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behaviour without any singularities. In spatially-flat models, analytical solutions for
particular values of the equation-of-state parameter are derived. Although the scale
factor of a Weyssenhoff fluid generically has a positive temporal curvature near a
bounce (i.e. R̈(t) > 0), it requires unreasonable fine tuning of the equation-of-state
parameter to produce a sufficiently extended period of inflation to fit the current
observational data.
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1. Introduction

The Einstein-Cartan (EC) theory of gravity is an extension of Einstein’s theory of

general relativity (GR) that includes the spin properties of matter and their influence

on the geometrical structure of space-time. In GR, the energy-momentum of the matter

content is assumed to be the source of curvature of a Riemannian space-time manifold

V4. In the EC theory, the spin of the matter has been postulated, in addition, to be

the source of torsion of a Riemann-Cartan space-time manifold U4 [1]. Weyssenhoff and

Raabe [2] were the first to study the behaviour of perfect fluids with spin. Obukhov

and Korotky extended their work in order to build cosmological models based on the

EC theory [3] and showed that by assuming the Frenkel condition‡ the theory may be

described by an effective fluid in GR where the effective stress-energy momentum tensor

contains some additional spin terms.

The aim of this publication is two-fold. First, we wish to investigate the possibility

that the spin contributions for a Weyssenhoff fluid may avert an initial singularity, as

first suggested by Trautman [4]. Second, since any realistic cosmological model has to

include an inflation phase to fit the current observational data, it is also of particular

interest to see if the spin contributions are able to generate a dynamical model endowed

with an early inflationary era, as first suggested by Gasperini [5]. Scalars fields can

generate inflation, but they have not yet been observed. Therefore, it is of interest to

examine possible alternatives, such as a Weyssenhoff fluid. In contrast to the approaches

of Trautman [4] and Gasperini [5], our use of the 1 + 3 covariant formalism enables us

to determine the dynamics of a Weyssenhoff fluid without assuming any particular form

for the space-time metric.

The study of the dynamics of a Weyssenhoff fluid in a 1 + 3 covariant approach

was initiated by Palle [6]. His work has been revised and extended in our previous

publication [7]. The present paper builds on [7] to extend the work carried out first

by Trautman [4] in an isotropic space-time, and Kopczynski [8] and Stewart [9] in an

anisotropic space-time. It also generalises the analysis of the inflationary behaviour of

Weyssenhoff fluid models made by Gasperini [5] to anisotropic space-times.

In our dynamical analysis, we choose to restrict our study to a spatially

homogeneous and irrotational Weyssenhoff fluid. This particular choice, which implies

a vanishing vorticity and peculiar acceleration, has been motivated by underlying

fundamental physical reasons. For a vanishing vorticity, the fluid flow is hypersurface-

orthogonal, which means that the instantaneous rest spaces defined at each space-time

point should mesh together to form a set of 3-surfaces in space-time [10]. These

hypersurfaces, which are surfaces of simultaneity for all the fluid observers, define a

global cosmic time coordinate determined by the fluid flow. Moreover, by assuming

that any peculiar acceleration vanishes, the cosmic time is then uniquely defined. It is

worth mentioning that the absence of vorticity is an involutive property, which means

‡ Note that the Frenkel condition arises naturally when performing a rigorous variation of the action.
It simply means that the spin pseudovector is spacelike in the fluid rest frame.
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that if it is true initially then it will remain so at later times as shown by Ellis et al

[11]. Finally, the assumption that there is no vorticity on all scales implies that the fluid

has no global rotation. This is in line with recent Bayesian MCMC analysis of WMAP

data performed by Bridges et al. [12]. Their work confirms that a physical Bianchi VIIh

model, which has a non-vanishing vorticity, is statistically disfavored by the data.

In Section 2, we give a concise description of a Weyssenhoff fluid using a 1+3

covariant approach outlined in Appendix A. The spatial symmetries and macroscopic

spin averaging procedure are discussed in Section 3. In Section 4, we establish the

relevant dynamical relations for a homogeneous and irrotational Weyssenhoff fluid. In

Section 5, we perform a geodesic singularity analysis for such a fluid. In Section 6,

we analyse the fluid dynamics. The behaviour of the generalised scale factor R(t) of

such a fluid in a spatially-curved models is discussed in Section 7 and explicit analytical

solutions in spatially-flat models are given in Section 8 . For the reader’s convenience,

certain main results obtained in our earlier work [7] will be repeated in the case of

a homogeneous and irrotational Weyssenhoff fluid in Section 2 and Section 4. In this

paper, we use the (+,−,−,−) signature. To express our results in the opposite signature

used by Ellis [11], the correspondence between physical variables can be found in [7].

2. Weyssenhoff fluid description

2.1. Weyssenhoff fluid phenomenology

In the EC theory, the effect of the spin density tensor is locally to induce torsion in the

structure of space-time. In holonomic coordinates, the torsion tensor T λµν is defined as

the antisymmetric part of the affine connection Γ̃λµν ,

T λµν = Γ̃λ[µν] = 1
2

(
Γ̃λµν − Γ̃λνµ

)
, (1)

which vanishes in GR since the connection is assumed to be symmetric in its two lower

indices. Note that the tilde denotes an EC geometrical object to differentiate it from

an effective GR object.

The Weyssenhoff fluid is a continuous macroscopic medium which is characterised

on microscopic scales by the spin of the matter fields. The spin density is described by

an antisymmetric tensor,

Sµν = −Sνµ , (2)

which is the source of torsion,

Sλµν = uλSµν . (3)

This fluid satisfies the Frenkel condition, which requires the intrinsic spin of a matter

field to be spacelike in the rest frame of the fluid,

Sµνu
ν = 0 , (4)
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where uλ is the 4-velocity of the fluid element. This condition implies an algebraic

coupling between spin and torsion according to,

T λµν = κuλSµν , (5)

and arises naturally from a rigorous variation of the action as shown by [3]. Thus, the

torsion contributions to the EC field equations are entirely described in terms of the

spin density. It is also useful to introduce a spin-density scalar defined as,

S2 ≡ 1
2
SµνS

µν ≥ 0 . (6)

Obukhov and Korotky showed [3] that for a perfect fluid the EC field equations

reduce to effective GR Einstein field equations with additional spin terms, and a spin

field equation.

The former are found to be,

Rµν − 1
2
gµνR = κT sµν , (7)

where the effective stress energy momentum tensor of the fluid is given by,

T sµν = (ρs + ps)uµuν − psgµν − 2
(
gρλ + uρuλ

)
∇ρ

[
u(µSν)λ

]
, (8)

with effective energy density and pressure of the form,

ρs = ρ− κS2 + κ−1Λ ,

ps = p− κS2 − κ−1Λ ,
(9)

and the physical energy density and pressure satisfy the equation of state,

p = wρ , (10)

where κ = 8πG, Λ is the cosmological constant and w the equation of state parameter.

