to the well-known Clifford algebra theory, and will be studied in a future effort.

4. Determine the ways in which arrows may be directed along each edge. This issue is addressed

in Ref. [21], and shown to be equivalent to the question of “hanging” the graph on a few sinks.

Alternately, we can start with an Adinkra where all arrows go from bosons to fermions, then

perform a sequence of vertex raises to arrive at other choices of arrow directions.

As it happens, it is convenient to do 1. and 2. together; that is, to classify chromotopologies.

Herein, we show that the classification of Adinkra chromotopologies is equivalent to another inter-

esting question from coding theory: the classification of doubly even binary linear codes. Much

work has already been done in this area [25,26,27], and the work described in this paper goes even

further in developing this classification; see Appendix C.

We emphasize that we focus here on the supersymmetric representation theory, not the dynamics

of supersymmetric theories. This is logically necessary in any classification endeavor, as we need to

first know the full palette of supersymmetric representations before discussing the properties of the

dynamics in theories built upon such representations. Clearly, presupposing a standard, uncoupled

Lagrangian for the supermultiplets that we intend to classify would necessarily limit the possibilities;

there do exist supermultiplets which can only have interactive Lagrangians [28,29]. Herein, we defer

the task of finding Lagrangians involving the supermultiplets considered in this paper. In Refs. [22,

30], we have in fact started on such studies, and, using Adinkras, have constructed supersymmetric

Lagrangians for some of the supermultiplets that are also discussed herein.

In units where ~ = 1 = c, all physical quantities may have at most units of mass, the exponent of

which is called the engineering dimension and is an essential element of physics analysis in general.

The engineering dimension of a field φ(τ) will be written [φ]; for more details, see Refs. [21,31].

1.2 Main Result

Our main result about the chromotopology types of Adinkras and the corresponding supermulti-

plets, up to direct sums, may be summarized as follows:

We define the function:

κ(N) :=



0 for N < 4,

1 for N = 4, 5,

2 for N = 6,

3 for N = 7,

4 + κ(N−8) for N ≥ 8, recursively.

(1.1)

1. Every Adinkra can be separated into its connected components. (The supermultiplet corre-

sponding to such an Adinkra breaks up into a direct sum of other supermultiplets, each of

which corresponds to one of the connected components of the Adinkra).

2. Each such component has the topology of a k-fold (0 ≤ k ≤ κ(N )) iterated Z2-quotient of

the N -cube. (The corresponding supermultiplet is likewise a quotient of the supermultiplet

corresponding to the N -cube).
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(a) The result of iterating these Z2-quotients is equivalent to quotienting by a subgroup of

(Z2)N , that is, by a binary linear [N, k] code.

(b) A code can be used for such a quotient if and only if it is a doubly even code.

(c) There is a one-to-one correspondence between chromotopologies of Adinkras and dou-

bly even codes, under which column-permutation equivalence in codes corresponds to

swapping colors on the edges of the Adinkra, and R-symmetries of the supermultiplet.

(d) The number of distinct doubly even codes grows combinatorially with N and k, and

distinct codes produce distinct Adinkra chromotopologies.

(e) A large subset of distinct doubly even codes are also permutation-inequivalent; two

permutation-inequivalent codes produce distinct Adinkra topologies. This occurs for

N ≥ 8, but for N ≥ 10 this occurs even when k = κ(N), giving rise to topologically

distinct maximal quotients , i.e., minimal supermultiplets . The number of these also

grows combinatorially with N, k; see Table 4.

It is possible to peruse these results backwards: One may start with the minimal supermultiplets

in the entry (2e) above, and then reconstruct the non-minimal ones by reversing the quotienting

procedure described herein. We will not explore the combinatorially complex mechanics of such

procedures here, but it reflects the very large numbers of [N, k]-codes in Table 4.

— ? —

The paper is organized as follows: Section 2 is a brief introduction to codes, and Section 3

provides a review of Adinkras and their relationship with supermultiplets. The main material

is in Section 4, where Adinkra topologies are classified in terms of doubly even codes, which we

explore further in Section 5. We then turn to discuss the subtleties in identifying Adinkras with

supermultiplets, which lead to the second part of our main result presented in full detail in Section 6.

A number of technical details are deferred to the Appendices. Details of the supersymmetry

action in real supermultiplets are discussed in Appendix A, while those of the complex case occupy

Appendix B. Finally, Appendix C presents the necessary details of the classification of doubly even

binary linear error-correcting codes.

2 Codes

We begin with a brief introduction to the theory of codes so as to make it easier to spot the

emergence of its elements in the subsequent sections. The Reader who wants a more thorough

introduction to coding theory can consult a standard reference such as Refs. [25,26,27].

Generally, a code is a set of strings of characters, each of which is given some kind of meaning

in order to communicate between two people (say). We do not assume these are secret codes, in

that we are not necessarily trying to hide this communication from a third party. Given a fixed

alphabet, there are many possible strings of letters from this alphabet, but a code will specify only

some of these as codewords. In this paper we do not assign meaning to the codewords, and thus we

consider a code simply to be a set of codewords.

In this paper, we will focus on binary block codes. In this case, the available characters from

which the codewords are composed are the binary digits 0 and 1, and we fix a positive integer N ,

and require that each codeword have length N . Thus, a binary block code of length N is a subset of

3



{0, 1}N . Though the standard notation for an element of a cartesian product is (x1, x2, · · · , xN), in

practice we frequently abandon the parentheses and the commas, so that the element (0, 1, 1, 0, 1)

may be written more succinctly as the codeword 01101. The components of such an N -tuple are

called bits, and the N -tuple is called a binary number.

If we think of {0, 1} as the group Z2, and {0, 1}N as the N -fold product of this group with itself,

then a binary block code is called linear when it is a subgroup of {0, 1}N . This is equivalent to the

statement that if v and w are codewords, then v � w (their bitwise sum modulo 2, or equivalently

their exclusive or) is also a codeword. For instance, if N = 3, then {010, 011} is a binary block code

of length 3, but it is not linear because the linear combination, 010� 011 = 001, is itself not one of

the listed codewords. On the other hand, {000, 001, 010, 011} is a linear code.

Now, Z2 is not only a group; it is also a field, so {0, 1}N can be viewed as a vector space over

{0, 1}. All the concepts of linear algebra then apply, but with R replaced with Z2. Elements of

{0, 1}N may be thought of as vectors, with vector addition the operation � of bitwise addition

modulo 2, scalar-multiplication by 0 setting every bit to zero, and scalar-multiplication by 1 leaving

the vector unchanged. As in standard linear algebra, there is the concept of a basis. Given a

linear subspace (that is, a linear code), we can find a finite set of codewords g1, . . . , gk so that every

codeword can be written uniquely as a sum

k∑
i=1

xigi, (2.1)

where the coefficients x1, . . . , xk are each either 0 or 1. The set g1, . . . , gk is then a basis, but in

coding theory, it is also called a generating set for the linear code. As in real linear algebra, there

is no expectation that a generating set is uniquely determined by the linear code, but the number

k, called the dimension of the code, is always the same for a given linear code. It is common to

say we have an [N, k] linear code when N is the length of the codewords and k is the dimension.

It is traditional to denote a generating set as an N×k matrix, where each row is an element of the

generating set.

If v ∈ {0, 1}N , we define the weight of v, written wt(v), to be the number of 1s in v. For instance,

the weight of 01101 is wt(01101) = 3.

A binary linear block code is called even if every codeword in the code has even weight. It is

called doubly even if every codeword in the code has weight is divisible by 4. Examples of doubly

even codes are given in Section 5.1 below.

If v and w are in {0, 1}N , then v & w is defined to be the “bitwise and” of v and w: the ith bit

of v&w is 1 if and only if the ith bit of v and the ith bit of w are both 1. A basic fact in {0, 1}N is

wt(v � w) = wt(v) + wt(w)− 2 wt(v & w). (2.2)

There is a standard inner product. If we write v and w in {0, 1}N as (v1, . . . , vN) and (w1, . . . , wN),

then

〈v, w〉 ≡
N∑
i=1

viwi (mod 2). (2.3)
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We call v and w orthogonal if 〈v, w〉 = 0. This occurs whenever there are an even number of bit

positions where both v and w are 1. Note that 〈v, v〉 ≡ wt(v) (mod 2), and thus, when wt(v)

is even, v is orthogonal to itself. Also note that 〈v, w〉 ≡ wt(v & w) (mod 2). One important

consequence for us is that if wt(v) and wt(w) are multiples of 4, then (2.2) implies that wt(v � w)

is a multiple of 4 if and only if v and w are orthogonal.

3 Supersymmetric Representations and Adinkras

The N -extended supersymmetry algebra without central charges in one dimension is generated by

the time-derivative, ∂τ , and the N supersymmetry generators, Q1, . . . , QN , satisfying the following

supersymmetry relations:{
QI , QJ

}
= 2 i δIJ ∂τ ,

[
∂τ , QI

]
= 0, I, J = 1, . . . , N. (3.1)

In this section we determine some essential facts about the transformation rules of these operators on

fields for which it is possible to maintain the physically motivated concept of engineering dimension.

We note that since the time-derivative has engineering dimension [∂τ ] = 1, the supersymmetry

relations (3.1) imply that the engineering dimension of the supersymmetry generators is [QI ] = 1
2
.

3.1 Supermultiplets as Representations of Supersymmetry

A real supermultiplet M is a real, unitary, finite-dimensional, linear representation of the alge-

bra (3.1), in the following sense: It is spanned by a basis of real bosonic and fermionic component

fields , φ1(τ), . . . , φm(τ) and ψ1(τ), . . . , ψm(τ), respectively; each component field is a function of

time, τ . The supersymmetry transformations, generated by the Hermitian operators Q1, · · · , QN ,

act linearly on M while satisfying Eqs. (3.1), i.e., Eqs. (3.3), below. The supermultiplet is off-shell

if no differential equation is imposed on it2. The number of bosons as fermions is then the same,

guaranteed by supersymmetry.

The full supersymmetry transformation, which preserves the reality of the component fields

φA(τ) and ψA(τ) and is generated by the QI , takes the form:[
φA(τ)

ψA(τ)

]
7→ eδQ(ε)

[
φA(τ)

ψA(τ)

]
, δQ(ε) := −iεI QI , φA(τ), ψA(τ) ∈M , (3.2)

where εI are the (anticommuting) parameters of the transformation. The infinitesimal transforma-

tion operators, δQ(ε), in turn satisfy the relation:[
δQ(ε) , δQ(η)

]
= 2 i (εIδIJ η

J) ∂τ . (3.3)

Both the relations (3.1) and (3.3) equivalently specify the supersymmetry algebra, and the infinites-

imal transformation operator δQ(ε) may be—and, in the physics literature, is—used to study the

supersymmetry transformations in supermultiplets.

2 Logically, it is possible for some—but not all—component fields to become subject to a differential equation.
This does not violate the literal definition of the off-shell supermultiplet. However, it does obstruct standard
methods of quantization, which is our eventual purpose for keeping supermultiplets off-shell. For an example
in 4-dimensional supersymmetry, see Ref. [24].
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3.2 Building Supermultiplets from Adinkras

Refs. [13,21,22] introduced and then studied Adinkras, diagrams that encode the transformation

rules (3.2) of the component fields under the action of the supersymmetry generators Q1, . . . , QN .

Remark 3.1: Classical Lie groups have one, or in the case of Spin(2n) two, fundamental irreducible

representations from which all (infinitely many) other finite-dimensional, unitary representations

can be constructed by tensoring the fundamental one(s), symmetrizing in all possible ways and sub-

tracting “traces” using the invariant tensors of the group. The analogous method using Adinkras

was sketched in Refs. [21,32]. Thus, Adinkras and the corresponding supermultiplets should rep-

resent at least the fundamental representations of supersymmetry, from which to build the infinite

tower of all others, very much akin to the case of classical Lie algebras.

Without further ado, we focus on the supermultiplets that can be depicted by Adinkras:

Definition 3.1 A supermultiplet M is adinkraic if it admits a basis, (φ1, · · · , φm |ψ1, · · · , ψm),

of component fields such that each QI ∈ {Q1, · · · , QN} acts upon each φA ∈ {φ1, · · · , φm} so as to

produce:

QI φA(τ) = c ∂λτ ψB(τ), where c = ±1, λ ∈ {0, 1}, ψB ∈ {ψ1, · · · , ψm}, (3.4a)

and the right-hand side choices depend on I and A. In turn, this QI acting on this ψB produces:

QI ψB(τ) =
i

c
∂1−λ
τ φA(τ), (3.4b)

and the pair of formulae (3.4) exhausts the action of each QI upon each component field.

