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We examine the claim of Babak and Grishchuk [1] to have solved the problem of localising the
energy and momentum of the gravitational field. After summarising Grishchuk’s flat-space formula-
tion of gravity, we demonstrate its equivalence to General Relativity at the level of the action. Two
important transformations are described (diffeomorphisms applied to all fields, and diffeomorphisms
applied to the flat-space metric alone) and we argue that both should be considered gauge trans-
formations: they alter the mathematical representation of a physical system, but not the system
itself. By examining the transformation properties of the Babak-Grishchuk gravitational energy-
momentum tensor under these gauge transformations (infinitesimal and finite) we conclude that this
object has no physical significance.

I. INTRODUCTION

Despite the central role played by the energy-
momentum tensor of matter in General Relativity, there
is no widely accepted way to localise the energy and mo-
mentum of the gravitational field itself. In the place
of a genuine solution to this problem, we are forced to
make do with an over-abundance of energy-momentum
pseudotensors, objects designed to display some or other
property befitting a measure of gravitational energy-
momentum, but whose coordinate dependence renders
them of little physical significance beyond giving the cor-
rect integrals at infinity in asymptotically flat spacetimes.
Even for weak gravitational waves, the best measures at
our disposal only become meaningful once we have aver-
aged over many wavelengths.

The canonical response to the gravitational energy-
momentum problem is to dismiss it as “looking for the
right answer to the wrong question”[2]; but while the
well-known argument presented by Misner, Thorne and
Wheeler is certainly compelling, it is far from watertight.
They remind us that the equivalence principle ensures
that all “gravitational fields” Γα

βγ can be made to van-
ish at a point by a suitable choice of coordinates, and
conclude that because gravity is locally zero, there can
be no energy density associated with it. However, this ar-
gument fails to consider tensors containing second deriva-
tives of the metric, which unlike Γα

βγ cannot be made to
vanish by choice of coordinates, and really do reflect the
local curvature of spacetime: for example, the Riemann
tensor can be used to construct objects such as the Bel-
Robinson tensor [3]. Misner, Thorne and Wheeler also
point out that, while the matter energy-momentum ten-
sor derives its physical significance by curving space, a
similar tensor for gravity would not be a source term for
the field equations. However, this stance is based around
a prejudice for writing the Einstein field equations as
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Gab = κT ab with gravity on the left and matter on the
right; there is nothing to stop us splitting up Gab in a
covariant fashion, grouping one part with T ab, and inter-
preting this as the total energy-momentum source, taking
the remainder of Gab to be the gravitational ‘response’.
Despite these reservations, the argument in [2] remains
vindicated as yet by the failure of these escape-routes to
yield anything which can be physically interpreted as an
energy-momentum tensor.

It might appear that the only straightforward solution
to the problem is to extend the definition of the matter
energy-momentum tensor T ab (a functional derivative of
the matter Lagrangian with respect to the metric) to the
gravitational field, and conclude that the gravitational
energy-momentum tensor is −Gab/κ, where κ = 8πG/c4.
The Einstein field equations could then be interpreted
as a constraint that everywhere sets to zero the sum
of gravitational and matter energy-momentum. While
one might claim this simple idea conveys some impor-
tant physical insight, it suffers from numerous problems.
Firstly, −Gab/κ lacks the analytical power one expects
from an energy-momentum tensor: the ability to split
the set of all physical systems at a particular time into
classes of different total energy and momenta, so that
conservation laws alone can reveal that two particular
systems could never be part of the same spacetime. Sec-
ondly, it leads us to conclude that the gravitational field
only has energy where matter is also present, precluding
the use of this prescription to describe the energetics of
gravitational waves, or define a gravitational tension in
the vacuum between massive bodies. Thirdly, the energy-
momentum tensors for gravity and matter are conserved
separately (∇aGab = 0 and ∇aT ab = 0) so that although
there is a delicate balance that keeps their sum zero, it
is not the case that energy or momentum simply ‘flows’
between gravity and matter, as ∇a(T ab − Gab/κ) = 0
alone would imply. Lastly, we note that the conserva-
tion law ∇aGab = 0 actually tells us nothing at all about
the gravitational field; it is satisfied identically, without
any need for the equations of motion to hold. Because of
these drawbacks, if we are to regard −Gab/κ as a solu-
tion to the gravitational energy-momentum problem, we
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consider it rather a trivial one. Clearly, the reason for
this triviality is that we have over-worked the metric: we
cannot use the functional derivative with respect to a dy-
namical field as a way of defining the energy-momentum
tensor for that same field, as we will only end up writing
down the equations of motion twice. This line of rea-
soning leads us to consider that one method of attack
for this problem may be to separate the two roles played
by gab in General Relativity, that of dynamic field and
spacetime metric.

In [4], Grishchuk develops a “field-theoretical” ap-
proach to gravitation, which expresses the physical con-
tent of General Relativity (GR) in terms of a dynamical
symmetric tensor field in flat Minkowski spacetime. Al-
though this formulation has been carefully designed to
agree with the empirical predictions of GR, in [1] Babak
and Grishchuk claim that the flat-space approach al-
lows them to define a unique, symmetric, and non-trivial
energy-momentum tensor for the gravitational field. The
major purpose of this paper is to examine the extent to
which this tensor is physically meaningful.