The spin field equation is given by,

∇λ

(
uλSµν

)
= 2uρu[µ∇|λ

(
uλSρ|ν]

)
. (11)

2.2. Weyssenhoff fluid description in a 1+3 covariant formalism

The 1 + 3 covariant formalism outlined in Appendix A can now be used to perform a

more transparent analysis of the Weyssenhoff fluid dynamics. Using a 1 + 3 covariant

approach in [7], we found that the symmetric stress-energy momentum tensor (8) can

be recast as,

T sµν = ρsuµuν − pshµν − 2σ(µ
λSν)λ − 2u(µD

λSν)λ , (12)

where hµν is the induced metric on the spatial hypersurface, σµν is the rate of shear

tensor and Dλ is the spatially projected covariant derivative defined in Appendix A.

Similarly, the spin field equation (11) reduces to,

Ṡµν + ΘSµν = 2uρu[µṠ|ρ|ν] , (13)

where Θ = Dλuλ is the expansion rate.
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3. Spatial symmetries and macroscopic spin averaging

Although much of our following discussion will concern cosmological models that are

anisotropic, it is of interest to consider the status of a Weyssenhoff fluid as a matter

source for homogeneous and isotropic models.

3.1. Spatial symmetries

To be a suitable candidate for the matter content of such a cosmological model,

a Weyssenhoff fluid has to be compatible with the Cosmological Principle. In

mathematical terms, a four-dimensional space-time manifold satisfying this principle

is foliated by three dimensional spatial hypersurfaces, which are maximally symmetric

and thus invariant under the action of translations and rotations.

Although a Weyssenhoff fluid can be expressed as an effective GR fluid, the

dynamical nature of such a fluid is rooted in the EC theory. Thus, the dynamics of such

a fluid is determined by the translational and the rotational fields, which are respectively

the metric gµν and the torsion T λµν . The symmetries require the dynamical fields to be

invariant under the action of an infinitesimal isometry. Hence, the Lie derivatives of the

dynamical fields have to vanish according to,

Lξgµν = 0 , (14)

LξT λµν = 0 . (15)

where ξµ are the Killing vectors generating the spatial isometries. A maximally

symmetric spatial hypersurface admits 6 Killings vectors [13]. The 3 Killing vectors

ξµ generating the infinitesimal translations are related to homogeneity and the 3 Killing

pseudo-vectors χµ generating the infinitesimal rotations are related to isotropy. They

satisfy,

ξµ = hµρξ
ρ , (16)

χµ = εµρσD̃[ρξσ] , (17)

where εµρσ is three-dimensional Levi-Civita tensor.

For a cosmological fluid based on the EC theory, such as a Weyssenhoff fluid, we

can consider two different forms of the Cosmological Principle:

(i) the Strong Cosmological Principle (SCP), where the Lie derivatives of the metric

(14) and of the torsion (15) have to vanish; and

(ii) the Weak Cosmological Principle (WCP), where only the Lie derivatives of the

metric (14) have to vanish and no restriction is imposed on the torsion.

The translational Killing equation resulting from the symmetries imposed on the

metric (14) yields,

D̃(µξν) = D(µξν) = 0 , (18)
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which is a well-know result obtained in GR. Hence, the WCP is identical to the GR

Cosmological Principle, which implies that the space-time geometry is described in terms

of an FRW metric.

Using the translational Killing equation (18), the rotational Killing equation

resulting from the symmetries imposed on the metric (15) is found to be,

(D̃ρT
λ
µν)ξ

ρ = (hσλT ρµν + hσµT
λρ
ν + hσνT

λ ρ
µ )D̃[ρξσ] . (19)

For any maximally symmetric space [13], we can choose respectively a Killing vector

ξµ to vanish at a given point P , and independently, a Killing pseudo-vector χµ to vanish

at a given point Q according to,

ξµ(P ) = 0 , (20)

χµ(Q) = 0 . (21)

Hence, the homogeneity and isotropy can be considered separately.

By imposing the homogeneity condition (21) on the rotational Killing equation

(19), the spatial covariant derivative of the torsion tensor has to vanish according to,

D̃ρTλµν = 0 . (22)

Hence, torsion can only be a function of cosmic time t,

Tλµν ≡ Tλµν(t) . (23)

By imposing the isotropy condition (20) on the rotational Killing equation (19),

the torsion tensor has to satisfy the constraint,

h[ρ
τh

σ]
λT

τ
µν + h[ρ

τh
σ]
µT

τ
λ ν + h[ρ

τh
σ]
νTλµ

τ = 0 . (24)

As shown explicitly in a theorem established by Tsamparilis [14] and mentioned

subsequently by Boehmer [15], the homogeneity (23) and isotropy (24) constraints

taken together put severe restrictions on the torsion tensor. The only non-vanishing

components are found to be,

Tλµν = hλ
αhµ

βhν
γT[αβγ] = f(t)ελµν , (25)

T ρµρ = uµu
γhα

ρhρ
βTαγβ = 1

3
uµu

γ∗Tγ , (26)

where f(t) is a scalar function of cosmic time t, ρ is a fixed index and ∗Tγ is the spatial

trace of the torsion tensor defined as

∗Tγ ≡ hαβTαγβ . (27)

We now discuss the application of this general framework to a Weyssenhoff fluid.

3.2. Weyssenhoff fluid with macroscopic spin averaging

The algebraic coupling between the spin density and torsion tensors (5) shows that the

spin density Sµν of a Weyssenhoff fluid can be related to the torsion as,

Sµν = uαhµ
βhν

γκ−1Tαβγ . (28)
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By substituting the non-vanishing components of the torsion (25) and (26) satisfying

the SCP into the expression for the spin density of a Weyssenhoff fluid (28), it is

straightforward to show that the spin density tensor has to vanish,

Sµν = 0 . (29)

Thus, Tsamparilis claims that a Weyssenhoff fluid is incompatible with the SCP

[14]. This conclusion would hold if all the dynamical contributions of the spin density

were second rank tensors of the form Sµν . However, this is not the case since the

dynamics contains spin density squared scalar terms. These scalar terms are invariant

under spatial isometries like rotations and translations. Hence, they do satisfy the SCP.