Every adinkraic supermultiplet may be depicted as an Adinkra:

Definition 3.2 The Adinkra, AM , of an adinkraic supermultiplet M is a labeled, directed graph,

(W,E,C,O,D), where W is a bipartitioned set of vertices (V ): one half white, the other black; E

is the set of edges, each edge connecting two vertices of opposite color; C the set of colorings of the

edges; O the set of their orientations; and D the set of their dashedness.

A vertex is assigned to each component field of M , white for bosons, black for fermions. A

transformation rule of the form (3.4a) corresponds to an I-colored edge connecting the vertex cor-

responding to φA to the vertex corresponding to ψB. If c = −1, the edge is dashed, and the edge is

oriented from φA to ψB if λ = 0 and the other way around if λ = 1; see Table 1.

We can also use the Adinkra to reconstruct the adinkraic supermultiplet, since the Adinkra

contains all the information necessary to write down the transformation rules. Thus, an Adinkra is

simply a graphical depiction of the transformation rules (3.4).

Remark 3.2: Owing to Remark 3.1, we do not expect the class of adinkraic supermultiplets to

exhaust the representations of supersymmetry (3.1), but rather to serve as the fundamental repre-

sentations from which to build all the other ones. In addition to the usual construction (tensoring,

symmetrizing and taking traces), this will also involve the question when is it is possible for all the
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Adinkra Q-action Adinkra Q-action

A

B

I QI

[
ψB
φA

]
=

[
iφ̇A
ψB

]
A

B

I QI

[
ψB
φA

]
=

[
−iφ̇A
−ψB

]

B

A

I QI

[
φA
ψB

]
=

[
ψ̇B
iφA

]
B

A

I QI

[
φA
ψB

]
=

[
−ψ̇B
−iφA

]
The edges are here labeled by the variable index I; for fixed I, they are
drawn in the Ith color.

Table 1: The correspondences between the Adinkra components and supersymmetry transforma-

tion formulae: vertices↔ component fields; vertex color↔ fermion/boson; edge color/index↔QI ;

edge dashed↔ c = −1; and orientation↔placement of ∂τ . They apply to all φA, ψB within a

supermultiplet and all QI-transformations amongst them.

supersymmetry transformations in a supermultiplet to conform to Eqs. (3.4) simultaneously ; we

will address this under separate cover. In addition, certain exceptional adinkraic supermultiplets

may be depicted, for high enough N , by more than one Adinkra. A case-by-case determination

if two given Adinkras correspond to the same supermultiplet is not too difficult, but a systematic

study is deferred to a subsequent effort [33].

In view of Remarks 3.1–3.2, the fact that most important physical examples can be described us-

ing Adinkras reinforces their interpretation as fundamental and provides the underlying motivation

for our present study. We therefore focus on classifying those supermultiplets that do correspond to

Adinkras, and so the question of which supermultiplets cannot be so depicted remains outside our

present scope. In turn, Ref. [21] shows that all Adinkras sharing the same topology and their corre-

sponding supermultiplets—and indeed their superfield representations—may be obtained from any

one of them; it then remained to classify the topologies available to Adinkras, up to Remarks 3.1–3.2,

and we now turn to that.

4 Adinkra Chromotopologies

It is the purpose of this paper to classify the possible topologies for Adinkras. To this end, we will

need the precise definition:

Definition 4.1 The topology of an Adinkra, T(AM ), is the graph (V,E) consisting of only the

(unlabeled) vertices and edges of the Adinkra; cf. Definition 3.1. Also, T(M ) := T(AM ).

In particular, from Definition 3.2 of an Adinkra, we forget the bipartition (black or white) of the

vertices and all additional information associated to the edges, namely, the edge-coloring (to which

QI corresponds), dashedness (c = ±1), and direction (the exponent of ∂τ in Eqs. (3.4), and so in

fact all ∂τ ).

Definition 4.2 The chromotopology of an Adinkra is the topology of the Adinkra, together with

the vertex bipartition (coloring each vertex black or white), and the edge coloring (assigning a color

to each edge).
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In particular, from Definition 3.2 of an Adinkra, we forget the dashedness of the edges and the

direction of the arrow along the edge.

4.1 Cubical Adinkras

The fundamental example of an Adinkra topology is that of the N -cube, IN = [0, 1]N . It has

2N vertices and N ·2N−1 edges. We may embed it in RN by locating the vertices at the points

~p = (p1, · · · , pN) ∈ RN , where pI = 0, 1 in all 2N possible combinations. An edge connects two

vertices that differ in precisely one coordinate. For every vertex, ~p, the weight of ~p, written wt(~p),

equals the number of J ∈ {1, · · · , N} for which pJ = 1.

There is a natural chromotopology associated to the N -cube: As the weights of the vertices are

either odd or even, we color them either black or white, respectively; flipping this choice is called

the ‘Klein flip’. We associate the numbers from 1 to N with N different colors, and then color each

edge of the N -cube that connects vertices which differ only in the Ith coordinate with the Ith color.

The result is called the colored N -cube.

We now construct four supermultiplets: M �
IN , M =

IN and their Klein-flips, all with the chromo-

topology of a colored N -cube, IN .

4.1.1 The Exterior Supermultiplet

We start with a bosonic, real field φ0(τ), write

Q~p := Qp1
1 · · ·Q

pN

N , (4.1)

and define all other component fields in reference to φ0(τ):

M �
IN :=

{
F~p(τ) := (−i)(

wt(~p)
2 )Q~p φ0(τ), ~p ∈ IN

}
. (4.2)

Since (
(−i)(

wt(~p)
2 )Q~p

)†
=
(

(+i)(
wt(~p)

2 )
)(

(−1)(
wt(~p)

2 )Q~p
)

= (−i)(
wt(~p)

2 )Q~p, (4.3)

the component fields F~p(τ) in Eq. (4.2) are real. Each vertex ~p is marked by a white node if wt(~p)

is even, and Eq. (4.2) assigns it the bosonic component field F~p(τ); when wt(~p) is odd, the assigned

F~p(τ) is fermionic and its node is black. This binary “cubist” notation, F~p, is not hard to translate

into the one more familiar to physicists: each component, pI = 0, 1, specifies if the index I is absent

or present, respectively, in the antisymmetrized multi-index of the component field. Thus, e.g.,

F000 = F = φ0(τ), F100 = F1, F101 = F[13], F011 = F[23], F111 = F[123], where the antisymmetrization

on multiple indices stems from the anticommutivity of the QI ’s.

Next, using that

QI Q
~p = (−1)wt(~p<I) (i∂τ )

~p·~eI Q~p�~eI , (4.4)

where wt(~p < I) counts the number of nonzero components of ~p before the Ith, ~eI is the unit vector

in the Ith direction and

~p � ~eI ≡ (~p+ ~eI) (mod 2), (4.5)

is the component-wise exclusive or, we compute by direct application of QI :

QI F~p(τ) = (−1)wt(~p<I)+(~p·~eI)(wt(~p)+1) iwt(~p)
(
∂(~p·~eI)
τ F~p�~eI

(τ)
)
. (4.6)
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Thus, for each I, the QI-transformation connects precisely those two vertices that differ in the Ith

coordinate. The corresponding edge in the Adinkra, drawn in the Ith color, is oriented from the

vertex where that coordinate is 0 to where it is 1. It is either solid or dashed depending on the

exponents of (−1) and i. This makes the topology of the N -cube manifest and also proves that

M �
IN is adinkraic, seeing that Eq. (4.6) conforms precisely to Eqs. (3.4).

The Klein-flip of M �
IN is obtained by starting from a fermion, ψ0(τ), in place of a boson, φ0(τ).

The engineering dimensions of the component fields of M �
IN are:

[F~p ] = w0 + 1
2

wt(~p), (4.7)

where w0 is a constant determined by the choice of a Lagrangian. The number of component

fields, listed by their increasing engineering dimension, determines the Z-graded dimension of this

representation:

dim(M �
IN ) = dim

(
F0···0 = φ0|F10···0, F010···0, · · · | · · · |F11···1

)
,

=
(

1
∣∣N ∣∣(N

2

)∣∣(N
3

)∣∣ · · · ∣∣( N
N−1

)∣∣(N
N

))
,

(4.8)

so that there are 2N−1 bosonic and 2N−1 fermionic component fields in M �
IN .

Adinkras corresponding to M �
IN were called Top Clifford Algebra superfields [13]. The super-

multiplets themselves will be recognized by supersymmetry practitioners to be also representable

as real, “unconstrained” Salam–Strathdee superfields, in the familiar θ-expansion of which F~p(τ)

occurs as the coefficient of the θp11 · · · θ
pN

N monomial. Since the superspace θ’s generate an exterior

algebra, we refer to M �
IN as the exterior supermultiplet .

In closing this section, let us note the definition of the component fields introduced above is

sufficient for the purposes of the present work as our goals simply involved studying the representa-

tion theory of one-dimensional supersymmetry. If we were to consider the case of some dynamical

theory, i.e., write a superfield Lagrangian to specify some dynamics, then an alternative definition

of the components would be necessary, as was done in Ref. [22], for example. In all manifestly su-

persymmetrical theories, there exist ‘twisted’ versions of the supercharges denoted by D1, . . . ,DN ,

satisfying the following relations:{
QI , DJ

}
= 0,

{
DI , DJ

}
= 2i δIJ ∂τ ,

[
∂τ , DI

]
= 0, I, J = 1, . . . , N. (4.9)

An operator analogous to (4.1) may be defined by

D~p := Dp1
1 · · ·D

pN

N , (4.10)

and this is applied to superfields to define components upon taking the limit as all Grassmann

coordinate vanish. This entire process is known as defining components by projection.

4.1.2 The Clifford Supermultiplet

Another important supermultiplet, M =
IN := {F ~p(τ), ~p ∈ {0, 1}N}, may be obtained from M �

IN via

the non-local transform:

F ~p(τ) := ∂b(N−wt(~p))/2c
τ F~p(τ), i.e., F~p(τ) = ∂b(wt(~p)−N)/2c

τ F ~p(τ). (4.11)
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Remark 4.1: Since the transformation M �
IN ↔M =

IN is non-local for N > 1, these two supermulti-

plets must be regarded as distinct. With increasing N , it is clear that there is also a combinatorially

growing multitude of “intermediate” supermultiplets, all having the same, N -cubical topology, and

obtainable one from another by means of non-local transformations of the kind (4.11) [21].

Notice that, in contrast to Eq. (4.7),

[F ~p ] =

{
w0 + bN

2
c if wt(~p) is even,

w0 + bN
2
c+ 1

2
if wt(~p) is odd.

(4.12)

The Adinkra corresponding to the supermultiplet M =
IN was called the “base” Adinkra in Ref. [13].

Also, all off-shell bosonic component fields have the same engineering dimension, w0, and so do

all fermionic ones, equal to w0+1
2
. The number of component fields, listed by their increasing

engineering dimension, is (2N−1|2N−1)—considerably simpler than Eq. (4.8).

Example 4.1 The simplest nontrivial example of a Clifford supermultiplet occurs at N = 2 and consists
of two bosons φ1, φ2 and two fermions ψ1, ψ2, where the two supersymmetry generators act as follows:

Q1 φ1 = ψ1, Q2 φ1 = ψ2, (4.13a)

Q1 φ2 = ψ2, Q2 φ2 = −ψ1, (4.13b)

Q1 ψ1 = iφ̇1, Q2 ψ1 = −iφ̇2, (4.13c)

Q1 ψ2 = iφ̇2, φ1

ψ1

φ2

ψ2

Q2 ψ2 = iφ̇1, (4.13d)

The black (vertical) edges represent Q1-action and red (diagonal) edges that of Q2. Forgetting either one
of Q1, Q2, we remain with two disjoined N = 1 supermultiplets. The Q2-action involves here a scaling
factor of c = −1 in one pair, depicted by a dashed edge. This could be remedied by redefining ψ1, for
instance, but only to induce a c = −1 scaling factor in the Q1-action φ1 ↔ ψ1. No such redefinition will
eliminate the need for a minus sign in at least one pair of the transformations (4.13a)–(4.13d).