II. FLAT-SPACE GRAVITATION

Babak and Grishchuk represent gravitation as the the-
ory of a dynamical symmetric tensor field hab defined over
a four-dimensional manifold M with a (non-dynamical)
flat Lorentzian metric γab. Translation between this pic-
ture and the dynamical metric gab of GR can be achieved
using the following relation:

√
−ggab =

√
−γ(γab + hab), (1)

where g = 1/det(gαβ) and γ = 1/det(γαβ). It should
be emphasised that Babak and Grishchuk consider this
relation to be the definition of gab, a tensor to which
they assign no particular fundamental or geometric sig-
nificance.1 Accordingly, they use γab, rather than gab, to
raise and lower tensor indices2, and define a (torsion-free)

covariant derivative ∇̆a (denoted by indices following

“ ;̆ ”3 and with Christoffel symbols Ca
bc) by ∇̆cγ

ab = 0.
As γab is flat,

R̆a
bcd ≡ Ca

bd,c − Ca
bc,d + Ce

bdC
a
ec − Ce

bcC
a
ed = 0, (2)

1 Of course, because Babak and Grishchuk insist that this view-
point does not contradict the predictions of General Relativ-
ity, effects that are traditionally deemed the result of spacetime
geometry (proper lengths of coordinate displacements, rates of
clocks, geodesic deviation, etc.) will be viewed as arising from a
4-force that matter feels in response to the presence of hab; see
[4] for details. The correspondence with GR inevitably means
that predictions of this nature can always be expressed in terms
of gab alone.

2 A singular exception is made for gab: it is assigned the ‘lowered’
form gab = (gab)−1 to coincide with the GR definition.

3 This notation differs from [1]: where they write ∇ and “ ; ”, we

write ∇̆ and “ ;̆ ”.

and ∇̆a derivatives commute. This contrasts to the usual
(GR) covariant derivative ∇a, denoted by indices follow-
ing “ ; ”, defined by ∇cg

ab = 0, and with curvature tensor
Ra

bcd 6= 0 in general.4

To ensure that hab obeys an equation of motion con-
sistent with Einstein’s field equations, its dynamics are
determined by an action S that is equivalent to the
Einstein-Hilbert action. Specifically, in [1] Babak and
Grishchuk use the action

S = −1
2κ

∫ √−γ
[

hab
;̆cP

c
ab

− (γab + hab)(P c
adP

d
bc − 1

3PaPb)
]

d4x, (3)

where P a
bc and Pa are functions of hab, γab and hab

;̆c
given in their paper. If we add to the Lagrangian the
following surface term:

Lsurface = 1
2κ

[√−γ(γab + hab)P c
ab

]

,c

= 1
2κ

[√−γ(γab + hab)P c
ab

]

;̆c
,

then, applying the flatness condition (2) to equation (53)
of [1], we see that

S + Ssurface = 1
2κ

∫ √−γ(γab + hab)

×
(

P c
ab̆;c + P c

adP
d
bc − 1

3PaPb

)

d4x

= −1
2κ

∫ √
−ggabRabd

4x

= SEH, (4)

the Einstein-Hilbert action. Minimising S with respect
to a variation in hab, we have

δS

δhab
= 0 ⇒ δSEH

δgcd

(

∂gcd

∂hab

)

γ

= 0, (5)

where the subscript γ indicates that γab has been held

4 There is no contradiction in being able to define two different
covariant derivatives on a manifold. Because both have been de-
fined by a tensor equation (without any reference to coordinate
systems) they must both produce genuine (abstract) tensor in-
dices ;a and ;̆a. The significance of the standard covariant deriva-
tive (in GR) is not just that it is covariant, but that it expresses
the Equivalence Principle: in a system of local inertial coordi-
nates {xα} such that gαβ = ηαβ + O(x2) near some point p,
the Christoffel symbols for the ∇a derivative vanish and we find
that (at p) ∇a = ∂a, the ordinary derivative of these coordinates.
Thus ∇cgab = 0 picks out the coordinate independent derivative
operator which coincides with local inertial coordinate deriva-
tives. In contrast, a coordinate system {yα} for which ∇̆a = ∂a

at p will not necessarily have gαβ = ηαβ +O(y2) there; however,
as the flat-space picture eschews the geometric interpretation of
gab, we can avoid assigning much significance to this point.
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constant. As an inverse of
(

∂gcd

∂hab

)

γ
exists, namely

(

∂hab

∂gcd

)

γ

=
1√−γ

∂
√−ggab

∂gcd

=

√−g√−γ

(

2δ
(a

cδ
b)

d − 1
2gabgcd

)

,

the equations of motion (5) are equivalent to the Einstein
Field Equations:

δSEH

δgab
= 0. (6)

As presented in [4], the original motivation for this
flat-space picture is that it allows physicists to study and
predict gravitational phenomena in a framework that is
free of the conceptual baggage of differential geometry,
and has more in common with the language of particle
physics and classical electrodynamics. However, the work
presented in [1] elevates this framework beyond the status
of a ‘linguistic trick’, as the metric γab allows one to
define the “metrical energy-momentum tensor” according
to

m
t ab ≡ −2√−γ

δL
δγab

≡ −2√−γ

(

∂L
∂γab

− ∂c

(

∂L
∂γab,c

))

. (7)

From this, a unique gravitational energy-momentum ten-
sor tab can be constructed that is symmetric, free of sec-
ond derivatives, and conserved by the equations of mo-
tion: see equation (65) of [1]. Having made this identifi-
cation, the field equations (5) take on the simple form5

κtab =

[

g

2γ
(gabgcd − gacgbd)

]

;̆c̆;d

. (8)

Although this equation does not define the energy-
momentum tensor, it provides us with a simple method
for calculating tab, given the gravitational field.