In order for the Weyssenhoff fluid to be compatible with the SCP, the spin density

tensorial terms have to vanish leaving the scalar terms unaffected. This can be achieved

by making the reasonable physical assumption that, locally, macroscopic spin averaging

leads to a vanishing expectation value for the spin density tensor according to,

〈Sµν〉 = 0 . (30)

However, this macroscopic spin averaging does not lead to a vanishing expectation value

for the spin density squared scalar since this term is a variance term,〈
S2
〉

= 1
2
〈SµνSµν〉 6= 0 . (31)

The macroscopic spatial averaging of the spin density was performed in an isotropic

case by Gasperini [5]. It can be extended to an anisotropic case provided that on small

macroscopic scales the spin density pseudo-vectors are assumed to be randomly oriented.

By considering a Weyssenhoff fluid in the absence of any peculiar acceleration

and by performing a macroscopic spin averaging, we indirectly require the fluid to

be homogeneous. This follows from the fact that, in this case, the conservation

law of momentum leads to a vanishing spatial derivative of the pressure and energy

density. This will be explicitly shown in Section 4.2, and can also be derived from the

corresponding dynamical equation for an inhomogeneous Weyssenhoff fluid presented in

our previous work [7].

Note that even in the absence of a macroscopic spin averaging, the Weyssenhoff

fluid is still compatible with the WCP, which we discuss further in Section 4.4. It is

worth mentioning that there is no observational evidence so far which would suggest

that we should impose the SCP even though the mathematical symmetries make such a

principle mathematically appealing. A true test of whether this principle is applicable

would be the demonstration of physically observable differences between this case and

the WCP.

4. Dynamics of a homogeneous and irrotational Weyssenhoff fluid

The dynamics of a Weyssenhoff fluid with no peculiar acceleration is entirely determined

by the symmetric and spin field equations, (7), (12) and (13) respectively. The former
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can be used to determine the Ricci identities and the energy conservation law. The

latter simply expresses spin propagation.

One important consequence of the spatial averaging of the spin density is that the

stress-energy momentum tensor (12) reduces to an elegant expression given by

T sµν = ρsuµuν − pshµν , (32)

where the only spin contributions affecting the dynamics are the negative spin squared

variance terms entering the definition of the effective energy density and pressure (9),

as expected. These spin squared intrinsic interaction terms S2 are a key feature that

distinguishes a Weyssenhoff fluid from a perfect fluid in GR and lead to interesting

properties we discuss below.

We have to be careful when performing the macroscopic spin averaging on the

dynamical equations. The Ricci identities and conservation laws can be entirely

determined from the stress-energy momentum tensor (32). As we have shown, it

is perfectly legitimate to perform a macroscopic spin averaging on the stress-energy

momentum tensor before obtaining explicitly the dynamical equations. However, this is

not the case for the spin field equations (13). Performing the macroscopic spin averaging

at this stage would make these field equations vanish. To be consistent, we first have to

determine the dynamical equations and express them in terms of the spin density scalar

before performing the spin averaging.

4.1. Ricci identities

The Ricci identities can firstly be applied to the whole space-time and secondly to the

orthogonal 3-space. They yield respectively,

2∇[µ∇ν]uρ = R λ
[µν]ρ uλ , (33)

2D[µDν]vρ = ∗R[µν]ρ
λvλ , (34)

where the spatial vectors vµ are orthogonal to the worldline, i.e. vµuµ = 0, and the

3-space Riemann tensor ∗Rµνρλ is related to the Riemann tensor Rµνρλ by

∗Rµνρλ = hαµh
β
νh

γ
ρh

δ
λRαβγδ + ΘµρΘνλ −ΘµλΘνρ . (35)

The Riemann tensor can be decomposed according to its symmetries as [16],

Rρµ
νλ = Cρµ

νλ − δ
ρ
[λR

µ
ν] − δ

µ
[νR

ρ
λ] −

1
3
Rδρ[νδ

µ
λ] , (36)

where Cρµ
νλ is the trace-free Weyl tensor, which, in turn, can be split into an ‘electric’

and a ‘magnetic’ part [16] according to,

Eµν = Cµρνσu
ρuσ , (37)

Hµν = 1
2
ηµσλC

σλ
νρu

ρ . (38)

The Ricci tensor Rµν is then simply obtained by substituting the expression (32) for the

effective stress energy momentum tensor T sµν into the Einstein field equations (7),

Rµν = κ
2

(ρs + 3ps)uµuν − κ
2

(ρs − ps)hµν . (39)
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The Riemann tensor Rρµνλ can now be recast in terms of the Ricci tensor (39), the

electric (37) and magnetic (38) parts of the Weyl tensor according to the decomposition

(36) in the following way,

Rρµ
νλ = 2

3
κ (ρs + 3ps)h

[ρ
[νu

µ]uλ] − 2
3
κρsh

[ρ
[νh

µ]
λ]

+ 4u[ρu[νE
µ]
λ] − 4h

[ρ
[νE

µ]
λ] + 2ηρµσu[νHλ]σ + 2ηνλσu

[ρHµ]σ .
(40)

It follows from the relation (35) that the Riemann tensor on the spatial 3-space ∗Rρµ
νλ

becomes,

∗Rρµ
νλ =− 2

3
κhρ[νh

µ
λ]ρs − 4hρ[νE

µ
λ] + 2Θρ

[νΘ
µ
λ] . (41)

The information contained in the Ricci identities (33)−(34) can now be extracted by

projecting them on different hypersurfaces using the decomposition of the corresponding

Riemann tensors (40) − (41) and following the same procedure as in our previous

publication [7].

The Ricci identities applied to the whole space-time yield respectively the

Raychaudhuri equation and the rate of shear propagation equation,

Θ̇ = −1
3
Θ2 − 2σ2 − κ

2
(ρs + 3ps) , (42)

σ̇〈µν〉 = −2
3
Θσµν − σ λ

〈µ σν〉λ − Eµν . (43)

The Ricci identities applied to the spatial 3-space express the spatial curvature.

Their contractions yield the spatial Ricci tensor ∗Rµν and scalar ∗R respectively,

∗Rµν = σ̇〈µν〉 + Θσµν + 1
3
hµν

∗R , (44)
∗R = 2

3
Θ2 − 2κρs − 2σ2 . (45)

The above expression for the curvature scalar (45) is a generalisation of the Friedmann

equation.

One must take particular care when deducing the time evolution of the rate of shear

from the rate of shear propagation equation (43). This is due to the fact that the rate of

shear coupling term σ λ
〈µ σν〉λ and the tidal force term Eµν can not simply be neglected.

A better route is to deduce the rate of shear evolution equation from the spatial Ricci

curvature tensor ∗Rµν as shown explicitly by Ellis [17] and outlined below.