The N = 2 exterior supermultiplet and Adinkra is:

Q1 φ = ψ1, Q2 φ = ψ2, (4.14a)

Q1 ψ1 = iφ̇, Q2 ψ1 = −iF, (4.14b)

Q1 ψ2 = iF, Q2 ψ2 = iφ̇, (4.14c)

Q1 F = ψ̇2, φ

ψ1 ψ2

F

Q2 F = −ψ̇1, (4.14d)

Notice that (φ, F |ψ1, ψ2) → (φ1, φ̇2|ψ1, ψ2) and (φ1, φ2|ψ1, ψ2) → (φ, ∂−1
τ F |ψ1, ψ2) is the manifestly non-

local bijective field redefinition between the two supermultiplets.

Together with their Klein-flips, these are all the N = 2 Adinkras and supermultiplets [13,21].

Example 4.2 As another example, let N = 3. For M �
I3 , denote the component fields F~p alternatively

as φ~p for wt(~p) even (bosons), and ψ~p for wt(~p) odd (fermions). For M =
I3 , denote the component fields φ̄~p

and ψ̄~p, respectively, where Eq. (4.11) implies, for example:

φ̄000 = φ̇000, ψ̄100 = ψ̇100, φ̄110 = φ110, ψ̄111 = ψ111. (4.15)
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Following Definition 3.2, we then draw:

M �
I3 :

ψ010

φ0 = φ000

ψ001

φ011

ψ100

φ110

φ101

ψ111

vs.
M =

I3 :

ψ̄010

φ̇0 = φ̄000

ψ̄001

φ̄011

ψ̄100

φ̄110

φ̄101

ψ̄111

(4.16)

The distinction between these becomes clearer in the convention of Ref. [21], with the nodes drawn at a
height proportional to the engineering dimension of the corresponding component field:

M �
I3 :

φ0 = φ000

ψ100 ψ010 ψ001

φ110 φ101 φ011

ψ111

vs.

M =
I3 :

φ̄000 φ̄110 φ̄101 φ̄021

ψ̄100 ψ̄010 ψ̄001 ψ̄111

(4.17)

The Adinkra corresponding to the Klein-flip of M �
IN is obtained from Eq. (4.16) by reversing the vertex

coloring, black↔white.

We now turn to determine what other topologies are available to Adinkras, and correspondingly

to supermultiplets.

4.2 Quotients of the N -Cubes

Given an N -cubical Clifford supermultiplet, M =
IN , a novel opportunity emerges for N ≥ 4: Certain

identifications amongst the 2N−1 bosons and the 2N−1 fermions are possible such that the induced

action of the Q1, · · · , QN , ∂τ upon the components of the so projected supermultiplet remains con-

sistent with Eqs. (3.1). This is not possible for N < 4.

Example 4.3 For example, attempting to identify φ1 = φ2 in Eqs. (4.13) leads either to a trivial
supermultiplet consisting of a single bosonic constant, or to an immediate contradiction between the left-
hand side and the right-hand side equations (4.13a) and (4.13b):

Q1 φ1(τ) = ψ1(τ), Q2 φ1(τ) = ψ2(τ), (4.13a′)

Q1 φ1(τ) = ψ2(τ), Q2 φ1(τ) = −ψ1(τ). (4.13b′)

From the left-hand side pair, it follows that ψ2(τ) = +ψ1(τ), whereas the right-hand side pair implies
ψ2(τ) = −ψ1(τ). This is consistent only if ψ1(τ) = 0 = ψ2(τ), whereupon Eq. (3.1) implies that ∂τφ1(τ) =
0, reducing this supermultiplet to a trivial, single constant boson. Alternately, adding the left-hand side
Eq. (4.13a′) to the right-hand side Eq. (4.13b′) leads to Q1 φ1 +Q2 φ1 = 0. In a similar manner, subtracting
the second result in Eq. (4.13a′) from the first result in Eq. (4.13b′) leads to Q1 φ1 −Q2 φ1 = 0. Together,
these imply that Q1 φ1 = Q2 φ1 = 0.
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4.2.1 The N = 4 Projection

To clarify how such projections can occur, we examine the simplest of them, for N = 4.

Example 4.4 The N = 4 Isoscalar supermultiplet (i.e., the Clifford supermultiplet with bosons on the
bottom) is

M =
I4 = { φ̄0000, φ̄1100, . . . , φ̄1111|ψ̄1000, . . . , φ̄1110, . . . }, (4.18)

where the ellipses indicate component fields the subscript of which is obtained as a permutation on the
one preceding the ellipses. The Adinkra of this supermultiplet is:

M =
I4 :

ψ̄0100

φ̄0000

ψ̄0010

φ̄0110

ψ̄1000

φ̄1100

φ̄1010

ψ̄1110

φ̄0101

ψ̄0001

φ̄0011

ψ̄0111

φ̄1001

ψ̄1101

ψ̄1011

φ̄1111

(4.19)

By replacing, for convenience, in the bottom square of the right-hand side 3-cube:

φ̄0011 → −φ̄0011 , φ̄1001 → −φ̄1001 , (4.20)

ψ̄0001 → −ψ̄0001 , ψ̄1011 → −ψ̄1011 , (4.21)

the Adinkra (4.19) becomes:

π : M =
I4 →M =

I4 :

ψ̄0100

φ̄0000

ψ̄0010

φ̄0110

ψ̄1000

φ̄1100

φ̄1010

ψ̄1110

φ̄0101

−ψ̄0001

−φ̄0011

ψ̄0111

−φ̄1001

ψ̄1101

−ψ̄1011

φ̄1111

(4.22)

where the reflection across the central point marked by the star is a symmetry of the Adinkra, including
all the labelings. For the sake of clarity in this diagram, we have only indicated three of the eight vertex
pairs being reflected into each other by the dot-dash purple lines. The full set of reflection pairs is:

φ̄0000 ↔ φ̄1111 , −φ̄0011 ↔ φ̄1100 , −ψ̄0001 ↔ ψ̄1110 , ψ̄0010 ↔ ψ̄1101 , (4.23a)

φ̄0101 ↔ φ̄1010 , φ̄1001 ↔ φ̄0110 , ψ̄0100 ↔ −ψ̄1011 , ψ̄1000 ↔ ψ̄0111 . (4.23b)

It is thus possible to “orbifold” the Adinkra (4.22) by identifying, e.g., φ̄±0000 with φ̄0000 ± φ̄1111, and
consequently also identifying each two such vertices and so also the corresponding component fields:

π : (p1, p2, p3, p4) 7→ (1− p1, 1− p2, 1− p3, 1− p4), pI ∈ {0, 1}. (4.24)
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Both resulting Adinkras have the topology of (the 1-skeleton of) the projective hypercube in N = 4:

(M =
I4/Z2)± :

ψ̄±0100

φ̄±0000

ψ̄±0010

φ̄±0110

ψ̄±1000

φ̄±1100

φ̄±1010

−ψ̄±0001 (4.25)

where we have defined

(M =
I4/Z2)± : F ±~p (τ) := F ~p(τ)± (−1)p2+p4F ~1−~p(τ) (4.26)

for the component fields corresponding to the orbifolded Adinkras. As it turns out, the dimensional
reduction of the d = 4, N = 1 chiral supermultiplet has the topology (4.25) [21] but the height assignments
(engineering dimensions) of two of its bosons differ from the ones shown here. Note that every boson is
connected to every fermion, and vice versa. This becomes clearer in the convention of Ref. [21], where we
place the vertices at a height proportional to the engineering dimensions of the corresponding component
fields, so that all arrows point upward:

(M =
I4/Z2)± :

ψ̄±1000 ψ̄±0100 ψ̄±0010 −ψ̄±0001

φ̄±0000 φ̄±1100 φ̄±1010 φ̄±0110

(4.27)

In graph theory, this is known as K(4, 4), the complete bipartite graph connecting four bosons with four
fermions. Though it may appear at first that there could be further identifications, a closer look at the
Adinkra (4.27) reveals that the locations of the dashed lines prevent all further identification; that is, no
further projection is consistent with Eq. (3.1).

Remark 4.2: A combination of Eq. (4.26) and Eq. (4.11) shows that attempting an analogous

projection in M �
I4 would require the definitions:

“(M �
I4/Z2)±” : F±~p (τ) := ∂b(4−wt(~p))/2c

τ F~p(τ)± (−1)p2+p4∂b(wt(~p))/2c
τ F~1−~p(τ). (4.28)

The appearance of the ∂τ ’s indicates that this is not a quotient of the exterior supermultiplet M �
I4

itself, but of a multiple vertex-raise [21] of M �
I4 , which is in turn isomorphic to the M =

I4 . It should be

manifest that the differing engineering dimensions of the component fields in M �
I4 (and the locality

requirements) present the key obstruction to such a Z2 projection in M �
I4 . This proves that the

possibility to construct a local Z2-quotient of a supermultiplet strongly depends on its component

fields’ engineering degrees: while M =
I4 does have a local Z2-quotient, M �

I4 does not.
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4.2.2 N > 4 Projections

More generally, given an Adinkra, we can sometimes identify vertices, if all labeling of the cor-

responding vertices and edges matches up. This results is a quotient Adinkra. A correspondingly

projected supermultiplet is a quotient supermultiplet . We will now focus on quotients of the N -cube.

We show in Section 4.3 that all connected Adinkra topologies can be obtained in this way.

We start with an Adinkra with the topology of an N -cube, the vertices of which are the N -tuples

(x1, · · · , xN) ∈ {0, 1}N . Suppose that the desired projection, π, is to identify ~0 = (0, · · · , 0) with

some other vector ~x = (x1, · · · , xN). Now consider (1, 0, · · · , 0), which is connected to ~0 by an edge

of color 1. There is also an edge of the same color, 1, incident with the vertex at (x1, · · · , xN), and

this edge connects (x1, · · · , xN) to (1 − x1, x2, · · · , xN). If the edges are to match up, π must also

identify (1, 0, · · · , 0) with (1− x1, x2, · · · , xN). Following similarly the edges of all other colors, we

can prove by induction that if (v1, · · · , vN) is any vertex of {0, 1}N , then π identifies (v1, · · · , vN)

with (x1 + v1, · · · , xN + vN) (mod 2); we write ~v ≡π ~v � ~x. Thus, every projection π is completely

determined by the vertex which it identifies with ~0.

More generally, the projection π may identify more than one vertex with ~0. Suppose ~x and ~y

are two such vertices, identified with ~0. Then π establishes an equivalence relation so that ~0 ≡π ~x,

and ~x ≡π ~x� ~y. Thus, ~0 is identified with ~x� ~y.

Now, we note that the inverse −~x is equal to ~x modulo 2. Therefore, the set of vertices that

are to be identified with ~0 forms a group under component-wise addition modulo 2. Since we must

identify only bosons with bosons and only fermions with fermions, wt(~x) must be even. As we will

see in § 4.3, the weight wt(~x) must actually be a multiple of 4, or the dashedness of the edges cannot

possibly match up.

This yields the following construction:

1. Start with an Adinkra, A, with the topology an N -cube, IN = [0, 1]N .

2. Let G be a subgroup of (Z2)N consisting only of vectors ~x with wt(~x) ≡ 0 (mod 4).

3. Let G act on the vertex set {0, 1}N by component-wise addition modulo 2.

4. If this preserves the dashing of the edges, then A/G is an Adinkra whose topology is IN/G,

the corresponding quotient of the N -cube.

4.3 Finding all Adinkra Chromotopologies

Suppose an Adinkra is not connected. Then the corresponding supermultiplet splits into a direct

sum, each component of which corresponds to a connected component of the Adinkra. Now it is

possible for a connected Adinkra to correspond to a direct sum, though it may not be immediately

apparent by the Adinkra. This issue will be discussed fully in Ref. [33], where we also specify

precisely the conditions under which a supermultiplet may be represented by two topologically

distinct Adinkras. For now, all we need to note is that the problem of classifying Adinkras reduces

to classifying connected Adinkras.

As we will see, every connected Adinkra chromotopology is obtained by taking a colored N -

dimensional cube, then possibly identifying nodes and edges using a doubly even code. Thus, the
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topology of an Adinkra, obtained by forgetting the coloring of the edges and vertices, arises from

quotienting an (uncolored) N -dimensional cube using a doubly even code. First, some notation.