III. THE PHYSICAL CONTENT OF t
ab

We cannot fault Grishchuk’s formulation of gravita-
tional dynamics within the realm of General Relativ-
ity, as agreement over predictions of ‘geometrical phe-
nomena’ (as they would be interpreted in GR) has been

5 This result is a corrected version of equation (78) of [1]; it is
easy to see that the original equation lacks a factor of −1/γ by
comparing it to the preceding equation in that paper.

achieved by design.6 However, in comparison with Gen-
eral Relativity, the flat-space theory possesses additional
mathematical structure: two tensors hab and γab fulfil
the role played by gab alone. This extra structure endows
the flat-space theory with an increased range of expres-
sion, making possible the definition of tensors that can-
not be constructed within the framework of GR. As we
shall show, the gravitational energy-momentum tensor is
one of these ‘non-GR’ quantities.7 We investigate here
whether tab (or any non-GR quantity) can be physically
significant, or whether it can only ever be interpreted as
an artefact of the mathematics.

A. Gauge transformations

Besides allowing us to interpret gravity as a force-field
on flat space, the presence of γab has had the important
side-effect of increasing the space of gauge transforma-
tions of the theory. The core reason for this is that the
flatness constraint (2) is not enough to define a unique
γab for a given gab, a tensor which, through the corre-
spondence with GR, can be used alone to construct the
observable predictions of the theory. In this section we
examine two transformations and justify their status as
gauge transformations, i.e. that they alter the mathe-
matical representation of a physical system, but not the
system itself.

1. Diffeomorphism gauge transformations

Given a diffeomorphism φ: M → M, we transform all
tensor fields Xa...

b... according to

Xa...
b... → (φ∗X)a...

b..., (9)

where the action of φ∗ on X is defined in the standard
way by the action of the pullback of φ (and the pushfor-
ward of φ−1) on the dual-vector (and vector) arguments
of X ; see [5] for details. Although, as written, this trans-
formation cannot be the result of a change of coordinate
system8, it transforms the components Xα...

β... in a ty-
pographically identical manner to that of a coordinate

6 Of course, one may still wish to attack the aesthetics of a frame-
work which, from the GR viewpoint, appears to obscure the geo-
metric nature of gravity, and replaces the Equivalence Principle
with a seemingly arbitrary coupling between hab, γab and mat-
ter. However, the potential for a greater understanding of the
local energy-momentum content of the gravitational field should
be enough to temporarily assuage these objections.

7 This statement might appear obvious due to the use of γab in (7),
or the presence hab

;̆c
in the definition of tab (equation (65) of [1]).

However, a tensor defined in terms of γab, hab, and ∇̆a may also
be expressible in GR, e.g. P c

ab̆;c
+P c

ad
P d

bc
− 1

3
PaPb = −Rab[g].

8 In this paper we use the abstract index notation developed by
Penrose and Rindler [6], so that the Roman indices of γab indi-
cate the tensor ‘slots’ of the metric, and do not refer to compo-
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change. More precisely, the components of φ∗X at φ(p) in
a coordinate system {xα} will be equal to the components
of X at p in coordinates {yα} where yα(q) = xα(φ−1(q)).
As such, if we had chosen to represent all our tensor equa-
tions in terms of components in some coordinate system,
it would be impossible to tell (from the transformation
law alone) whether we had performed the diffeomorphism
(9) or simply changed coordinates. Therefore, because
the physical content of a tensor field’s components can-
not depend on which coordinate system it is expressed
in, so the physical content of tensor fields cannot depend
on the action of (9). Thus, just as in General Relativity,
we find that Grishchuk’s formulation contains the group
of diffeomorphisms φ: M → M as a gauge freedom.

2. The γ-transformation

Besides the diffeomorphism gauge transformation
(DGT), it is also possible to use a diffeomorphism
φ: M → M to define a transformation that reflects
the range of flat-metrics γab, and gravitational fields hab,
consistent with a particular gab; we apply the diffeomor-
phism to γab alone, and demand that hab compensate in
such a way that gab remains unchanged:

γab → (φ∗γ)ab,

hab → h′ab
=

√
−γ√

−φ∗γ

(

γab + hab
)

− (φ∗γ)ab,

⇒ gab → gab. (10)

To be consistent with the field equations, if we are to
include matter fields Ma...

b... in the theory, we must make
them similarly invariant:

Ma...
b... → Ma...

b.... (11)

It is easy to verify that the flatness of γab is maintained
by this map, as R̆a

bcd → (φ∗R̆)a
bcd and φ∗0 = 0.9 It

should be noted that the replacement γab → (φ∗γ)ab does
not represent a coordinate change, but is a map between
two different metric tensors. Obviously, because both
metrics are flat, we can always find coordinates for each
such that their components are those of the Minkowski
matrix ηαβ = diag(+1,−1,−1,−1), but while γαβ = ηαβ

in some coordinates {xα}, in general (φ∗γ)αβ = ηαβ in a
different set of coordinates {yα}.

nents of the tensor in any coordinate system. Thus the ‘effect’ of
a coordinate transformations is completely invisible to a tensor
equation notated with abstract indices. To notate the matrix of
components of a tensor such as γab in coordinates {xα} we use
Greek indices: γαβ ≡ γab(dxα)a(dxβ)b.

9 These transformations form a subgroup of a larger group of trans-
formations for which γab → γ′ab (still flat) and hab compensates
such that gab is held fixed. Because this larger group does not
relate so simply to the diffeomorphism gauge freedom, it is not
discussed here.