A homogeneous Weyssenhoff fluid satisfies the spatial curvature identity,

∗Rµν − 1
3
hµν

∗R = 0 . (46)

Hence, by substituting this identity (46) into the expression for the spatial Ricci tensor

(44), the propagation equation for the rate of shear is found to be,

σ̇〈µν〉 = −Θσµν . (47)

This tensorial expression (47) can be recast in terms of a scalar relation involving the

rate of shear scalar σ according to,

σ̇ = −Θσ . (48)
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4.2. Conservation laws

The effective energy conservation and momentum conservation laws are obtained by

projecting the conservation equation of the effective stress energy momentum tensor

(32),

∇µ
(
Rµν + 1

2
gµνR

)
= κ∇µT sµν = 0 , (49)

respectively along the worldline uν and on the orthogonal spatial hypersurface hµν
according to,

ρ̇s = −Θ (ρs + ps) , (50)

Dµps = 0 . (51)

It is worth mentioning that the momentum conservation law (51) expresses the

homogeneity of the Weyssenhoff fluid. This is due to the fact that according to this

law, the energy density, the pressure and the spin density of the fluid have to be a

function of cosmic time only. Hence, the torsion tensor has also to be a function of

cosmic time only, which is the homogeneity requirement (23). This is only the case for a

Weyssenhoff fluid with no peculiar acceleration on which a macroscopic spin averaging

has been performed, as otherwise the momentum conservation law (51) would contain

additional terms.

4.3. Spin propagation relation

The spin conversation law results from twice projecting the antisymmetric field equations

(13) onto the hypersurface orthogonal to the worldline,

(Sµν)
˙
⊥ = −ΘSµν . (52)

This tensorial expression (52) can be recast in terms of a scalar relation involving the

spin-density scalar S in (6) according to,

Ṡ = −ΘS . (53)

This expression implies that the spin density is inversely proportional to the volume

of the fluid. Note that although the tensorial expression (52) vanishes due to the

macroscopic spin averaging (30), the scalar expression (53) still applies because it is

related to the spin variance (31).

The effective energy conservation equation (50) can now be recast in terms of the

true (i.e. not effective) energy density and pressure of the fluid by substituting the spin

propagation equation (53),

ρ̇ = −Θ (ρ+ p) . (54)
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4.4. Comparision with previous results

Let us compare our results with the conclusions reached by Lu and Cheng [18] for

an isotropic Weyssenhoff fluid without any macroscopic spin averaging as shown in

Appendix A of their publication.

In an isotropic space-time, the dynamics of a Weyssenhoff fluid, without a

macroscopic spin averaging, is greatly simplified as we now briefly explain. The

projection of the effective Einstein field equations (7) along the worldline and on the

orthogonal spatial hypersurfaces, yields the following constraint,

uµhλ
νT sµν = 0 . (55)

It arises from the fact that, in an isotropic case, the time-space components of the Ricci

tensor vanish. From the expression for the stress-energy momentum tensor (12), it is

clear that the constraint (55) implies a vanishing spin divergence,

DλSµλ = 0 . (56)

Moreover, the isotropy constraint implies a vanishing rate of shear (i.e. σ = 0). Thus,

in this case, the effective stress energy momentum tensor without the macroscopic

spin averaging (12) reduces to the elegant expression (32) obtained by performing the

macroscopic spin averaging.

Hence, for a Weyssenhoff fluid and isotropic space-time, our results can be compared

to those of Lu and Cheng [18]. The results of our analysis do not agree with the

conclusions outlined in [18]. First, they argue that the isotropic Friedmann equation

implies that the spin density has to be a function of time only, with which we agree.

Then, they claim that this stands in contradiction with the fact that the spin density

has also to be a function of space in order to satisfy the projection constraint (55), which

we dispute. The projection constraint simply implies a vanishing orthogonal projection

of the spin divergence on the spatial hypersurface (56), which is perfectly compatible

with the spin density being a function of time only. Hence, contrary to their claim, a

Weyssenhoff fluid model seems to be perfectly consistent with an isotropic space-time

(i.e. obeying the WCP), even without spin averaging.

5. Geodesic singularity analysis

For a homogeneous and irrotational Weyssenhoff fluid satisfying the macroscopic spin

averaging condition, the fluid congruence is geodesic. To study the behaviour of such a

fluid congruence near a singularity, we use the 1+3 covariant formalism, which applies

on local as well as on global scales for a homogeneous fluid model.

In order for singularities in the timelike geodesic congruence to occur, the

Raychaudhuri equation (42) has to satisfy the condition,

Θ̇ +
1

3
Θ < 0 , (57)
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near the singularity, as we now explain. First, we recast the singularity condition (57)

in terms of the inverse expansion rate Θ−1 as,

d

dt

(
Θ−1

)
>

1

3
, (58)

After integrating with respect to cosmic time t, we find,

Θ−1(t) > Θ−1
∗ +

1

3
(t− t∗) , (59)

where Θ−1
∗ ≡ Θ−1 (t∗) and t = t∗ is some arbitrary cosmic time near the singularity.

Thus, if Θ−1
∗ > 0 (Θ−1

∗ < 0), the model describes a fluid evolving on a spatially expanding

(collapsing) hypersurface at t = t∗. According to the integrated singularity condition

(59), Θ−1 (t) must vanish within a finite past (future) time interval |t − t∗| < 3|Θ−1
∗ |

with respect to t = t∗. Thus a geodesic singularity, defined by Θ−1(t̂) = 0, occurs at

t = t̂ .

The homogeneity requirement allows us to define − up to a constant factor − a

generalised scale factor R according to,

Θ ≡ 3
Ṙ

R
. (60)

In a 1 + 3 covariant approach, R is generally a locally defined variable. If the model

is homogeneous, however, R can be globally defined and interpreted as a cosmological

scale factor.

The singularity condition can now be recast in terms of the scale factor R and

reduces to,

R̈

R
< 0 . (61)

One must also require the scale factor to obey the consistency condition, which requires

the expansion rate squared to be positively defined at all times according to,(
Ṙ

R

)2

> 0 . (62)

To determine explicitly these two conditions (61)-(62), the Friedmann (45) and

Raychaudhuri (42) equations are recast in terms of the scale factor, using respectively

the expressions for the Ricci (39) and stress-energy-momentum tensor (32) as,(
Ṙ

R

)2

=
1

3

(
Tµνu

µuν +
∗R
2

+ σ2

)
, (63)

R̈

R
= −1

3

(
Rµνu

µuν + 2σ2
)
. (64)

Using the Friedmann (63) and the Raychaudhuri (64) equations, the consistency (62)

and singularity (61) conditions can respectively be explicitly expressed as,

S2 − κ−2
(
σ2 + Λ + 1

2

∗R
)

κ−1ρ
< 1 , (65)

S2 − κ−2
(
σ2 − 1

2
Λ
)

κ−1ρ
<

1 + 3w

4
. (66)
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The scaling of the energy density ρ, the spin density squared S2 and the rate of

shear squared σ2 can be deduced respectively from the energy conservation law (54),

the spin propagation equation (53) and the rate of shear propagation equation (48) by

recasting the expansion rate Θ in terms of the scale factor R (60) according to,

S2 = S̄2

(
R

R̄

)−6

, (67)

σ2 = σ̄2

(
R

R̄

)−6

, (68)

ρ = ρ̄

(
R

R̄

)−3(1+w)

. (69)

Note that the bar corresponds to an arbitrary event (defined by a cosmic time t = t̄),

subject only to the condition R̄ 6= 0.