Suppose we have an Adinkra for N -extended supersymmetry, and we consider the chromotopol-

ogy. That is, we ignore the arrows on the edges and ignore whether an edge is dashed. What is

left is a vertex set V = {v1, · · · , v2m}, corresponding to all component fields (F1(τ ), · · · , F2m(τ )),3,

the coloring of these vertices, and the edge set E with its coloring. Since this graph is inherited

from a proper Adinkra, for every vertex and every I ∈ {1, . . . , N} there is an edge corresponding to

applying QI to the field corresponding to that vertex. Applying this QI may involve derivatives, a

sign, and/or a factor of i, but it will be convenient for now to suppress this. To this end, we define

functions q1, · · · , qN from the vertex set V = {v1, · · · , v2m} to itself, such that whenever A, B, and

I are such that there is an equation of type (3.4a) or (3.4b),

QI FA(τ) = c ∂λτ FB, =⇒ qI(vA) = vB. (4.29)

Notice that in defining qI from QI , we are forgetting the coefficients c = ±1, as well as the ∂τ ’s

which encode the differences in engineering dimensions. The supersymmetry algebra (3.1) then

implies:

q2
I = 1l, i.e. qI

(
qI(v)

)
= v, for all v ∈ V , (4.30)

and

qIqJ = qJqI , i.e. qI
(
qJ(v)

)
= qJ

(
qI(v)

)
, for all I, J , and all v ∈ V . (4.31)

Theorem 4.1 Every connected Adinkra chromotopology is a quotient of a colored N-dimensional

cube.

Proof: Suppose we have a connected Adinkra with N edge colors. Let V = {v1, · · · , v2m} be the

set consisting of all its vertices. Now pick, without loss of generality, any one bosonic vertex v∗ ∈ V
and fix it. We take the colored N -cube [0, 1]N , and consider its vertex set {0, 1}N . We then define

a mapping

π :

{
{0, 1}N → V,

(x1, · · · , xN) 7→ qx1
1

(
· · · qxN

N (v∗)
)
,

(4.32)

and write π(~x) := qx1
1

(
· · · qxN

N (v∗)
)
.

For any ~x ∈ {0, 1}N , we apply Eq. (4.32) to v∗. Then, for any I ∈ {1, · · · , N}, apply qI to π(~x):

qI
(
π(~x)

)
= qI

(
qx1

1

(
· · · qxN

N (v∗)
))

= qx1
1

(
· · · q1−xI

I

(
· · · qxN

N (v∗)
))
, (4.33)

= π(~x � ~eI), ∀v∗ ∈ V, ∀~x ∈ {0, 1}N , (4.34)

where we have applied Eq. (4.31) to commute qI through the other q’s in Eq. (4.33) and so obtain

Eq. (4.34), using the notation (4.5) for the component-wise “exclusive or” operation.

3 Previously, we labeled the bosons φ1, · · · , φm and the fermions ψ1, · · · , ψm. Here, it will be convenient for
notation to treat them on the same footing.
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Thus, each pair of vertices (π(~x), π(~x� ~eI)) ∈ V × V is connected by an edge, labeled by I, in

the Adinkra. Since there is an edge labeled by I connecting ~x with (~x � ~eI) in the N -cube, and

since all edges in the cube [0, 1]N are of this form, the map (4.32) induces a map πE that maps

edges colored I of [0, 1]N to edges colored I in the Adinkra.

To see that π is surjective, first observe that the Adinkra is connected. That is, every vertex

v ∈ V is connected, via a path of edges, to the fixed v∗ ∈ V . In the Adinkra, these edges have

colors, forming a sequence, I1, · · · , Ik, when tracing from the vertex v to v∗. If we then apply to v∗
a corresponding sequence of qI ’s, we get:

qI1
(
· · · qIk(v∗)

)
= v. (4.35)

Using the commutativity of the q’s to put them in numerical order and Eq. (4.30) to eliminate those

that appear more than once, we can write this as

π(~x) = qx1
1

(
· · · qxN

N (v∗)
)

= v. (4.36)

The fact that π sends bosons to bosons and fermions to fermions can be seen by the fact that

it sends the boson (0, . . . , 0) ∈ {0, 1}N to the boson v∗, and the fact that every vertex in V is

connected to v∗ by a sequence of edges, each of which alternates between bosons and fermions.

Let G = π−1(v∗), be the collection of points ~x ∈ {0, 1}N , which Eq. (4.32) maps to v∗. Being a

subset of {0, 1}N , G may be interpreted as a subset of (Z2)N .

We will now show G is a subgroup of (Z2)N . In fact, as we will see, G is the group such that

[0, 1]N/G is the chromotopology of the Adinkra in question. Trivially, ~0 ∈ G. Inverses exist since

every element is its own inverse in (Z2)N . Finally, let ~x and ~y be elements of G. Compose qx1
1 . . . qxN

N

with qy11 . . . qyN

N . The composition sends v∗ to itself, and we can commute the qI past each other to

write qx1+y1
1 · · · qxN +yN

N . Thus,

qx1+y1
1 · · · qxN +yN

N (v∗) = v∗. (4.37)

Since q2
I = 1, we can reduce the exponents of these modulo 2, and thus, π(~x � ~y) = v∗. Thus,

~x� ~y ∈ G. Therefore, G is a group.

We now define a bijection between {0, 1}N/G and the vertex set V of the Adinkra. The function

π : {0, 1}N → V has the property that for all ~x ∈ G, π(~y + ~x) = π(~y). Thus it is well-defined to

define a function on the cosets of G, f : {0, 1}N/G→ V , so that f(~y +G) = π(~y).

The function f is one-to-one, since if π(~y) = π(~z), we would have

qy11 . . . qyN

N (v∗) = qz11 . . . qzN
N (v∗), (4.38)

and this would imply

qy1+z1
1 . . . qyN +zN

N (v∗) = v∗, (4.39)

so that ~y� ~z ∈ G. The function f is onto, since π is, as was shown above. Thus, f is a bijection on

vertices. The argument that π sends edges to edges shows that the edges are similarly in bijection.

We therefore see that G is equal to the group of identifications on {0, 1}N , and the orbit space

{0, 1}N/G is the Adinkra. The map π realizes this quotient. We can use π to pull back all the
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labels from the Adinkra to {0, 1}N , and in this way, we have a cubical Adinkra the quotient of

which by G is the Adinkra in question. �X
We next consider what kinds of groups G can be used to quotient a cubical Adinkra. First,

note that G is a subgroup of (Z2)N . As we saw in Section 2, G is then a binary linear code. In the

analysis to far, we have used only the edge-coloring in the Adinkra.

Remembering also the vertex-coloring will force G to be even, that is, for each ~x ∈ G, wt(~x)

must be even. As we will see shortly, remembering the edge-dashedness will force G to be doubly

even, that is, for each ~x ∈ G, wt(~x) must be a multiple of 4.

Theorem 4.2 If an Adinkra is a quotient of an N-cube by a group G, then G is a doubly even

binary linear code.

Remark 4.3: The converse is also true, that is if G is a doubly even binary linear code, then there

is a family of adinkraic supermultiplets, the chromotopology of the Adinkra of which is a quotient

by G of a colored N -cube. In order to prove this fact, we must first discuss the relationship between

supersymmetry and Clifford algebras, which will be treated in the sequel, Ref. [33], in which for

every doubly even code, G, we construct a family of adinkraic supermultiplets with the {0, 1}N/G
chromotopology.

Proof: Recall from Section 2 that a binary linear code is a subgroup of (Z2)N , and that it is called

doubly even if every element of it has weight a multiple of 4. So we need to prove that for every

x ∈ G, wt(x) ≡ 0 (mod 4).

To this end, the qI ’s no longer suffice, and we will need to use the QI ’s; in particular, we

need to “remember” the scaling constants c encoding the edge-dashedness in an Adinkra, and the

equipartition of the vertices into bosonic and fermionic ones.

The statement that ~x ∈ G means that

π(~x) = qx1
1

(
· · · qxN

N (v∗)
)

= v∗, (4.40)

and thus

Qx1
1 · · ·Q

xN
N F1(τ) = C ∂ wt(~x)/2

τ F1(τ) (4.41)

for some complex number C. The exponent of ∂τ follows simply from comparing engineering

dimensions of the left-hand side and the right-hand side.

Since this sequence of QI operators, corresponding to a closed path in the Adinkra, must send

bosons to bosons and fermions to fermions, it must be that wt(~x) is even, so that 1
2

wt(~x) is indeed

integral and Eq. (4.41) is well-defined.

Applying Qx1
1 · · ·Q

xN
N twice to F1(τ), we find:

Qx1
1 · · ·Q

xN
N ·Q

x1
1 · · ·Q

xN
N F1(τ) = C2∂2Λ

τ F1(τ). (4.42)

On the left side, using the supersymmetry algebra (3.1), we can anti-commute the QI past each

other. Rearrange these to regroup the result into

= (−1)(
wt(~x)

2 )Q2x1
1 · · ·Q2xN

N F1(τ), (4.43)
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which, using the supersymmetry algebra (3.1) again), becomes

= (−1)(
wt(~x)

2 ) iwt(~x) ∂wt(~x)
τ F1(τ). (4.44)

Comparing the exponents of ∂τ in Eq. (4.42) with that in Eq. (4.44) confirms Eq. (4.41). Comparing

the numerical coefficients produces:

C2 = (−1)(
wt(~x)

2 ) iwt(~x) = iwt(~x)(wt(~x)−1)+wt(~x) = i(wt(~x)2). (4.45)

Since wt(~x) is even, we know that wt(~x)2 is a multiple of 4. Thus, the left hand side of this is 1.

Using (3.4a) and (3.4b) repeatedly, we see that C is±1 if wt(~x) = 0 (mod 4), and±i if wt(~x) = 2

(mod 4). But C2 = 1 implies that C = ±1, and this can happen only if wt(~x) = 0 (mod 4). �X

5 Codes, Again

5.1 Examples of Doubly-Even Codes

Since doubly even codes classify chromotopologies, it is useful to consider a few examples of such

codes. For each N there is a trivial doubly even code {00 · · · 0} with one element, which we call tN ;

its generating set is the empty set. In addition, when N = 4, there is a code {0000, 1111}, called

d4. The generating set is {1111}. More generally, for every even N ≥ 4, there is a doubly even code

called dN , of length N and with N
2
− 1 generators, with generating set
1 1 1 1 0 0 0 0 0 · · · 0 0 0 0 0
0 0 1 1 1 1 0 0 0 · · · 0 0 0 0 0
0 0 0 0 1 1 1 1 0 · · · 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0 · · · 0 1 1 1 1

 . (5.1)

Note that this is a description of the generating set, so that the actual code has more codewords,

including the null-vector and all those constructed by adding (bitwise, modulo 2) any number of

these generators together. For example,

[
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

]
generates



v0 = 0 0 0 0 0 0 0 0
v1 = 1 1 1 1 0 0 0 0
v2 = 0 0 1 1 1 1 0 0
v3 = 0 0 0 0 1 1 1 1

v1 � v2 = 1 1 0 0 1 1 0 0
v2 � v3 = 0 0 1 1 0 0 1 1
v1 � v3 = 1 1 1 1 1 1 1 1

v1 � v2 � v3 = 1 1 0 0 0 0 1 1


. (5.2)

Note that the same code, on the right-hand side of the display (5.2), is just as well generated by

{v1, v2, (v1 � v3)} and several other choices. For general N , the dN code contains 2
N
2
−1 codewords.

When N is congruent to 7 or 8 modulo 8, there is an important doubly even code called eN ,

the generating set of which is that of dN (or t1 ⊕ dN−1 when N ≡ 7 (mod 8)) augmented by an

additional generator of the form 101010 · · · . For instance,

e7 :

1 1 1 1 0 0 0
0 0 1 1 1 1 0
1 0 1 0 1 0 1

 , e8 :

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

 , (5.3)
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and we then write:

e15 :



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


, e16 :



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0


, (5.4)

and so on.

These are famous codes: e7 is known as the Hamming [7, 3] code, and e8 is the parity-extended

Hamming code. Ref. [27], describes a so-called “Construction A”, which determines a lattice as a

subset of ZN of all the points whose coordinates modulo 2 are in the code, and under this, we form

the famous lattices e7 and e8. The points that are of closest distance to the origin form the root

lattice for the Lie algebras E7 and E8, respectively. This correspondence is in fact more general [34],

and may in particular also used to reconstruct the root lattices of the DN Lie algebras.

Besides the trivial doubly even code tN , {000 · · · 0}, for any N ≡ 0 (mod 4), there is an [N, 1]

doubly even code hN consisting of {000 · · · 0, 111 · · · 1}, the generating set of which is {111 · · · 1}.4
Note that h4 = d4, but hN ⊂ dN for N = 8, 12, 16, . . . .