A key feature of the γ-transformation (10) is that it
allows us to distinguish between the two types of ten-
sors in Grishchuk’s formulation: those that can be con-
structed in standard GR, and ‘non-GR’ tensors, which
cannot. Because gab is invariant under (10), all GR ten-
sors (which must be expressible in terms of gab, ∇a and
Ma...

b... only) will be likewise unchanged:

GR: Aa...
b... → Aa...

b.... (12)

Thus, any tensor which is not invariant under all trans-
formations of the form (10) must be non-GR:

non-GR: Ba...
b... → B′a...

b... 6= Ba...
b..., (13)

for some γ-transformation.
From this identification, and the formula (8), we can

confirm our suspicions that tab is a non-GR quantity: un-
der a γ-transformation (10), the g’s in the square brack-
ets are untouched, but the ;̆ derivatives are transformed
according to

∇̆a → ∇̆′
a,

where ∇̆aγbc = 0,

and ∇̆′
a(φ∗γ)bc = 0. (14)

Although there may be some φ for which the transfor-
mation of 1/γ in (8) cancels the effects of transformation

of ∇̆a, this will not happen for all φ.10 Thus tab is not
in general an invariant of the transformation, and must
be impossible to construct in GR without introducing
additional structure in the form of γab.

Clearly, it is important to know whether the γ-
transformation should be thought of as a gauge transfor-
mation, or as map between physically inequivalent sys-
tems. This is not a trivial problem, however, because
we must be careful to avoid the tacit assumption that
the GR metric gab describes everything about the grav-
itational field. Because gab is invariant under (10), the
physics traditionally thought of as spacetime ‘geometry’
(and, in the flat-space view, are the observable effects of
hab on particle worldlines, rods and clocks) must be left
invariant also. Thus, comparing the γ-dependence of tab

with the γ-independence of spacetime ‘geometry’11, we
can immediately conclude that that tab cannot be deter-
mined by spacetime ‘geometry’ alone. However, it does
not immediately follow that tab is an unphysical tensor,

10 To demonstrate this rigorously it is sufficient to show that tab is
not invariant under infinitesimal γ-transformations; this calcula-
tion is performed in the appendix.

11 We insist on writing ‘geometry’ in inverted commas because al-
though the phenomena to which we are referring are traditionally
deemed to be the result of spacetime geometry, we must stress
that this interpretation is not endorsed by Grishchuk’s formula-
tion. The term ‘geometry’ in this sense should simply be taken
as a short-hand for the observable predictions shared by General
Relativity and the flat-space formalism.
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as we must seriously examine the possibility that grav-
ity is more than just gab, and that in performing the γ-
transformation we have altered something physical about
the system that standard General Relativity simply does
not ‘see’.

If we suppose that (10) does effect a physically mean-
ingful change, we must conclude that every physical sys-
tem is associated with a ‘true’ γab, or at least with a
class of physically equivalent flat-metrics {γab} that is
smaller than the complete space spanned by all possi-
ble γ-transformations. The question is, given a physical
system, how can we know when we have chosen the cor-
rect γab? Clearly, no ‘geometric’ measurements can ever
reveal which γab is hidden beneath the gab metric, be-
cause ‘geometric’ phenomena are invariant under the γ-
transformation. The only possibility of revealing γab em-
pirically would be if we could directly measure a non-GR
tensor like tab. However, to assume that such a measure-
ment could be carried out would make our logic circular,
as for that to be possible the tensor would certainly need
to be physically meaningful, and it is the truth of precisely
this assertion that we have been trying to determine!

Even if we cannot rely on an empirical method to re-
veal the ‘true’ flat-metric γab of a particular physical sys-
tem, there may still be a systematic way to define one,
given knowledge of quantities we can measure. Such a
definition would pick out a ‘canonical’ γab and we would
be forbidden from performing γ-transformations because
the new γab would no longer be canonical.12 The situ-
ation is analogous to the following question in electro-
statics: what is the potential V at a particular point x?
Even though we can never measure this quantity directly,
we can still define a canonical potential V (x) in a nat-
ural and systematic way by demanding that V → 0 as
the distance from the sources r → ∞, or equivalently, as
the electric charges qi → 0. In the same sense that we
have V = 0 (everywhere) synonymous with the absence
of electric charges, we would certainly hope that we could
choose a canonical γab such that hab = 0 (everywhere) is
synonymous with the absence of matter fields. Indeed,
given a GR metric gab that satisfies the Einstein field
equations with a matter energy-momentum tensor T ab

as the source, we can write:

gab = gab(T cd), (15)

and define the canonical flat metric by

γab = gab(T cd)|T cd=0 (everywhere). (16)

For example, we could view the Schwarzschild spacetime
with central mass M as a family of spacetimes gab(M)

12 One might expect γαβ = ηαβ to be a perfectly good definition
for a canonical flat-metric; however this does not really fix γab

at all, it only begs the question: in which coordinate system do
we insist that this equation holds?

and identify γab with gab(0). For any other prescription
for the canonical γab there will arise the following peculiar
situation: in the absence of matter, despite spacetime
‘geometry’ being flat, gab will be not be equal to γab, and
we will still have to use a non-zero hab field to convert
between these two different flat metrics. In this sense
(16) is the only natural prescription for a canonical flat
metric.