Furthermore, the spatial Ricci scalar ∗R is the Gaussian curvature of the spatial

hypersurface, which scales according to,

∗R =∗ R̄
(
R

R̄

)−2

, (70)

and the cosmological constant Λ has by definition no scale dependence,

Λ = Λ̄

(
R

R̄

)0

. (71)

Let us now assume the existence of singularities in the timelike geodesic congruence

for a homogeneous and irrotational Weyssenhoff fluid. By comparing the scaling

relations for the spatial Ricci scalar (70) and the cosmological constant (71) with

those obtained for the spin density squared (67) and the rate of shear squared (68),

we see that in the limit where the model tends towards a singularity (i.e. R → 0),

the contribution due to curvature and the cosmological constant is negligible. Hence,

for a Weyssenhoff fluid with a physically reasonable equation-of-state parameter (i.e.

w < 1), the consistency (65) and singularity (66) conditions merge into a single condition

according to,

S2 − κ−2σ2

κ−1ρ
< 1 . (72)

Moreover, we can recast this condition in terms of the scale dependence R. In the limit

where the model tends towards a singularity, the condition (72) becomes,

lim
R→0

S̄2 − κ−2σ̄2

κ−1ρ̄

(
R

R̄

)−3(1−w)

< 1 . (73)

Provided the equation-of-state parameter w < 1, the singularity condition (73) can only

hold if the rate of shear squared is larger than the spin squared (i.e. σ̄2 > κ2S̄2). Hence,

in the opposite case, where the macroscopic spin density squared of the Weyssenhoff

fluid is larger than the fluid anisotropies according to,

κ2S2 > σ2 , (74)
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there will be no singularity on any scale. This is a generalisation of the result established

independently for a Bianchi I metric by Kopczynski [8] and Stewart and Hajieck [9].

Our singularity analysis is based on the assumption that the Weyssenhoff fluid flow

lines are geodesics, which implies that the macroscopic fluid (i.e. with spin averaging)

has to be homogeneous. A key question is whether this still holds in presence of small

inhomogeneities. According to Ellis [19], the Hawking-Penrose singularity theorems

apply not only to homogeneous models but also to approximately homogeneous models

with local pressure inhomogeneities. By analogy, if there is no singularity for geodesics

fluid flow lines, singularities may still be averted provided the real fluid flow lines can

be described as small perturbations around geodesics.

In following sections, we will assume that the spin-shear condition (74) holds, which

guarantees the absence of singularities for homogeneous models.

6. Dynamical evolution: general considerations

For a homogeneous fluid, the Gaussian curvature ∗R depends only on the scale factor

according to,

∗R = − 6k

R2
, (75)

where k = {−1, 0, 1} is the normalised curvature parameter.

To analyse the dynamics of a homogeneous and irrotational Weyssenhoff fluid, let

us first recast explicitly the Friedmann (63) and Raychaudhuri (64) equations in terms

of the physical quantities using the expression for the Gaussian curvature (75) according

to, (
Ṙ

R

)2

=
κ

3

[
ρ− κS2 +

1

κ

(
σ2 − 3k

R2
+ Λ

)]
, (76)

R̈

R
= −κ

6

[
ρ (1 + 3w)− 4κS2 +

4

κ

(
σ2 − 1

2
Λ

)]
. (77)

We will now discuss in more details the geodesic singularities presented in Section 5,

drawing out more fully the geometrical and physical applications.

6.1. Geometric interpretation of the solutions

As outlined above, at stages of the dynamical evolution for which the scale factor R(t)

is small, a Weyssenhoff fluid with an equation-of-state parameter w < 1 is dominated by

the spin density and rate of shear contributions. This follows from the scaling properties

of the energy (69) of the spin density (67) and of the rate of shear (68). Provided the

spin-shear condition (74) is satisfied, there can be no singularity (R → 0), because the

negative sign of the spin squared terms in the RHS of the Friedmann equation (76) would

imply the existence of an imaginary rate of expansion, which is physically unacceptable

(Θ ∈ R) as discussed before in Section 5. For physical consistency, the RHS of the
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Friedmann equation has to be positively defined at all times,

ρ− κS2 +
1

κ

(
σ2 − 3k

R2
+ Λ

)
≥ 0 , (78)

which clearly excludes the presence of a singularity provided w < 1. The physical

interpretation is that − as one goes backwards in cosmic time t from the present epoch

− the spin contributions to the field equations dominate and produce a bounce, which

we may take to occur at t = 0, that avoids an initial singularity (i.e. R(0) > 0). Since

this model contains no initial singularity, the temporal evolution of the model, governed

by the Friedmann (76) and Raychaudhuri (77) equations, extends symmetrically to the

negative part of the time arrow. In order to satisfy the time symmetry requirement and

avoid a kink in the time evolution of the scale factor R(t) at t = 0, the expansion rate at

the bounce has to vanish, Ṙ(0) = 0, and the temporal curvature of the scale factor R̈(0)

has to be finite. Thus, the scale factor R(t) goes through an extremum at the bounce

R(0) = R0 §. The energy density at the bounce, ρ0 = ρ(0), is determined by the limit

where the consistency requirement (78) becomes an equality,

ρ0 = κS2
0 −

1

κ

(
σ2

0 −
3k

R2
0

+ Λ

)
, (79)

where S0 = S(0) and σ0 = σ(0) denote respectively the spin energy density and the rate

of shear evaluated at the bounce. Note that this particular choice for the energy density

(79) at t = 0 has been made in order for the expansion rate to vanish at the bounce.

This can be shown explicitly by evaluating the Friedmann equation (76) at the bounce

using the expression for the energy density (79).

Quantitative expressions or the R(t)-curve in various cases are derived in Section 8

below. Before doing so, however, it is worth noting that qualitatively, the general shape

of the R(t)-curve for a Weyssenhoff fluid is closely related to the temporal curvature

of the scale factor R̈, which is explicitly given by the Raychaudhuri equation (77), and

also to the range of values for R(t), which is determined by the consistency condition

(62) on the Friedmann equation (76).