There are many other doubly even codes, and the number grows quickly as N becomes large;

see Appendix C and Refs. [35,27].

5.2 Forgetting the Color of Edges, Permutation Equivalence, and R-Symmetry

It is also possible to permute the columns in a code. For instance, for e7 we might swap the last

two columns and obtain a generating set 1 1 1 1 0 0 0

0 0 1 1 1 0 1

1 0 1 0 1 1 0

 . (5.5)

This is another doubly even code, and it is different from e7 as given in Eq. (5.3). To verify this,

one could write the 8 codewords in both cases and compare. More generally, any permutation of

columns of a code will produce another code, which is sometimes the same code, sometimes not.

An example where a column-permutation results in precisely the same code again can be seen

by taking the e7 generating set (5.3), and swapping the first and third column, then swapping the

second and fourth column. The result would be:1 1 1 1 0 0 0

0 0 1 1 1 1 0

1 0 1 0 1 0 1

 −→

1 1 1 1 0 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

 . (5.6)

4 This is the only code mentioned here not specifically named in Ref. [26].
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The result does not look like the e7 generating set, but it generates the same code. Indeed, replace

the second generator with the sum of the first and the second generator, and we recover exactly the

original generator set for e7.

Yet all the so-obtained codes are in some sense similar, and we call codes related in this way

permutation-equivalent. Note the distinction between code equality and their permutation equiva-

lence, which is weaker than equality. It is convenient for the classification and naming of codes to

give one name for the permutation equivalence class, and recognize the multiplicity of codes that

the name represents.

Since the columns of a code correspond to the various QI , a permutation of the columns of

the code corresponds to a permutation of the QI , i.e., to an R-symmetry. For real N -extended

supersymmetry, the group of R-symmetries is O(N); the permutation equivalences describe the

subgroup of this matrix group consisting of permutation matrices. Though this might suggest

that the physically relevant question is permutation equivalence of codes, this is not necessarily

so: It may well be possible to construct a theory with two types of supermultiplets, corresponding

to two different but permutation-equivalent codes, coupled in a way that precludes rewriting the

same theory in terms of only one type of supermultiplet. Although different in technical detail,

the inextricable coupling of chiral and twisted-chiral supermultiplets discovered in Ref. [36] is a

conceptual paradigm of this possibility.

The columns also correspond to the colors of the Adinkra, so permutation equivalence classes

give rise to Adinkra topologies (without the edge colors). This raises the question: do permutation

equivalence classes of doubly even codes classify connected Adinkra topologies? Certainly we have

just described a map from the set of permutation equivalence class of doubly even codes to the

set of connected Adinkra topologies. And certainly this map is surjective. But is it injective?

That is, is it possible that two non-equivalent doubly even codes will give rise to the same Adinkra

topology? The answer to this question is not clear, but luckily, in trying to classify Adinkras, we

can leapfrog the issue of classifying Adinkra topologies and instead use the classification of Adinkra

chromotopologies, where the issue is clear.

The set of column-permutations that do not change the (complete) code forms a group, called

the automorphism group of the code, Aut(G). The number of codes permutation-equivalent to G

is then N !/|Aut(G)|, and is regarded the “mass” of the code. Below is a table listing the number

of elements in Aut(G). Note that d4, e7 and e8 do not fit the pattern for the other dN or eN .

It turns out to be possible to independently determine the total number of [N, k] codes of

various kinds, including those we need here. This total number must equal the sum of all “mass”-

contributions, N !/|Aut(Gi)|, of all [N, k] codes, Gi. Such sum rules are called “mass formulae”, and

Gaborit [37] provides formulae to obtain all that we will need. These formulae are written by cases

according to the congruence class of N modulo 8, and are given in Appendix C.

These numbers, even for moderate N such as N = 11, are intimidating. Nevertheless, in

some cases, these are due to the many permutation-equivalent codes. Table 3 provides a listing of

permutation equivalence classes for N up to 11, obtained by combining the results from Table 2

and accounting for permutations.

Beyond this, however, the number of permutation equivalence classes is still large: see Table 4
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G |Aut(G)|
tN N !

d4 24

d2m, m > 2 2m−1m!

e7 168

e8 1344

e8m−1, m > 1 24m−1(4m− 1)!

e8m, m > 1 24m−1(4m)!

h4m, m > 1 (4m)!

Table 2: Number of elements in Aut(G)

and Appendix C for details. It is plainly impossible to list all the doubly even [N, k]-codes for

N ≤ 32 in journal publication.

N k = 0 k = 1 k = 2 k = 3 k = 4
4 t4 (1) d4 (1)
5 t5 (1) t1 ⊕ d4 (5)
6 t6 (1) t2 ⊕ d4 (15) d6 (15)
7 t7 (1) t3 ⊕ d4 (35) t1 ⊕ d6 (105) e7 (30)
8 t8 (1) t4 ⊕ d4 (70) t2 ⊕ d6 (420) t1 ⊕ e7 (240) e8 (30)

h8 (1) d4 ⊕ d4 (35) d8 (105)
9 t9 (1) t5 ⊕ d4 (126) t3 ⊕ d6 (1260) t2 ⊕ e7 (1080) t1 ⊕ e8 (270)

t1 ⊕ h8 (9) t1 ⊕ d4 ⊕ d4 (315) t1 ⊕ d8 (945)
10 t10 (1) t6 ⊕ d4 (210) t4 ⊕ d6 (3150) t3 ⊕ e7 (3600) t2 ⊕ e8 (1350)

t2 ⊕ h8 (45) t6 ∗ d6 (630) d4 ⊕ d6 (3150) d10 (945)
t2 ⊕ d4 ⊕ d4 (1575) t2 ⊕ d8 (4725)

11 t11 (1) t7 ⊕ d4 (330) t5 ⊕ d6 (6930) t4 ⊕ e7 (9900) t3 ⊕ e8 (4950)
t3 ⊕ h8 (165) t1 ⊕ t6 ∗ d4 (6930) t1 ⊕ d4 ⊕ d6 (34650) t1 ⊕ d10 (10395)

t3 ⊕ d4 ⊕ d4 (5775) t3 ⊕ d8 (17325) d4 ⊕ e7 (9900)
t5 ∗ d6 (13860)

Table 3: A listing of permutation equivalence classes for N up to 11, with the number of codes in

the permutation equivalence class given in in the parentheses. Here, ⊕ denotes a vector space direct

sum, so that if U ⊂ (Z2)N and V ⊂ (Z2)M , then U ⊕V ⊂ (Z2)N ⊕ (Z2)M ∼= (Z2)N+M . The notation

tM ∗C denotes the direct sum together with at least one additional “glue” codeword extending into

the tM summand, similar to how a eN code is constructed from the corresponding dN code.

5.3 Coset Enumerators and One-Hook Hanging Adinkras

Since we have concluded that any connected Adinkra chromotopology is a quotient of the N -cube

by a doubly even [N, k]-code G, the vertices of the Adinkra (that is, the component fields of the

supermultiplet) correspond to cosets of {0, 1}N , thought of as (Z2)N , by the subgroup G. This

immediately implies that the Adinkra has 2N−k nodes, where k is the dimension of G. Of these,
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N\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 1

5 1

6 1 1

7 1 1 1

8 2 2 2 1

9 2 2 2 1

10 2 3 3 2

11 2 3 4 3

12 3 5 7 7 2

13 3 5 8 8 4

14 3 7 12 14 9 4

15 3 7 15 20 15 8 2

16 4 10 23 38 36 23 9 2

17 4 10 25 45 50 34 14 3

18 4 13 34 72 94 79 35 9

19 4 13 40 94 146 141 75 19

20 5 17 57 158 295 353 231 84 10

21 5 17 63 194 439 629 494 198 38

22 5 21 83 298 812 1481 1465 740 187 25

23 5 21 95 387 1287 2970 3811 2362 714 119 11

24 6 27 129 607 2444 7287 12395 10048 3710 739 94 9

25 6 27 141 755 3808 15177 35916 38049 16039 2973 309 22

26 6 32 180 1114 6923 37455 128270 194626 103527 20206 1829 103

27 6 32 202 1435 11320 86845 * * * 174809 13578 525

28 7 39 263 2136 20812 * * * * * * 7402 151

29 7 39 287 2693 34233 * * * * * * * 1940

30 7 46 359 3866 * * * * * * * * * 731

31 7 46 400 4972 * * * * * * * * * * 210

32 8 55 506 * * * * * * * * * * * * 85

N/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 4: Number of distinct permutation classes of doubly even [N, k] codes. The “ * ” entry

indicates codes that are still being enumerated; see http://www.rlmiller.org/de codes/ for up-to-

date results, including links to listings of the actual codes.

one half represents bosonic component fields, and the other half fermionic component fields in the

corresponding supermultiplet. We thus have that the number of bosonic component fields, dB, and

the number of fermionic component fields, dF , after taking this quotient satisfy

dB = dF = 2N−k−1. (5.7)

In Ref. [21], we described a notion of hanging a graph by a one or more sources. For instance,

if we pick the vertex v∗ and hang the graph by it, we let all the arrows on edges point from the

vertices that are further away from v∗ (as measured through the edge set) to vertices that are closer

to v∗. Equivalently, for each vertex v we define the engineering degree of v to be

[v] = [v∗]−
1

2
dist(v, v∗), (5.8)

where dist(v, v∗) is the length of the shortest path from v to v∗ in the edge set. Then the arrows

are drawn in the direction of increasing engineering degree, upward.

For this, “one-hooked” Adinkra, we can examine how many component fields are in each engi-

neering degree. By Eq. (5.8), this is equivalent to finding how many vertices are of a given distance

22



N N min(dB)

4 1 4

8 2 8

12 3 64

16 4 128

20 5 1, 024

24 6 2, 048

28 7 16, 384

32 8 32, 768

Table 5: Minimal numbers for dB and dF

from the highest vertex, v∗. The corresponding notion in coding theory is the “coset weight enu-

merator” [26]. This is a polynomial of the form
∑

` a` x
` where a` is the number of cosets whose

distance to the 0 coset is `. Thus, the coset weight enumerator for a doubly even code can be used

to find the number of component fields in each engineering dimension for a one-hooked Adinkra

corresponding to that doubly even code.

The equation of (5.7) implies that in order to minimize the numbers of bosonic and fermionic

fields in an Adinkra, one must maximize the value of k to k = κ(N). Thus the minimum number

of bosons, min(dB), and the minimum number of fermions, min(dF ), satisfy

min(dB) = min(dF ) = 2N−κ(N)−1. (5.9)

Since the ultimate application toward which all our efforts are aimed is a comprehensive understand-

ing of the representation theory of spacetime supersymmetry in higher dimensions, it is perhaps

useful to use this formula to gains some insights into the representations present in 4D, N -extended

supersymmetric theories (note: N := N/4). For this purpose we note the results in Table 5,

calculated using (5.9).

The lowest values are in perfect agreement with well known results. The value for N = 1

corresponds to the chiral supermultiplet, the value for N = 2 corresponds to the vector and tensor

supermultiplets, and the value of N = 3, 4 corresponds to the respective Weyl supermultiplets.

Curiously enough and by very different arguments [38], the final result of min(dB) = min(dF ) =

32, 768 in this table appeared very early in our considerations of iso-spinning particles and “Garden

Algebras” as the spectrum generating algebras of spacetime supersymmetry.

6 Toward a Classification of Adinkras and Supermultiplets

We have in this paper described the classification of chromotopologies of Adinkras: they are disjoint

unions of connected chromotopologies, each of which is described by a doubly even binary linear

code. The converse fact that every doubly even code can be used to form an Adinkra will be proved

in Ref. [33]. This is done by taking an arbitrary doubly even code and constructing a supermultiplet

whose Adinkra chromotopology comes from the code.

We have already addressed the issue of orienting the edges in Ref. [21]: given a chromotopology,

consider all the ways to hang the vertices of the graph at various heights, subject to certain condi-
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tions. In Ref. [21] we have also proven that all such height assignments can be obtained one from

another through a sequence of ‘vertex-raising/lowering’. In turn, the possible choices in dashing of

edges, i.e., assigning factors of −1 to the action of certain QI ’s on certain component fields (see

Table 1), is closely related to the classification of representations of the Clifford algebras [39] and

their iterated Z2-quotients, and is deferred to subsequent work.