However, it turns out that even this effort cannot force
us to abandon (10) as a genuine gauge transformation,
as (16) does not behave correctly under some diffeomor-
phism gauge transformations (DGTs). To see this, start
with a GR metric gab = gab(T cd) and a canonical flat
metric defined by (16). Now, consider a family of dif-
feomorphisms {φf : M → M ∀f ∈ R} such that φ0

is the identity diffeomorphism: φ0(p) = p ∀p ∈ M. We
change nothing physical about this system by performing
a DGT with φf for any value of the parameter f , and we
are free to have the value of f determined by some func-
tional of T cd such that T cd = 0 (everywhere) gives f = 0.
Then, having performed this DGT, we can calculate the
canonical flat metric again:

γ′ab
= g′

ab
(T ′cd

)|T ′cd=0 =
[

(φ∗
fg)ab(T ′cd

)
]

T ′cd=0

= (φ∗
0γ)ab = γab. (17)

Thus, our DGT, coupled with our definition of the natu-
ral canonical flat metric, has had the following effect:

gab → (φ∗
fg)ab,

γab → γab,

hab → h′ab
=

√
−φ∗

f
γ

√
−γ

(

(φ∗
fγ)ab + (φ∗

fh)ab
)

− γab,

Ma...
b... → (φ∗

fM)a...
b.... (18)

Whereas, under the DGT, we should have recovered
γab → (φ∗

fγ)ab and hab → (φ∗
fh)ab. We are left with

a choice: either we completely abandon the idea of a
natural canonical γab on the grounds that it is not co-
variant under all DGTs (and thus accept that the γ-
transformation (10) is a gauge transformation), or we
agree that this ‘γ-fixed’ transformation (18) is on equal
footing with a DGT and is therefore another gauge trans-
formation of the formalism. Of course, this is not really a
choice at all, as the γ-fixed transformation has precisely
the same effect as performing a diffeomorphism gauge
transformation with φf and then a γ-transformation with
(φf )−1; thus, by agreeing that (18) is a gauge transfor-
mation, one has agreed that the γ-transformation is one
also.

The key to this argument is that because the pre-
scription (16) does not pick γab in a diffeomorphism
covariant fashion13, we retain the ability to perform γ-

13 We implicitly picked a gauge when we wrote gab as a particular

solution of the field equations with source T cd in (15).
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transformations through our choice of which diffeomor-
phism gauge we use to express the T ab = 0 spacetime
when we apply the definition for the canonical flat met-
ric.

It is interesting to note that when Grishchuk refers
to the gauge transformations of his formalism in [4], he
appears to mean the γ-fixed variety: in the appendix
we calculate that the effect of an infinitesimal γ-fixed
transformation on hab is

hab → h′ab
= hab +

(

ξc(γab + hab)
)

;̆c

− 2ξ
(a

;̆c

(

γb)c + hb)c
)

(19)

and on setting γαβ = ηαβ (which can either be viewed as
a coordinate choice, given γab, or a choice of γab given
some coordinate system) we recover

h′αβ
= hαβ + ηαβξλ

,λ + (hαβξλ),λ

− 2ξ(α,β) − 2ξ
(α

,λhβ)λ (20)

which is equation (38) of [4].
Thus we must finally conclude that the γ-

transformation (10) is a gauge transformation of
Grishchuk’s formalism, and that not only is the flat
metric γab unobservable, it is impossible to define a
‘canonical’ choice of γab in a diffeomorphism gauge
covariant, systematic, and natural fashion.

B. The transformation properties of t
ab

We have demonstrated that the γ-transformation
should be thought of as a map between different mathe-
matical representations of the same physical system. As
tab is not invariant under this gauge change (i.e. non-GR)
we might be suspicious that this ‘energy-momentum ten-
sor’ has no physical significance. However, before we dis-
miss tab, it is worth considering the following possibility:
even though tab is not invariant under γ-transformations,
could the transformed tensor t′ab, somehow, have the
same physical content as the untransformed tensor tab?
After all, we see exactly this behaviour for a DGT: no
tensor field is invariant under (9), however we can con-
sider tensor fields to be covariant under this transfor-
mation (and their physical content unaltered) because
they allow for the construction of gauge invariant quan-
tities.14 We must therefore consider the possibility that
the γ-transformation law for tab constitutes some form of
‘generalised covariance’ that would allow gauge invariant
quantities to be constructed.

14 All measurements necessarily correspond to scalars, thus the ac-
tion of a DGT is simply to move these scalars to different points
of M. Because all the worldlines of observers and test particles
are similarly displaced, the correlations between these scalars will
be diffeomorphism gauge invariant.

Of course, the expected form of these invariants rather
depends on what one supposes the physical content of
tab to be. If it is, indeed, an energy momentum ten-
sor, then an observer with 4-velocity ua would expect to
‘find’ some energy density ρ = tabucudgacgbd, or possibly
ρ = tabucudγacγbd. It is easy to check that neither of
these quantities are invariant under a γ-transformation,
despite the fact that we were forced to conclude that
these transformations do not alter whatsoever the physi-
cal system we are examining. From this we deduce that,
whatever physical meaning tab may have, since it cannot
define a meaningful energy-density in the standard way,
it is definitely not an energy-momentum tensor.

1. Infinitesimal transformations

It is instructive to examine the transformation prop-
erties of tab for an arbitrary infinitesimal gauge transfor-
mation. We proceed by constructing a diffeomorphism
very close to the identity by Lie dragging tensor fields
along an infinitesimal vector field ξa:

(φ∗X)a...
b... = Xa...

b... + (LξX)a...
b..., (21)

where Lξ is the Lie derivative along ξa. Under a γ-fixed
gauge transformation for an infinitesimal diffeomorphism
φ defined by (21), we find that tab → t′ab, where

κt′
ab

= κ
(

tab + (Lξt)
ab

)

+

[

ξe
;̆e

(

g

γ

(

gabgcd − ga(cgd)b
)

)

;̆c

]

;̆d

− ξe
;̆c̆;d

(

g

2γ

(

gabgcd − gacgdb
)

)

;̆e

. (22)

This result is calculated in the appendix. An important
point of (22) is that, unlike the γ-fixed behaviour of a
GR field (A → A + LξA), the transformation law for tab

includes second derivatives of ξ. Thus, in a qualitative
sense, the new t′ab (evaluated at some point p ∈ M)
seems to depends much more on the details of the trans-
formation than a GR quantity would; certainly the com-
plex formula (22) cannot be interpreted as some sim-
ple algebraic or geometric operation. If we imagine pro-
ducing a finite transformation by ‘exponentiating’ (22)
then the GR part of the transformation tab + (Lξt)

ab

would correspond (loosely speaking) to a diffeomorphism
‘ φ∗ = eLξ ’ which would, to first order in ξ, only depend
on ξ and its first derivatives. The extra terms in (22),
once exponentiated, would vastly increase our freedom
to determine t′ab at any particular p, possibly enough to
set t′ab(p) = 0 for any tab. If this were indeed shown to
be the case, then tab could hardly represent a meaningful
local property of any field.