In this section, let us discuss one particular class of Weyssenhoff fluid models for

which the cosmological constant Λ is small (and positively defined),

0 < Λ� ρ0 , (80)

and the curvature is also small

0 <
3

R2
0

� ρ0 . (81)

The two constraints (80) and (81) on the class of models imply that the sign of the

temporal curvature of the scale factor depends only on the value of the equation-of-state

parameter w, which yields three different cases.

§ Note that, throughout the paper, a zero subscript denotes the value of a quantity at the bounce (i.e.
t = 0) and not at the present epoch.
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In the first case, where w < −1
3
, the RHS of the Raychaudhuri equation (77) implies

that the temporal curvature of the scale factor is positively defined at all times,

R̈(t) > 0 for t ∈ (−∞,∞) . (82)

The positive sign of R̈ implies that the scale factor is minimal at the bounce and the

model is perpetually inflating (for t > 0).

In the second case, where w > 1, by comparing the consistency requirement (78)

with the Raychaudhuri equation (77), the temporal curvature of the scale factor is found

to be negatively defined at all times,

R̈(t) < 0 for t ∈ (−∞,∞) . (83)

Note that for a model with an equation-of-state parameter w > 1, we reach the same

conclusion as for a fluid with an equation of state parameter w < 1, which is that the

model has a time-symmetric evolution and bounces at t = 0. The negative sign of R̈

implies that the scale factor is maximal at the bounce and is deflating (for t > 0) until

it eventually collapses.

In the third case, where −1
3
< w < 1, the symmetric time evolution of the scale

factor can be split into five parts. Firstly, for a small cosmic time, i.e. |t| < |tf | − where

the value of tf depends on the scale parameter w − the sign of the temporal curvature

of the scale factor is positive. This corresponds to the spin dominated phase. Secondly,

for a specific cosmic time, i.e. |t| = |tf |, the temporal curvature of the scale factor

vanishes as the time evolution of the scale factor reaches an inflection point. Then, for

a larger cosmic time, i.e. |tf | < |t| < |ta|, the temporal curvature of the scale factor has

the opposite sign until it reaches the second inflection point |t| = |ta|. This corresponds

to the matter dominated phase. Finally, for large cosmic time, i.e. |t| > |ta|, the sign of

the temporal curvature of the scale factor becomes positive again. This corresponds to

the cosmological constant dominated phase. The behaviour of R̈(t) in terms of cosmic

time t is summarised as follows,

R̈(t) > 0 for t ∈ (−tf , tf ) , (84)

R̈(t) = 0 for t ∈ {−tf , tf} , (85)

R̈(t) < 0 for t ∈ (−ta,−tf ) ∪ (tf , ta) , (86)

R̈(t) = 0 for t ∈ {−ta, ta} , (87)

R̈(t) > 0 for t ∈ (−∞,−ta) ∪ (ta,∞) . (88)

In the first and second cases, the results obtained for the symmetric time evolution

of the scale factor are interesting mathematical solutions, but they are inconsistent with

current cosmological observations. In order to satisfy the current cosmological data, the

positively defined time evolution of the model has to inflate, i.e. R̈(t) > 0, at early time

(t < tf ), and produce a sufficient amount of inflation. At later time (t > tf ), the energy

density of the fluid dominates the dynamics and acts like a brake on the expansion

R̈(t) < 0.

During the spin-dominated phase, the contribution due to the cosmological constant

can be safely neglected (80) and the positive temporal curvature of the scale factor (84)
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leads to an inflation phase. The inflatability condition, R̈(t) > 0, may be deduced from

the Raychaudhuri equation (77) according to,

ρ(1 + 3w)− 4κS2 + 4κ−1σ2 < 0 . (89)

This inflation phase ends when this inequality is no longer satisfied, which corresponds

to the inflection point of the temporal evolution of the scale factor, i.e. t = tf . Hence,

at the end of inflation the density is given by,

ρf =
4κ

(1 + 3w)

(
S2
f − κ−2σ2

f

)
. (90)

The temporal evolution of this model for a positively defined time is characterised

by a maximal physical energy density ρ = ρ0 coinciding with the start of an inflation

phase ending when the energy density reaches the density threshold ρ = ρf . At the

end of inflation, the model enters a matter dominated phase. During this stage, the

Weyssenhoff fluid model reduces asymptotically to the cosmological solution obtained

for a perfect fluid in GR in the limit where the cosmic time is sufficiently large t� tf ,

which eventually leads to a cosmological constant dominated phase for t� ta > tf .

6.2. Amount of inflation

The amount of inflation is measured by the number N of e-folds, which is determined

using the scaling of the energy density (69), the initial (79) and final (90) energy

densities, and found to be,

N ≡ ln
Rf

R0

= − 1

3(1 + w)
ln

[
4

1 + 3w

(
κ2S2

f − σ2
f

κ2S2
0 − σ2

0

)]
. (91)

Using the scaling relations obtained for the spin density squared (67) and the rate

of shear squared (68), the initial and final values of these quantities are found to be

related by the number of e-folds according to,

S2
0 = S2

f

(
R0

Rf

)−6

= S2
fe

6N , (92)

σ2
0 = σ2

f

(
R0

Rf

)−6

= σ2
fe

6N . (93)

By recasting the initial values of the spin density squared and rate of shear squared

in terms of their final values according to (92) and (93) respectively, the expression for

the number of e-folds (91) reduces to an elegant expression,

N =
1

3(1− w)
ln

(
4

1 + 3w

)
, (94)

and is shown in Figure 1. It worth mentioning that the amount of inflation is

independent of the rate of shear or the spin density of the fluid. Let us mention that

Bianchi models based on a Weyssenhoff fluid have been studied previously by Lu and

Cheng [18]. However, the authors did not try to estimate the amount of inflation in

their analysis.
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Figure 1. Number of e-folds N in terms of the equation-of-state parameter w. N(w)
has a vertical asymptote at w = − 1

3 .

The only way to have achieve a substantial number of e-folds is by requiring an

equation of state of the form

w = −1

3
+ ε where 0 < ε� 1 , (95)

which corresponds to no standard fluid and has therefore no acceptable physical basis.

This conclusion has already been reached by Gasperini [5] in the isotropic case. We

have showed that the same result still holds in the anisotropic case.

It is interesting to note that a cosmic string fluid has an equation-of-state parameter

w = −1
3
. A hybrid Weyssenhoff fluid made for example of fermionic matter cosmic

strings [20] and matter fields − where the cosmic strings contribution dominates the

dynamics at the era of interest − has an equation-of-state parameter of the form (95)

where the value of the fine tuning parameter ε depends crucially on the ratio between

the cosmic string and the matter fields densities. Although such a fluid is a candidate

to obtain an inflation phase at an early positively defined time (i.e. just after the

bounce), it does not reduce to the cosmological standard model at later times when the

spin contribution can be safely neglected. This is due to the fact that the density of

the cosmic strings contribution ρst scales as ρst ∝ R−2. Hence, if the cosmic strings

contribution dominates the behaviour of the cosmic fluid for an early positively defined

time, it will do so at all times.