As per Definition 3.2, a choice of a chromotopology together with a choice of orientations for all

the edges and a choice of their dashedness fully specifies every Adinkra.

In light of all of the above, does this classify one-dimensional N -extended off-shell supermulti-

plets? Not quite. First, there is the question of whether every such supermultiplet comes from an

Adinkra. Our investigations in this area indicate that there do indeed exist non-Adinkraic super-

multiplets, but Adinkras turn out to be useful in their description. Second, we might ask whether

two Adinkras may describe the same supermultiplet. This indeed occurs, and this issue will be

settled in Ref. [33]. Suffice it to say here that, depending on the engineering dimensions of the com-

ponent fields, distinct Adinkras usually correspond to distinct supermultiplets. Recall also that the

number of possible such choices of engineering dimensions grows combinatorially with the number

of component fields [21], which in turn grows exponentially with N .

We are now also in position to review a minor controversy from a more complete perspective.

There is in the literature a work [17] the title of which leaves the impression of the existence of a

prior complete classification of all off-shell representations of N -extended worldline supersymmetry

without central charges. Ref. [23] then shows that only using the scheme described in [17], there

exist counter-examples to this impression, which in turn caused two of the Authors of [17] to create

a further ‘refinement’ [40] to their scheme.

Our current work shows that the problem of a complete classification of off-shell representations

of N -extended worldline supersymmetry (and also Adinkras) includes the simpler problem of a

complete classification of Adinkra chromotopologies. The latter problem is itself a formidable one

as apparently the number of inequivalent chromotopologies grows combinatorially with N and k; see

Table 4. The works of Refs. [17,40] include neither reference nor indication to this simpler problem

of classifying chromotopologies or some equivalent thereof, and with it the emergence of the role

played by doubly even binary linear error-correcting codes. Even with the proposed ‘refinement’ the

works of Refs. [17,40] must then be regarded as leaving more work necessary for the presentation

of a complete theory of the off-shell representations of N -extended worldline supersymmetry.

Finally, we wish to draw attention to the “degeneracy” in constructing even the minimal super-

multiplets for various N , uncovered by the listing of permutation equivalence classes of doubly even

binary linear codes in Table 4.

In Table 6, we list the dimensions of the minimal representations for 1 ≤ N ≤ 16, and pro-

vide the doubly even binary linear codes which encode the projection of IN = {0, 1}N so as to

obtain the corresponding Adinkra topologies. Starting with N = 10, there is more than one such

permutation-inequivalent projection, and so more than one such minimal Adinkra topology. Each

of these corresponds to at least one minimal supermultiplet, obtained by iteratively projecting an

“unprojected” supermultiplet such as the Clifford supermultiplet, M =
IN , defined in section 4.1.2,

according to the provided permutation equivalence class of codes. “Unprojected” supermultiplets
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

(1|1) (2|2) (4|4) (4|4) (8|8) (8|8) (8|8) (8|8)

d4
1111

t1 ⊕ d4
01111

d6
001111
111100

e7
0001111
0111100
1010101

e8
00001111
00111100
11110000
01010101

N = 9 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15 N = 16

(16|16) (32|32) (64|64) (64|64) (128|128) (128|128) (128|128) (128|128)

t1 ⊕ e8
0 00001111
0 00111100
0 11110000
0 01010101

t2 ⊕ e8
00 00001111
00 00111100
00 11110000
00 01010101

t3 ⊕ e8
000 00001111
000 00111100
000 11110000
000 01010101

d4 ⊕ e8
0000 00001111
0000 00111100
0000 11110000
0000 01010101
1111 00000000

t1 ⊕ d4 ⊕ e8
00000 00001111
00000 00111100
00000 11110000
00000 01010101
01111 00000000

d6 ⊕ e8
000000 00001111
000000 00111100
000000 11110000
000000 01010101
001111 00000000
111100 00000000

e7 ⊕ e8
0000000 00001111
0000000 00111100
0000000 11110000
0000000 01010101
0001111 00000000
0111100 00000000
1010101 00000000

e8 ⊕ e8
00000000 00001111
00000000 00111100
00000000 11110000
00000000 01010101
00001111 00000000
00111100 00000000
11110000 00000000
01010101 00000000

d10
0000001111
0000111100
0011110000
1111000000

t1 ⊕ d10
0 0000001111
0 0000111100
0 0011110000
0 1111000000

d12
000000001111
000000111100
000011110000
001111000000
111100000000

t1 ⊕ d12
0 000000001111
0 000000111100
0 000011110000
0 001111000000
0 111100000000

d14
00000000001111
00000000111100
00000011110000
00001111000000
00111100000000
11110000000000

e15
000000000001111
000000000111100
000000011110000
000001111000000
000111100000000
011110000000000
101010101010101

e16
0000000000001111
0000000000111100
0000000011110000
0000001111000000
0000111100000000
0011110000000000
1111000000000000
1010101010101010

d4 ⊕ e7
0000000 1111
0001111 0000
0111100 0000
1010101 0000

d6 ⊕ e7
0000000 001111
0000000 111100
0001111 000000
0111100 000000
1010101 000000

e7 ⊕ e7
0000000 0001111
0000000 0111100
0000000 1010101
0011110 0000000
1111000 0000000
1010101 0000000

e13
0000000001111
0000000111100
0000011110000
0001111000000
1110101010101

e14
00000000001111
00000000111100
00000011110000
00001111000000
00111100000000
11010101010101

Table 6: Minimal supermultiplets of the indicated N -extended supersymmetry, with the stated

number of (bosonic|fermionic) component fields and a generator set for the code, C, specifying the

chromotopology as the {0, 1}N/C quotient.

other than M =
IN can, in general, be quotiented only by a subcode of the listed codes, depending on

the distribution of the component fields’ engineering dimensions.

Notice that Table 6 details the cases represented only by the N ≤ 16 right-most entries in

Table 4, and the corresponding entries in Table 5. The remaining, 16 < N ≤ 32 right-most

entries in Table 4 also correspond to topologically distinct minimal supermultiplets, but their sheer

number prevents us from displaying them in the manner of Table 6. This clearly illustrates that

this “degeneracy” amongst even the minimal supermultiplets grows extremely fast with N .

In turn, this provides a surprising wealth of building blocks for models withN -extended worldline

supersymmetry as N is increased towards N = 32.
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Mathematics is not a careful march down a well-cleared highway,

but a journey into a strange wilderness,

where explorers often get lost.

– W.S. Anglin
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A Deferred Details on Supersymmetry and Adinkras

A.1 Real Coefficients

Real supermultiplets, M = (F1(τ ), · · · , Fm(τ )) consist of real component fields:
(
FA(τ)

)†
= FA(τ),

and supersymmetry is assumed to preserve this condition. In this section, we will show that this

condition implies that the coefficients c in Eq. (3.4a) and Eq. (3.4b) are real.

We use the convention whereby (XY )† = Y †X†, regardless whether X and Y are bosonic

(commuting) or fermionic (anticommuting) objects, as is standard in the physics literature.

If φA(τ) is real, then its supersymmetry transform must also be real. Applying this to Eq. (3.4a)

results in

δQ(ε)φA(τ) = −iεI c ∂ [φA]+ 1
2
−[ψB ]

τ ψB(τ). (A.1)

Thus (
δQ(ε)φA(τ)

)†
= i ∂

[φA]+ 1
2
−[ψB ]

τ ψ†B(τ) c∗ εI = − iεIc∗ ∂ [φA]+ 1
2
−[ψB ]

τ ψB(τ). (A.2)

Comparing the right-hand sides of Eqs. (A.1) and (A.2), we find that

c∗ = c. (A.3)

Thus the coefficients c are real.

A.2 The Proof that Scaling Factors c = ±1 are the Only Ones Necessary

We now will show that the coefficients in an adinkraic supermultiplet can be chosen to be c = ±1

via a rescaling of fields by real numbers.

Proposition A.1 Suppose we have an adinkraic supermultiplet, with F1(τ ), · · · , F2m(τ ) for compo-

nent fields. There is a real rescaling of these component fields so that each non-zero coefficient c in

Eqs. (3.4a) and (3.4b) is equal to 1 or −1.

Proof: We suppose we have component fields F1(τ ), · · · , F2m(τ ),5 and supersymmetry generators

QI so that the supersymmetry transformation rules are all of the form

QIFA = c ∂λτ FB (A.4)

where λ is either 0 or 1, and FB is another component field, and c is a complex number (real if FA
is bosonic, pure imaginary if FA is fermionic).

We can draw an Adinkra-like graph for this supermultiplet: we again create vertices v1, · · · , v2m

to correspond to the component fields F1, · · · , F2m—white for bosonic fields and black for fermionic

fields. For each supersymmetry transformation like the one above, we draw an edge from the vertex

vA to vB. The arrow goes from vA to vB if λ = 0, and the reverse if λ = 1. As before, this is

consistent with the corresponding equation for QIFB. Instead of choosing between a dashed or

5 See footnote 3 in the proof of Theorem 4.1 about the use of this notation.
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solid line, we label the edge by c if FA is bosonic and i/c if it is fermionic. It is easy to check that

this is consistent with the corresponding equation for QIFB.

We can work on each connected component of this Adinkra-like graph separately. So for the

following we assume our Adinkra-like graph is connected.

We wish to rescale the various component fields so that c has absolute value 1. A naive approach

would be to simply rescale FB by c, so that c disappears in Eq. (A.4). But remember that there are

2mN of these equations, and only 2m component fields. More visually, imagine the Adinkra-like

graph with separate c-labels on each edge. We can imagine starting at one vertex, then going along

an edge to the next vertex, rescaling the corresponding field by whatever it takes to make c = 1 on

that edge. The trouble is that when we come back to a vertex we already saw, we are no longer

free to rescale that field without messing up other c’s. But as we will see, it turns out that the

supersymmetry algebra guarantees that when we return to a previously-seen vertex, the edge will

have |c| = 1.

We first begin by removing all the loops, using the following standard procedure from graph

theory: if we choose an edge, and erase it from the graph, the graph may either separate or stay

connected. We first find an edge so that erasing it keeps the graph connected. By successively finding

such edges and erasing them, we obtain a minimal graph so that this graph is still connected. This

resulting graph is a tree, so that for every pair of vertices vi and vj, there exists a unique, non-

backtracking path from vi to vj in this tree (were it not unique, we could remove another edge).

This tree is called a spanning tree for the original graph. The spanning tree for a graph is not

unique, but we select one. See Figure 1.

Figure 1: On the left is an N = 3 cubical Adinkra. The dashedness of the lines are suppressed for

clarity. Some edges (shown with thin lines) can be deleted, until what is left is a tree, called the

spanning tree (shown at right).

Now pick any vertex in our graph, denote it v∗ and the corresponding component field F∗(τ).

For simplicity of exposition we can assume v∗ is bosonic. If vi is any other vertex, there is a sequence
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of edges in the tree connecting v∗ with vi, corresponding to a sequence of QI ’s, say QI1 , · · · , QIn .

We then apply Eq. (A.4) iteratively to F∗(τ), obtaining

QIn · · ·QI1F∗(τ) = Ci ∂
λ
τ Fi(τ) (A.5)

for some non-negative integer λ (recording the number of arrows that point in the opposite direction

of the path), and some non-zero coefficient Ci. This coefficient Ci is real if n ≡ 0, 1 (mod 4), and

pure imaginary if n ≡ 2, 3 (mod 4). It is then possible to rescale Fi(τ) as

F̃i(τ) := |Ci|Fi(τ), (A.6)

and using F̃i(τ) instead of Fi(τ) in the description of the supermultiplet. This rescaling is by a real

number. Do so for every vi 6= v∗. We have now done all the rescaling of the fields that we will do.

The result is a new Adinkra-like graph, where each Ci has absolute value 1.

If instead we want to go from vi back to v∗ in the tree, we can do the supersymmetry transfor-

mations in reverse:

QI1 · · ·QInFi =
1

Ci
∂n−λτ F∗. (A.7)

Now suppose we choose two vertices vi and vj of the graph. We construct a path P from vj
to vi by first taking the non-retracing path in the spanning tree from vj to v∗, followed by the

non-retracing path in the spanning tree from v∗ to vi. See Figure 2. Note that P might be partially

retracing, if the last few edges of the first path is retraced backward by a beginning segment of the

second path. This retracing is immaterial for us.

v∗

vi

vj

P

Figure 2: Using the same example as in Figure 1, suppose we are considering the vertices vi and

vj as seen in the figure. The blue path shows a path P in the spanning tree going from vj to

v∗, followed by a path in the spanning tree going from v∗ to vi. One edge is retraced, but this is

irrelevant for our purposes. The sequence of colors (black = 1, red = 2, green = 3) along P indicate

that we should consider Q3Q1Q2Q2Q3vj which will be a constant multiple of ∂3
τvi. Because of our

rescaling in Eq. (A.6), we know this constant has absolute value 1.