A particularly undesirable feature of (22) is that t′ab

is not determined by ξa and tab alone; we also need to
know the tensor [(g/2γ)(gabgcd−gacgdb)]̆;e from which tab
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has been constructed. This detail seems to preclude the
assembly of invariants from tab and observer worldlines
alone.15

2. Finite transformations

To study the effect of finite gauge transformations on
tab, we focus on the Schwarzschild spacetime with a cen-
tral point-mass M . Working in natural units (c = G = 1)
and suppressing the abstract indices on the coordinate
differentials (dxα)a, we write the GR metric as

gαβdxαdxβ =
1

(f1g1 − f2g2)2

[

(g2
1 − g2

2)dt2

+ 2(f1g2 − f2g1)dtdr − (f2
1 − f2

2 )dr2
]

− r2(dθ2 + sin2θdφ2), (23)

where {f1, f2, g1, g2} are functions of r and t only.
Birkhoff’s theorem [7] shows the Schwarzschild spacetime
to be the only spherically symmetric vacuum solution to
the Einstein equations; thus for any choice of {fi, gi} con-
sistent with Rab = 0, the metric given by (23) represents
the Schwarzschild spacetime. This form of gab will be
particularly useful for the present discussion, as it will
allow us to choose explicitly the ‘gauge’ in which to ex-
press the gravitational field. To illustrate this point, we
record below the recipes for the commonly used repre-
sentations of the Schwarzschild spacetime.

Standard
Schwarzschild

Advanced
Eddington-
Finkelstein

Painlevé-
Gullstrand

f1 1/
√

1 − 2M/r 1 + M/r 1

f2 0 M/r 0

g1

√

1 − 2M/r 1 − M/r 1

g2 0 −M/r −
√

2M/r

As we have emphasised, there is no unique γab hidden
beneath the metric defined in (23). However, for the sake
of concreteness, we fix the flat-metric as

γαβdxαdxβ = dt2 − dr2 − r2(dθ2 + sin2θdφ2), (24)

so that altering the functions {fi, gi} will give rise to γ-
fixed transformations.16

15 Because non-GR tensors can be combined to form GR tensors, it
will always be possible to ‘add in’ some combination of γab, hab,
and ∇̆a to create a gauge invariant quantity from tab. However,
in this case we should not associate the invariants with tab by
itself, but instead with the larger GR object we have assembled.

16 Equally we could have arranged for this process to run in the
opposite direction. Starting with the standard form of the
Schwarzschild metric in (t, r, θ, φ) coordinates, we could have
performed a coordinate transformation to a system (T, R, θ, φ)

In order to proceed, we remove some of the gauge free-
dom by demanding

1. f2 = 0,

2. ∂tgαβ = 0.
(25)

Then we find that the vacuum field equations Rab = 0
enforce

f1g1 = C, (26)

g2
1 − g2

2 = 1 − 2M/r, (27)

where C and M are constants, and we have identified
the latter as the central mass by comparison with the
Standard Schwarzschild and Painlevé-Gullstrand gauges.
Under these conditions we find that all the components
of tab vanish apart from the energy density:

tαi = tiα = 0, (28)

t00 = −g3
1 − g1 + 2r∂rg1

g3
1r

2
. (29)

This last formula makes manifest the large space of gauge
equivalent energy-momentum tensors associated with the
Schwarzschild spacetime, even after we have removed a
large portion of gauge freedom by demanding (25). No-
tice in particular that the Standard Schwarzschild gauge
yields

t00 = −
(

2M

r(r − 2M)

)2

, (30)

whereas, in the Painlevé-Gullstrand gauge

t00 = 0. (31)

The gauge equivalence of these two results leaves lit-
tle room for a physical interpretation of this energy-
momentum tensor. Because tab can be made to vanish
everywhere by a gauge transformation, it cannot possi-
bly convey any more gauge-invariant information than
to tell us that this spacetime is empty of whatever it is
that tab represents. While this is not unreasonable per se
(as tab might only be sensitive to gravitational radiation
or some other phenomena absent from the Schwarzschild
spacetime) it then becomes very difficult to justify why
the energy-momentum tensor should be non-zero in any
gauge at all. This uncomfortable situation would force us
to identify a whole host of non-trivial energy-momentum
tensors with emptiness, of which (29) are only a small
fraction.