However, this problem may potentially be overcome by assuming that, at early

times, the cosmic strings decay into the matter fields of the standard model leading to

a reheating phase. It would be worth further investigating this possibility.
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The fine tuning parameter ε has a magnitude that is related to the number of e-folds

according to,

ε ∼ e−4N . (96)

To obtain, for example, an inflationary phase with N = 50 − 70 e-folds − which is a

characteristic range of values for current parameter estimations − the equation of state

has to be very fine tuned such that ε = 10−87 − 10−122. It is worth noting that this is

a similar order of magnitude to the factor 10−120 relating the ratio of the cosmological

constant predicted by summing the zero point energy of the Standard Model fields up

to the Planck cutoff to that inferred from cosmological observations, although this is

almost certainly just a numerical coincidence.

7. Quantitative dynamical evolution of spatially-curved models

Our general approach allows one to investigate models with non-zero spatial curvature

and a cosmological constant. In general, it is not possible to find analytical solutions for

the time evolution of the scale factor. However, the behaviour of the solutions can be

analysed by integrating the dynamical equations numerically. The analysis and plots of

the time evolution of the scale factor in spatially-curved models are presented below.

7.1. Solutions in presence of a cosmological constant

The dynamics of a homogeneous and anisotropic Weyssenhoff fluid in a spatially-

curved model in presence of a cosmological constant relies on the Fridemann (76) and

Raychaudhuri (77) equations. Using the scaling relation obtained for the energy density

(69), for the spin density (67), and for rate of shear (68), the Friedmann (76) and

Raychaudhuri (77) equations can be recast respectively as,(
Ṙ

R

)2

=
κ

3
ρ0

(
R

R0

)−3(1+w)

− κ2

3

(
S2

0 − κ−2σ2
0

)( R

R0

)−6

− k

R2
0

(
R

R0

)−2

+
Λ

3
, (97)

R̈

R
= −κ

6
ρ0 (1 + 3w)

(
R

R0

)−3(1+w)

+
2

3
κ2
(
S2

0 − κ−2σ2
0

)( R

R0

)−6

+
Λ

3
, (98)

where for t = 0, R0 is the scale factor, ρ0 the energy density, S0 the spin density and σ0

the rate of shear.

For convenience, we introduce six dimensionless parameters defined as,

r ≡ R

R0

, (99)

τ ≡
√
κρ0

3
t , (100)

δ2 ≡ σ2
0

κρ0

, (101)

s2 ≡ κS2
0

ρ0

, (102)
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α ≡ 3k

κρ0R2
0

, (103)

λ ≡ Λ

κρ0

, (104)

which are the scale factor parameter r, the cosmic time parameter τ , the rate of

shear squared parameter δ2 and the spin density squared parameter s2, the curvature

parameter α, the cosmological constant parameter λ. Note that r and τ depend on t,

whereas δ2, s2, α and λ are constant, defined in terms of quantities at the bounce t = 0.

The consistency condition at the bounce (79) can be recast in terms of dimensionless

parameters as,

s2 − δ2 = 1− α + λ . (105)

Using (105), the Friedmann (97) and Raychaudhuri (98) equations can also be recast

respectively in terms of the dimensionless parameters according to,

r′
2

=
1

r4

(
r3(1−w) − α

(
r4 − 1

)
− 1 + λ

(
r6 − 1

))
, (106)

r′′ = − 2

r5

(
1 + 3w

4
r3(1−w) + α− 1− λ

(
r6

2
+ 1

))
, (107)

where a prime denotes a derivative with respect to the rescaled cosmic time parameter

τ . It worth emphasizing that the dynamics of a homogeneous Weyssenhoff fluid does

not depend explicitly on the rate of shear parameter squared δ2. This is due to the fact

that the rate of shear (68) scales like the spin density (67), and follows explicitly from

the fact that the δ2−terms cancel after substituting the consistency condition at the

bounce (105) into the dynamical equations (106) and (107). However, the consistency

condition implies that the value of the physical quantities at the bounce still depends

on the corresponding value of rate of shear.

The physical interpretation of these equations is well known. The Friedmann

equation corresponds to the conservation law of energy whereas the Raychaudhuri

equation represents the equation of motion.

The Friedmann equation (106) can be recast as follows,

1

2
r′

2
+ Ueff(r) = −α

2
, (108)

where the effective potential is given by

Ueff(r) = − 1

2r4

(
r3(1−w) + α− 1 + λ

(
r6 − 1

))
. (109)

The parameters present in the Friedmann and Raychaudhuri equations are

respectively,

• w: relativistic pressure (SR: continuous parameter),

• α: curvature (GR: continuous parameter),

• −1: spin (EC: discrete parameter),

• λ: cosmological constant.
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From the expression for the effective potential (109), we see that the spin

contribution has a positive sign, which means that it behaves like a potential barrier.

In other words, the spin-spin interaction leads to repulsive centrifugal forces opposing

the attractive effect of gravity, thus preventing collapse. Note that this is also the case

for a positive cosmological constant.

In the absence of relativistic pressure (i.e. w = 0), curvature (i.e. α = 0), spin

(i.e. the −1 factor vanishes), and cosmological constant (i.e. λ = 0) the Friedmann

and the Raychaudhuri equations reduce respectively to the energy conservation law for

a particle in a gravitational field with a vanishing total energy (Etot = 0), and Newton’s

second law of motion.

The mathematical solutions for the time evolution of scale factor parameter depend

on the whole real range of the parameters (i.e. w, α, λ ∈ R). But for physical consistency,

we have to restrict the value of these parameters. Firstly, the Weyssenhoff fluid cannot

violate causality (i.e. cs < c), which sets an upper bound on the equation-of-state

parameter w,

w < 1 . (110)

Secondly, the spin-shear condition (74) and the consistency condition at the bounce

(105) restrict the range of the cosmological and curvature parameters according to,

λ > α− 1 . (111)

In general, it is not possible to find analytic solutions for the Friedmann (106) and

Raychaudhuri (107) equations. However, it is possible to deduce the behaviour of the

solutions by studying the asymptotic behaviour of the expansion rate parameter r′ and

its derivative r′′.