If the path P involves the sequence QJ1 · · ·QJk
of supersymmetry generators, we then use

Eq. (A.5) and Eq. (A.7) to get

QJk
· · ·QJ1Fj =

Ci
Cj

∂µτ Fi, (A.8)
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where µ is some non-negative integer, measuring the number of arrows pointing against the path

P . Note that Ci/Cj has absolute value 1.

In particular, if we consider any edge of our Adinkra that is in the spanning tree, its label c now

has absolute value 1.

We now examine an edge of the Adinkra that is not in the spanning tree. Suppose it connects

a bosonic vertex vi to a fermionic vertex vj, i.e., there is a QI so that

QIvi = c ∂λτ vj (A.9)

for some real c and λ = 0 or 1. Now take the path P in the spanning tree described above, namely,

the one that goes from vj to v∗ then to vi. This corresponds to a sequence of supersymmetry

generators QI1 , · · · , QIn . We now close the path P into a closed loop, P ′ by adding to P the new

edge going back from vi to vj.

v∗

vi

vj

P ′

Figure 3: Suppose we consider the orange edge from vi to vj, which is in the original Adinkra but

not in the spanning tree. We draw that path P from vj to vi in the spanning tree as in Figure 2,

and then tack on the orange edge. The resulting path P ′, shown in blue, is a loop from vj to itself.

Using Eq. (A.9) together with Eq. (A.8) we get, for some r ∈ N,

QIQIn · · ·QI1Fj(τ) = c(−i)rCi
Cj

∂λ+µ
τ Fj. (A.10)

As this is a closed loop, we can apply this equation to itself, and get

(QIQIn · · ·QI1 )2 Fj(τ) = (−1)rc2

(
Ci
Cj

)2

∂2(λ+µ)
τ Fj(τ). (A.11)

Using Eq. (3.1) we can anti-commute the QI ’s past each other, contracting the repeated QI ’s, until

we get

±(i∂τ )
n+1Fj(τ) = (−1)rc2

(
Ci
Cj

)2

∂2(λ+µ)
τ Fj(τ). (A.12)

The ± sign is determined by n and how many repetitions there are in the QI sequence. Note that

n + 1 is even, since each edge connects vertices of opposite statistics, and a sequence of n + 1 of
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these edges go from vj to itself. Thus, the left hand side of Eq. (A.12) is actually real. We can then

match coefficients in Eq. (A.12) to get

c2 = ±(−1)r+(n+1)/2
C2
j

C2
i

= ±1. (A.13)

From this we see that c must have complex absolute value 1. Since c is real, c = ±1. Furthermore,

we also note from Eq. (A.12) that 2(λ + µ) = n + 1, indicating that the loop P ′ involved precisely

(n + 1)/2 arrows going against the path, and thus, (n + 1)/2 arrows going along the path. This

implies that the absence of central charge excludes Escheric loops [13]. �X
This also proves that Adinkraic supermultiplets with no central charge are engineerable [21]: it

is possible to assign engineering dimensions to all component fields, consistently with the action

Eqs. (3.4) of the supersymmetry algebra (3.1), and without having to introduce parameters of

nonzero engineering dimension in either of these.

B Complex Adinkras

Everything in the paper up to now has dealt with supermultiplets thinking of each field as real. If

we wish to represent complex supermultiplets, we can introduce a kind of Adinkra that is analogous

to the Adinkras we have been considering up to now, only using vertices to describe complex fields

instead of real fields. Many of the same ideas continue to hold, except that instead of the coefficients

c being real, they might also be complex.

If an adinkraic supermultiplet is complex, then the proof of Proposition A.1 in Appendix A.2 can

be modified in the following way: when the fields are rescaled by a real number to make |Ci| = 1,

we can actually rescale the fields by a complex number to make each Ci = 1. Then, Eq. (A.13)

shows that the c2 = ±1, so that c could be ±1, or it could also be ±i. So instead of edges being

either solid or dashed, there should be two other ways to decorate the edge to denote the additional

cases of i and −i.

For examples of complex Adinkras, we can take the cubical Adinkras, and simply reinterpret

the vertices as representing complex component fields, instead of real ones. Thus, for N = 1, there

is the base Adinkra and the Klein-flipped base Adinkra, just as in the real case. Note that these

have edges labelled only by ±1, so it is no surprise that there are other complex Adinkras that are

not described in this way.

As in the real case, connected Adinkras can be obtained by taking the quotient of a cube by a

binary linear block code (the same proof applies), but this time the condition that the code is doubly

even is replaced by the condition that the code is even and self-orthogonal. That is, codewords need

not have weights that are multiple of 4; rather, we require simply that their weights be even. In

this case, we must also impose self-orthogonality, since unlike doubly even codes, even codes are

not always self-orthogonal.

For instance, theN = 2 exterior Adinkra splits. To be specific, theN = 2 exterior supermultiplet

involves two bosons φ1, φ2 and two fermions ψ1, ψ2.

Q1φ1 = ψ1, Q2φ1 = −ψ2, (B.1)
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Q1φ2 = ψ2, Q2φ2 = ψ1, (B.2)

Q1ψ1 = −i ∂τφ1, Q2ψ1 = −i ∂τφ2, (B.3)

Q1ψ2 = −i ∂τφ2, Q2ψ2 = i ∂τφ1. (B.4)

To project out, we define φ = φ1 + iφ2, φ̄ := φ1 − iφ2, ψ = ψ1 + iψ2, and ψ̄ := ψ1 − iψ2. The

supermultiplet (φ1, φ2|ψ1, ψ2) may then be rewritten as a complex supermultiplet, (φ|ψ), and its

conjugate, (φ̄|ψ̄), with the supersymmetry transformations:

Q1φ = ψ, Q2φ = iψ, (B.5)

Q1ψ = −i ∂τφ, Q2ψ = −∂τφ; (B.6)

Q1φ̄ = ψ̄, Q2φ̄ = −iψ̄, (B.7)

Q1ψ̄ = −i ∂τ φ̄, Q2ψ̄ = ∂τφ. (B.8)

The (complex) C-Adinkras for (φ|ψ) and for (φ̄|ψ̄) exhibit a relationship between the two complex

supermultiplets:

ψ

i1

φ

-�
complex

conjugation

ψ̄

−i1

φ̄

(B.9)

The two disagree only on the values of c. The unlabeled topologies are the same, with a double

edge between two vertices.

We note that one of these two complex supermultiplets (B.9) can be regarded as the “chiral”

supermultiplet, while the other is its conjugate, the “anti-chiral” supermultiplet. Also, Q2 6= ±i Q1;

we note that Q2 = +iQ1 when acting on φ(τ) and ψ̄(τ), but Q2 = −iQ1 when acting upon φ̄(τ)

and ψ(τ). Thus, Q1 and Q2 really are independent.

C Computing Doubly Even Codes

For some classification problems, there are theorems that answer the question once and for all.

For example, the theorem on the classification of finitely generated abelian groups describes the

isomorphism class of such a group via a simple sequence of integers. In most cases in combinatorics,

one cannot hope for such a theorem. Instead one must settle for an exhaustive enumeration up to

a certain size. It turns out that there are more than 1.1 trillion doubly even, binary [32, k] codes,

which without compression will take some number of terabytes to store. Using methods including

those described in this appendix, we have already computed over 60,000 of these codes.

The first section of this appendix gives the formula describing the number of codes we are inter-

ested in and a lower bound for the number of permutation-isomorphism classes of codes. The next

section explains the computations necessary for computing the automorphism group and canonical

representative of a binary code, which are critical for the exhaustive enumeration. In the third
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section, some optimizations for the particular situation at hand are discussed, which are used in an

implementation written specifically for this purpose. The fourth section describes the overarching

algorithm designed to produce the intended enumeration.

The methods used to tackle this problem, namely partition refinement and canonical augmenta-

tion, were originally developed by McKay [41,42], who describes an effective method for computing

the automorphism group of a graph and for generating a unique representative for each isomorphism

class. These methods were adapted by Leon in Ref. [43] to tackle similar problems, including several

group theory questions (which are graph isomorphism complete) as well as the problem at hand,

namely computing the automorphism group of a linear code. McKay and Leon have both written

optimized software packages implementing these methods. The first software package, which re-

mains the standard program for determining graph isomorphism, is called nauty, and is available

online through McKay’s website [44]. The second is now licensed under the GPL, thanks to the

efforts of David Joyner and Vera Pless, and is available as a part of GUAVA [45], a GAP package

for coding theory. GPL implementations for the cases of graphs of any size and binary codes of

length up to 32 (or 64 on many machines) can be found in Sage [46] (sage.graphs.graph_isom and

sage.coding.binary_code). For more details about the latter, written specifically for the classifica-

tion of Adinkra topologies, the Reader can consult Section C.3. The second and fourth sections are

essentially a summary of the techniques described in Refs. [41] and [42], respectively, which provide

the full story. The Reader should also be aware of the improvements to this algorithm in the sparse

case in Ref. [47].

C.1 The Mass Formula

The following formula, due to Gaborit [37], gives the number σ(N, k) of distinct doubly even binary

[N, k] codes, depending on the residue of N modulo 8:

σ(N, k) =



k−1∏
i=0

2N−2i−2 + 2b
N
2 c−i−1 − 1

2i+1 − 1
, if N ≡ 1, 7 (mod 8),

k−1∏
i=0

(
2

N
2
−i−1 + 1

)(
2

N
2
−i−1 − 1

)
2i+1 − 1

, if N ≡ 2, 6 (mod 8),

k−1∏
i=0

2N−2i−2 − 2b
N
2 c−i−1 − 1

2i+1 − 1
, if N ≡ 3, 5 (mod 8),

k−2∏
i=0

2N−2i−2 + 2
N
2
−i−1 − 2

2i+1 − 1
·$+(N, k), if N ≡ 0 (mod 8),

k−2∏
i=0

2N−2i−2 + 2
N
2
−i−1 − 2

2i+1 − 1
·$−(N, k), if N ≡ 4 (mod 8),

(C.1)

$±(N, k) :=
1

2k−1
+

2N−2k ± 2
N
2
−k − 2

2k − 1
, (C.2)
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We are interested in those codes with N ≤ 32. According to the mass formula above, we find the

most such codes when N = 32 and k = 10. In this case,

σ(32, 10) = 162, 953, 548, 221, 364, 911, 292, 708, 847, 668, 107, 902, 745, 573, 601, 875

≈ 1.6× 1047.
(C.3)

However, we are interested not in the codes themselves, but rather their equivalence classes under

permutations of the columns. To establish a lower bound on the number of equivalence classes,

suppose that every such code has a trivial automorphism group and thus its orbit is as large as

possible, namely 32!. Hence there are at least⌈
σ(32, 10)

32!

⌉
= 619, 287, 158, 132 (C.4)

distinct classes of [32, 10] codes. If we carry out a similar computation for each case of interest, we

find that there are at least

κ(32)∑
k=0

⌈
σ(32, k)

32!

⌉
= 1, 117, 005, 776, 858 ≈ 1.1× 1012 (C.5)

distinct classes (note that for smaller N , we simply add zero columns to obtain an equivalent code

of degree 32). Since the automorphism group of a generic code is small, this lower bound is a

reasonable estimate for the actual number of codes.

Regardless of the speed at which an individual processor can generate codes, the procedure for

generating the codes can be run in many parallel processes. We can not only divide by the rate

at which we can generate codes per processor, but we can also divide by the number of processors

working on the job. This is what makes the computation feasible; speed increases almost linearly

as a function of the number of processors.