that preserved the spherical symmetry. Working in these coor-
dinates, a seeming natural choice of the flat-metric would have
been γαβdx′αdx′β = dT 2−dR2−R2(dθ2+sin2θdφ2), a different
tensor from the one defined by (24). The choice of coordinates
used to represent gab would therefore determine γab but not alter
gab itself. The effect would be that of a γ-transformation.
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As the Advanced Eddington-Finkelstein gauge has
f2 6= 0, we cannot use (29) to calculate the energy-
momentum tensor. Instead, we take the general formula
(8) as our starting point, and recover tab = 0, just as
we found in the Painlevé-Gullstrand gauge. This agree-
ment suggests that the non-zero energy-momentum ten-
sor (30) might only be an artefact of the ‘horizon’ present
in the Standard Schwarzschild gauge: in the (t, r, θ, φ)
coordinate system picked out by γab, the components
of the GR metric gαβ are singular at r = 2M . In
contrast, Painlevé-Gullstrand and Advanced Eddington-
Finkelstein are global gauges: the components gαβ are
regular everywhere but at the origin. While a coordi-
nate singularity is admissible within differential geome-
try, in Grishchuk’s flat-space picture this would corre-
spond to an infinite ‘gravitational field’ hab, which could
be deemed unphysical. This line of reasoning allows us to
reject (30) because it was derived in a gauge which trans-
forms the gravitational field to infinity at some points,
and we would then hope to confirm that the physical
result (tab = 0) applies in all global gauges. Unfortu-
nately, this turn out to be impossible, as we show by
means of a counter-example. Consider a family of gauges
parametrised by λ:

f1 =
√

r/(r + λM),

f2 = 0,

g1 =
√

(r + λM)/r,

g2 =
√

(2 + λ)M/r.

(32)

It is easy to check that these obey the restrictions (25)
and the vacuum field equations (26) and (27). Further-
more, for λ ≥ 0, gαβ defined by (23) is regular every-
where but the origin. Using (29) we find that (apart
from λ = 0 which is just Painlevé-Gullstrand again) the
energy-momentum tensor is non-zero:

t00 = −
(

λM

r(r + λM)

)2

. (33)

Not only can we make t00(r) take on a wide range of val-
ues by adjusting λ, we also note that in the limit λ → ∞,
we have the disconcerting situation of a non-zero energy
density that is independent of M .

In light of all these results, it appears highly unlikely
that the behaviour of tab would permit the extraction
of gauge invariant information and allow us to view this
tensor as maintaining some physical content under gauge
transformations.

IV. CONCLUSION

The formulation of gravity presented in [4] succeeds in
recasting General Relativity as a flat-space theory of a
symmetric tensor field. While we do not find fault with
the formalism itself, we assert that care must by taken
in its interpretation, as we believe we have demonstrated

that only those quantities which can be defined solely in
terms of GR tensors are of any physical importance. The
physically insignificant content of the flat-space formal-
ism is a consequence of an unmeasurable field γab which
is not uniquely determined by the requirement that it be
a flat metric tensor.

There are in principle two ways to deal with the non-
uniqueness of γab: 1. Pick a particular flat metric and
declare that this is the immutable ‘correct’ choice, to be
used in all situations; 2. Allow γab to depend somehow
on the physical system we are describing, or how we have
chosen to represent the system mathematically.

The problem with the first stance is that the theory
still retains γ-fixed gauge transformations. To see this,
note that equation (53) of [1] expresses the equivalence
of Grishchuck’s equations of motion (rab ≡ −P c

ab̆;c −
P c

adP
d
bc + 1

3PaPb = 0) with the Einstein field equations:

Rab[g] = R̆ab[γ] + rab[h, γ]. (34)

Babak and Grishchuk interpret this relation as follows:
given a flat-metric γab, an hab that satisfies rab = 0 will
enforce Rab = 0, establishing the agreement with GR.
However, one can always use this equation to make the
converse argument: given a flat-metric γab, a gab which
solves Rab = 0 will enforce Grishchuk’s equation rab =
0. As Rab[φ

∗g] = 0 if Rab[g] = 0, we can construct a
whole range of solutions {h′ab : rab[h

′] = 0} from hab

simply by applying diffeomorphisms to gab. Because we
declared γab to be immutable, these new solutions will
correspond to γ-fixed transformations of hab. Crucially,
as g′ab = φ∗gab, no ‘geometric’ experiment can tell any
h′ab apart from from hab. Thus, without a method to
measure a non-GR quantity directly, we have to conclude
that these new solutions represent physically equivalent
systems, and that the γ-fixed transformation is a gauge
transformation of the theory.

The second stance appears to be able to dodge this
argument, because one can claim that we should have
applied the same diffeomorphism to γab that we applied
to gab, forcing us to perform a harmless DGT instead of
a γ-fixed transformation. However, if we take this view,
we will need a heuristic for deriving γab from measur-
able quantities, otherwise we will never know where to
start with the ‘correct’ pairing (gab, γab). In order that
this heuristic be consistent with arbitrary DGTs (which
are gauge transformations of any tensorial theory) any
prescription for which T ab = 0 ⇒ hab = 0 inevitably
leads us to identify γ-transformations as gauge transfor-
mations anyway, because we are free to represent the
T ab = 0 limit in any diffeomorphism gauge we choose.

Accepting that γ-transformations and γ-fixed transfor-
mation are maps between different mathematical repre-
sentations of the same physical system, we conclude that
the exotic gauge transformation properties of tab cannot
allow us to interpret this tensor as a local measure of
the energy and momentum content of the gravitational
field. Although tab is a perfectly legitimate mathematical
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construction, its dependence on the unmeasurable and
non-unique tensor γab renders it ill-defined, and devoid
of physical meaning.
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Appendix: Infinitesimal transformations

Here we calculate how hab, tab, and ∇̆a change un-
der transformations defined by diffeomorphisms infinitely
close to the identity: φ∗ = 1 + Lξ. In this limit, the γ-
fixed transformation (18) for hab is

hab → h′ab
(35)

h′ab
= (−γ)−1/2 (1 + Lξ)

(√−γ(γab + hab)
)

− γab

= (−γ)−1/2Lξ

(√
−γ(γab + hab)

)

+ hab.