C.2 Computing the Automorphism Group

Computing the automorphism group of a binary code is closely related to the graph isomorphism

problem. Given a binary block code C ⊂ {0, 1}N , define a bipartite graph G(C), with the vertices

partitioned into “left” and “right”, as follows: The words of the code are the left vertices, and the

set {1, 2, ..., N} forms the right set of vertices. Given a word w on the left, and a number j on

the right, there is an edge between the two if and only if w has a 1 in the jth place. Consider

the automorphism group Aut(G(C)) of the graph, but allow only those permutations that map left

vertices to left vertices and right vertices to right vertices. This gives a subgroup Aut(G(C))b which

is isomorphic in a canonical way to the permutation automorphism group of the code, simply by

considering each permutation’s action on the right set of vertices, which is identified with the set of

columns of the code. Our approach is to think of the codes in terms of their corresponding bipartite

graphs, with additional structure coming from the linear, self-orthogonal code. The algorithm

described in this section computes the automorphism group of the code, as well as a canonical

representative of the code, which is an arbitrary but fixed representative of the isomorphism class.

Suppose G is a graph, and Π is a partition of the vertices V (G). The partition Π is called

an equitable partition if for every pair of cells C1, C2 in Π, the number of edges {u, v} such that
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v ∈ C2 is constant as u ranges over vertices in C1. By considering the orbits of vertices of the graph

under any subgroup of the automorphism group, one obtains a partition which is always equitable.

However, the converse is not always true; there are equitable partitions which do not arise in this

way. One partition Π1 is coarser than another partition Π2 (or Π2 is finer than Π1) if every cell of

Π2 is a subset of a cell of Π1. The discrete partition is the one where every cell is of size one, and

the unit partition is the one where there is only one cell.

Given a graph G and a partition Π of V (G), denote by EG(Π) the coarsest equitable partition of

G which is finer than Π. In particular, if Π is equitable with respect to G, then EG(Π) = Π. The al-

gorithm described in this section takes as input a graph G and a partition Π0 of V (G), and it returns

the subgroup Aut(G)Π0 of the automorphism group consisting of permutations that respect Π0, i.e.,

that do not carry any vertex of one cell of Π0 into another. From here on, consider all partitions

to be ordered, so that for example ({1, 2, 3}, {4, 5}) 6= ({4, 5}, {1, 2, 3}). In particular, a discrete

ordered partition is simply an ordering on the vertices of G. For v ∈ V (G), if Π = (C1, ..., Cr)

and v ∈ Ci, define R(G,Π, v) = EG(Π′), where Π′ = (C1, ..., Ci−1, {v}, Ci−1 \ {v}, Ci+1, ..., Cr).

This defines R(G,Π, v) up to reordering of the cells of the partition. For full details, see Ref. [41],

Algorithm 2.5, which defines the ordering.

Define a rooted tree T = T (G,Π0) consisting of equitable partitions of G finer than Π0 as

follows: The root of T is the partition EG(Π0), and for any node Π of T , its children are the

partitions R(G,Π, v) for which v is not yet in a singleton cell of Π. The group Aut(G)Π0 acts on

the tree T by taking a sequence of nested partitions Π0, ...,Πk to the resulting nested sequence of

partitions by letting Aut(G)Π0 act on the elements of the cells; since this sequence is defined by a

sequence v1, ..., vk, the sequence γ(v1), ..., γ(vk) defines the image under γ ∈ Aut(G)Π0 . Further, the

subgroup of permutations respecting a partition Π acts on any subtree of T rooted at Π. Because

this action is faithful, the structure of T can be used to calculate a set of generators for Aut(G)Π0 .

The algorithm itself is a backtrack algorithm that successively refines the partitions to explore

the tree T . Any leaf of the tree is a discrete ordered partition ({v1}, {v2}, ..., {vn}), which defines

an ordering of the vertices of G. Given two leaves of the tree T , one has two orderings v1, ..., vn and

v′1, ..., v
′
n, which we think of as a permutation defined by vi 7→ v′i. This is the means by which the

algorithm finds automorphisms, and it uses the presence of automorphisms to deduce when different

parts of the tree are equivalent. At this point the algorithm backtracks towards the root until there

is a new part of the tree to explore which is not yet known to be equivalent to a part of the tree

already traversed. In practice, the part of the tree traversed is much smaller than the entire tree,

and once one backtracks off of the root, one has a set of generators for Aut(G)Π0 . Invariants and

orderings can also be used to find a leaf of the tree T which is maximal amongst the nodes with

largest invariants, which is uniquely defined independently of reordering the inputs. This leaf is a

“canonical label” for the pair (G,Π0). In particular, if γ ∈ Aut(G)Π0 , then the canonical label for

(Gγ,Πγ
0) is the same as that of (G,Π0). For details, the Reader is once again directed to the theory

in Ref. [41] and the code in Ref. [46].

The outcome is an algorithm to efficiently compute the group Aut(C) = Aut(G(C))b (here “=”

means canonically isomorphic) as well as a unique representative of each isomorphism class which

we will denote c(C), both of which will be used in the algorithm to generate all the permutation

classes of doubly even codes. Also note that by the use of the bipartite graph construction, not
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only is c(C) a binary code, but it also contains an ordering of its words. In practice, c(C) will be

output as an actual generator matrix.

C.3 New Software for Special Circumstances

It is a curious coincidence that the limit on N for this application is 32. This implies that the size

of the words in a code are at most the size of the machine words on a 32-bit system. The analogy

goes further: the operation of adding two vectors in a code becomes the single clock tick of taking

an XOR on the machine words representing them.

When analyzing codes in terms of their corresponding graphs, we can take advantage of the

linear orthogonal structure of the codes to optimize standard graph algorithms. For example,

given an equitable partition Π of the bipartite graph G(C), the set of words appearing in their

own singleton cells of Π is closed under binary addition. This is immediate from the definition of

equitable partition and of binary addition, and this fact greatly reduces the expected height of the

tree to be searched in computing c(C). Further, every permutation acts linearly, so to check if some

permutation is indeed an automorphism, we need only check it on a basis. It is also possible to use

the linear structure to derive variants on the refinement procedure, depending on the size and type

of binary codes being generated.

In the generation algorithm, since we are interested only in self-orthogonal codes, we can use

more linear algebra to efficiently enumerate the possible children of a code. We start by writing the

code in standard form, C = [Ik|C ′], and then extend the basis given by the rows to a basis for C⊥.

This basis can be taken so that the first k positions of each additional vector are zero, and we can

also shuffle the pivot columns to the front, so that we obtain this basis as the rows of a matrix of

the form [
Ik C ′′

0 IN−2k ∗

]
,

where C ′′ is a rearrangement of the columns of C ′. The rowspan of the bottom part of the matrix,[
0 IN−2k ∗

]
, then forms a set of unique coset representatives of the original code. Furthermore,

(2.2) implies the following:

Corollary C.1 Suppose C is a binary code spanned by {v1, · · · , vk}, and that wt(vi) ≡ 0 (mod 4)

for each i = 1, . . . , k. If either of the following hold for all i 6= j, then C is doubly even:

a) 〈vi, vj〉 = 0,

b) wt(vi + vj) ≡ 0 (mod 4).

Proof: These results are special to binary codes, since every vector in C is the sum of distinct

vectors in {v1, · · · , vk}. Equation (2.2) implies that both conditions are equivalent, so we use b).

Suppose x, y, z ∈ C are such that

wt(x) ≡ wt(y) ≡ wt(z) ≡ wt(x+ y) ≡ wt(x+ z) ≡ wt(y + z) ≡ 0 (mod 4).

Then again by (2.2),

wt(x+ y + z) ≡ wt(x+ y) + wt(z)− 2〈x+ y, z〉

36



≡− 2〈x, z〉 − 2〈y, z〉
≡ − 2 wt(x)− 2 wt(z) + 2 wt(x+ z)

− 2 wt(y)− 2 wt(z) + 2 wt(y + z)

≡ 0 (mod 4).

By induction on the number of basis elements in a linear combination, C is doubly even. �X
Going back to the situation at hand, this means that we need only examine the doubly even vectors

in the rowspan of
[

0 IN−2k ∗
]
, since the code we already have is doubly even and self-orthogonal,

and any vector to be considered is already orthogonal to the code. These vectors are in one-to-

one correspondence with the set of doubly even codes of one dimension higher containing (our

rearrangement of) C . We can do even better by starting with the even subcode of
[

0 IN−2k ∗
]
,

since the sum of two even words is even.

C.4 Exhaustively Generating the Codes

Here we use another algorithm developed by McKay [42], called canonical augmentation. The

ingredients for this are a question like the one we are considering, a canonical labeling function as

described, a way of computing the automorphism group of a code, and a hereditary structure on

the objects to be generated.

We obtain a hereditary structure by thinking of a certain code’s children as the set of codes

constructible by adding a single word not already in the code. Thus the dimension of a code is one

less than the dimension of all its children, and every code can be built up from the zero dimensional

code by a limited number of augmentations. In our application, this puts all the desired codes on

a tree of height 16. At this point one can consider the very naive algorithm of generating all the

children for each code, keeping a list and throwing out isomorphs. However, the obvious problem

with this approach is the excessive isomorphism computation, which is expensive. This problem

is not really ameliorated by storing the canonical representative of each code, as the canonical

representative calculation is almost as expensive as isomorphism testing.

The idea behind canonical augmentation is that instead of requiring the objects generated be

in canonical form, we require simply that the augmentation itself be canonical. The definition of

an augmentation is simply an ordered pair (C,C ′), where C ′ is a child of C. An isomorphism of

augmentations is a permutation γ such that (Cγ, C ′γ) = (D,D′). For example, (C,C ′) ∼= (C,C ′′)

implies that there is a γ ∈ Aut(C) such that C ′γ = C ′′.

Suppose we have a function p which takes codes C of dimension k > 0 to codes p(C) of dimension

k − 1, such that C is a child of p(C). Suppose further that p satisfies the following property: if

C ∼= D, then (p(C), C) ∼= (p(D), D). If we have such a function, we can define that an augmentation

(C,D) is canonical if (C,D) ∼= (p(D), D). Now suppose that we have two augmentations (C,C ′)

and (D,D′) such that C ′ ∼= D′. If they were both canonical augmentations then we would have

(C,C ′) ∼=
(
p(C ′), C ′

) ∼= (p(D′), D′) ∼= (D,D′).

In other words, if both augmentations are canonical, then C ′ ∼= D′ implies that C ∼= D. Thus any

repeated isomorphs would have to be due to the parents being repeated. If we assume that there
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are no isomorphs on the parent level, then this implies that C = D, and (C,C ′) ∼= (C,D′). In

other words, under the framework of canonical augmentation, repeated isomorphs arise only due to

automorphisms of the parents. Thus we have Algorithm 1 below.

Algorithm 1 Generate all doubly even binary codes of degree 32, isomorph-free.

C_0 := the dimesion zero code, of degree 32

traverse(C_0)

procedure traverse(C):

report C

children := the children of C

representatives := {}

for D in children:

if D is minimal in its orbit under Aut(C):

add D to representatives

for D in representatives:

if (C, D) is a canonical augmentation:

traverse(D)

The only remaining question is to produce such a function p. This is where we use the canonical

label defined in the last section. If C is a code of dimension k, let γ be the permutation taking

C to c(C). Recall that c(C) came with a particular generator matrix determined by the ordering

of the words of the code. Removing the last row of that generator matrix gives a code C ′ of the

same dimension as C and applying γ−1 to that, we arrive at p(C). Suppose that C ∼= D, which

in particular implies that c(C) = c(D). Let γC , γD be the permutations taking C,D to c(C), c(D),

respectively. These are isomorphisms, so in fact, γ−1
D ◦ γC is an isomorphism from C to D taking

p(C) to p(D) by the definition of p. This proves the property that (p(C), C) ∼= (p(D), D). Further,

since we have already done the computation c(C), we can obtain not only the canonical label but

also generators for the automorphism group Aut(C) for free. Thus when we are checking whether

(C ′, C) ∼= (p(C), C), we can simply look for an element of Aut(C) that takes C ′ to p(C).

The final task of enumerating the codes for storage to disk will approximate the experience of

a harvest. Many separate worker processes will be working in parallel, each examining the pairs

(C,D) as in the second to last line of Algorithm 1, for a fixed C and many D. Each worker will

receive one code at a time, and perform all the steps in Algorithm 1, only instead of recursively

calling the function on the last line, they will record the augmented codes that succeed in a table,

which will each in turn become the fodder for another worker. As codes are given to workers to

augment on, they will be flagged as searched, and once all the codes have been flagged and all the

workers are done, all the desired codes will be in the table. The intended end result of all this is

a searchable online database which categorizes the codes by N and k, automorphism group size,

weight distribution, and perhaps other parameters.
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supersymmetry and filtered Clifford supermodules. math-ph/0603012

[32] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, G. D. Landweber, Relating
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