Thus,

δhab ≡ h′ab − hab

= (γab + hab)(−γ)−1/2Lξ

√
−γ + Lξ(γ

ab + hab)

= (γab + hab)ξc
;̆c + ξc

(

γab + hab
)

;̆c

− 2ξ
(a

;̆c

(

γb)c + hb)c
)

=
(

ξc(γab + hab)
)

;̆c
− 2ξ

(a
;̆c

(

γb)c + hb)c
)

, (36)

proving (19).
To calculate the behaviour of the energy-momentum

tensor under a γ-fixed transformation, we define the ten-
sor

Y abcd ≡ g

γ
g(a[b)g(c]d) =

g

2γ

(

gabgcd − ga(cgd)b
)

, (37)

so that

κtab = Y abcd
;̆c̆;d. (38)

Under the γ-fixed transformation, tab → t′ab where

κt′
ab

=
[

γ−1(1 + Lξ)
(

gg(a[b)g(c]d)
)]

;̆c̆;d

= κtab +
[

Lξ

(

Y abcd
)

− gg(a[b)g(c]d)Lξ(γ
−1)

]

;̆c̆;d

= κtab +
[

Y abcd
;̆eξ

e − 2ξ
(a

;̆eY
b)ecd

− 2Y abe(cξ
d)

;̆e + 2Y abcdξe
;̆e

]

;̆c̆;d
.

In contrast, were tab a GR tensor, under the γ-fixed trans-
formation we would have tab → tab + Lξt

ab, with

κLξt
ab = ξeY abcd

;̆c̆;d̆;e − 2ξ
(a

;̆eY
b)ecd

;̆c̆;d.

Thus, the non-GR part of κt′ab is

∆(κtab) ≡ κ
(

t′
ab − tab − Lξt

ab
)

= ξe
;̆c̆;dY

abcd
;̆e + 2ξe

;̆cY
abcd

;̆ĕ;d

− 2ξ
(a

;̆ĕ;c̆;dY
b)ecd − 4ξ

(a
;̆ĕ;cY

b)ecd
;̆d

− 2
[

Y abe(cξ
d)

;̆e − Y abcdξe
;̆e

]

;̆c̆;d
. (39)

Note that the third and fourth terms vanish because
Y abcd = −Y acbd and ∇̆a operators commute. Expanding
out the derivatives acting on the square brackets, then
cancelling and collecting like terms, we arrive at

∆(κtab) = 2ξe
;̆eY

abcd
;̆c̆;d − ξe

;̆c̆;dY
abcd

;̆e + 2ξe
;̆ĕ;dY

abcd
;̆c

= 2
[

ξe
;̆eY

abcd
;̆c

]

;̆d
− ξe

;̆c̆;dY
abcd

;̆e. (40)

Replacing Y abcd with its definition (37), the transforma-
tion law (22) immediately follows.

Because the γ-fixed transformation is simply a DGT
with φ followed by a γ-transformation with φ−1, it is
easy to use this result to calculate the behaviour of tab

under an infinitesimal γ-transformation:

(γ-fixed)φtab = (γ-trans)φ−1 (DGT)φ tab

= (γ-trans)φ−1

(

tab + Lξt
ab

)

= (γ-trans)φ−1 tab + Lξt
ab, (41)

for infinitesimal ξ. Thus, under a γ-transformation, κtab

becomes

κt′
ab

= κtab −
[

ξe
;̆e

(

g

γ

(

gabgcd − ga(cgd)b
)

)

;̆c

]

;̆d

+ ξe
;̆c̆;d

(

g

2γ

(

gabgcd − gacgdb
)

)

;̆e

, (42)

which clearly demonstrates that tab is non-GR.
For completeness, we calculate how the deriva-

tive operator ∇̆a changes under an infinitesimal γ-
transformation. We shall proceed without using the flat-
ness of γab, in order that the result be in its most general
form; only at the end we will set R̆a

bcd = 0 to recover the
formula applicable here. According to (14), we have

∇̆aγbc = 0,

∇̆′
a (γbc + Lξγbc) = 0. (43)

Any two torsionless derivative operators can be related
by a symmetric connection; thus, in the same way one
might write the figurative relation “ ∇ = ∂+Γ ” to define
the GR Christoffel symbols, we write “ ∇̆′ = ∇̆+ E ” to
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define a connection Ea
bc = Ea

cb between ∇̆′
a and ∇̆a. By

continuity Ea
bc must be at least first order in ξ, so (43)

becomes:

∇̆a

(

γbc + 2γd(b∇̆c)ξ
d
)

− 2γd(bE
d
c)a = 0,

⇒ E(bc)a =
(

∇̆a∇̆(cξb)

)

. (44)

However, because Eabc is symmetric in its last two in-
dices,

E(ab)c + E(ac)b − E(bc)a = Eabc,

⇒ Ea
bc = γae

(

E(eb)c + E(ec)b − E(bc)e

)

.

Substituting (44) into the right-hand-side and reorganis-

ing the derivatives, we find

Ea
bc = ∇̆(b∇̆c)ξ

a + γae
(

∇̆[b∇̆e]ξc + ∇̆[c∇̆e]ξb

)

.

Finally, using the defining property of the Riemann ten-
sor, ∇̆[a∇̆b]ξc = − 1

2 R̆d
cabξd, we arrive at the following

compact formula:

Ea
bc =

(

δa
d∇̆(b∇̆c) − R̆a

(bc)d

)

ξd. (45)

In the case where γab is flat, this becomes

Ea
bc = ξa

;̆b̆;c. (46)
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