In the limit where r → 1, the temporal curvature of the scale factor behaves like,

lim
r→1

r′′ = −3
(

2
3
α + 1

2
(w − 1)− λ

)
, (112)

and the expansion rate parameter r′ has to vanish,

lim
r→1

r′ = 0 , (113)

to satisfy the consistency condition at the bounce (105). Hence, we find three types of

solutions which depend on the respective value of the parameters:

(i) limr→1 r
′′ > 0, which implies that the solution r(τ) is found within the range

1 ≤ r <∞ , (114)

provided the parameters w and α satisfy

λ > 2
3
α + 1

2
(w − 1) . (115)

(ii) limr→1 r
′′ = 0, which implies that the solution r(τ) is static

r = 1 , (116)

when the parameters w and α satisfy

λ = 2
3
α + 1

2
(w − 1) . (117)
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(iii) limr→1 r
′′ < 0, which implies that the solution r(τ) is found within the range

0 ≤ r ≤ 1 , (118)

provided the parameters w and α satisfy

λ < 2
3
α + 1

2
(w − 1) . (119)

Moreover, the limit, limr→0 r
′2 = −∞ < 0, clearly does not exist. Hence, the

solutions always satisfy r > 0, which means that there cannot be any singularity.

Thus, for a negative temporal curvature r′′ < 0, the scale factor r reaches a

minimum value r∗ found within the range 0 < r∗ < 1.

The behaviour of the solutions for the scale factor parameter r(τ) is summarised

in Table 1 below. Explicit numerical solutions in presence of a cosmological constant

for particular values of the curvature parameter α = {−1
2
, 0, 1

2
} and equation-of-state

parameter w = {−1,−1
3
, 0, 1

3
} are displayed in Figure 2 - Figure 13.

Table 1. Behaviour of the solutions r(w,α, λ)

λ r

λ > 2
3
α + 1

2
(w − 1) 1 ≤ r ≤ ∞

λ = 2
3
α + 1

2
(w − 1) r = 1

λ < 2
3
α + 1

2
(w − 1) 0 < r∗ ≤ r ≤ 1

Figure 2.
(
w = −1, α = − 1

2

)
:

r(τ) curves for
λ = {− 7

5 ,−
4
3 ,−

51
50 ,−1, 0, 2}

Figure 3. (w = −1, α = 0): r(τ)
curves for λ = {− 9

10 , 0, 2}
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Figure 4.
(
w = −1, α = 1

2

)
:

r(τ) curves for λ = {− 2
5 , 0, 2}

Figure 5.
(
w = − 1

3 , α = − 1
2

)
:

r(τ) curves for
λ = {− 7

5 ,−1,− 1
20 , 0,

1
10}

Figure 6.
(
w = − 1

3 , α = 0
)
:

r(τ) curves for
λ = {− 9

10 ,−
1
2 ,−

1
20 , 0,

1
10}

Figure 7.
(
w = − 1

3 , α = 1
2

)
:

r(τ) curves for
λ = {− 2

5 ,−
1
3 ,−

1
50 , 0,

1
15}
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Figure 8.
(
w = 0, α = − 1

2

)
:

r(τ) curves for
λ = {− 7

5 ,−
5
6 ,−

1
30 , 0,

1
10}

Figure 9. (w = 0, α = 0):
r(τ) curves for
λ = {− 9

10 ,−
1
2 ,−

1
30 ,−

1
350 , 0,

1
10}

Figure 10.
(
w = 0, α = 1

2

)
:

r(τ) curves for
λ = {− 2

5 ,−
1
6 , 0,

1
55 ,

2
103 ,

1
50 ,

1
15}

Figure 11.
(
w = 1

3 , α = − 1
2

)
:

r(τ) curves for
λ = {− 7

5 ,−
2
3 ,−

1
50 , 0,

1
10}
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Figure 12.
(
w = 1

3 , α = 0
)
:

r(τ) curves for
λ = {− 9

10 ,−
1
3 ,−

1
150 , 0,

1
500 ,

1
10}

Figure 13.
(
w = 1

3 , α = 1
2

)
:

r(τ) curves for
λ = {− 2

5 , 0,
1
15 ,

4
51 ,

1
10}

7.2. Solutions in the absence of a cosmological constant

In the absence of a cosmological constant, the consistency condition at the bounce (105)

reduces to,

s2 − δ2 = 1− α . (120)

Using the consistency condition (120), the Friedmann (106) and Raychaudhuri (107)

respectively reduce to,

r′
2

=
1

r4

(
r3(1−w) − α

(
r4 − 1

)
− 1
)
, (121)

r′′ = − 1

r5

(
1 + 3w

2
r3(1−w) + 2 (α− 1)

)
. (122)

As in the presence of a cosmological constant, the behaviour of the solutions can

be deduced from the asymptotic behaviour of the expansion rate parameter r′ and its

derivative r′′. The corresponding results concerning limiting values of r′ and r′′ are

obtained by setting λ = 0 in (112), (115), (117) and (119) . In this simpler case, let

us now consider the behaviour of the expansion rate parameter r′ in the limit where

r →∞ and r → 0.

(i) w ≤ −1
3

lim
r→∞

r′
2

=∞ ≥ 0 , (123)

which implies that the solutions for the scale factor parameter r(τ) diverge

independently of the value of α.

(ii) −1
3
≤ w ≤ 1

lim
r→∞

r′
2

= −α ≥ 0 , (124)
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which implies that the solutions for the scale factor parameter r(τ) diverge only

for a non-closed spatial geometry (i.e. α ≤ 0). Hence for a weakly closed spatial

geometry (i.e r′′ > 0 and 0 < α < 3
4

(1− w)), the scale factor parameter oscillates

between a minimum value r = 1 and a maximum value r∗ defined by limr→r∗ r
′ = 0

according to,

1 ≤ r ≤ r∗ (125)

(iii) w < 1,

lim
r→0

r′
2

= −∞ < 0 , (126)

which does clearly not exist. Hence, the solutions always satisfies r > 0, which

means that there cannot be any singularity. For a strongly closed spatial geometry

(i.e r′′ < 0 and 0 < 3
4

(1− w) < α < 1), the scale factor parameter oscillates

between a maximum value r = 1 and a minimum value r∗ defined by limr→r∗ r
′ = 0

according to,

0 < r∗ ≤ r ≤ 1 (127)

The behaviour of the solutions for the scale factor parameter r(τ) is summarised

in Table 2 below. Explicit numerical solutions in presence of curvature (i.e. α 6= 0) for

w = {−1,−1
3
, 0, 1

3
} are displayed in Figure 14 - Figure 17.

Table 2. Behaviour of the solutions r(w,α) for λ = 0

w α r

w ≤ −1
3

α < 1 1 ≤ r ≤ ∞

−1
3
< w < 1

α ≤ 0 1 ≤ r ≤ ∞

0 < α < 3
4

(1− w) < 1 1 ≤ r ≤ r∗

0 < α = 3
4

(1− w) < 1 r = 1

0 < 3
4

(1− w) < α < 1 0 < r∗ ≤ r ≤ 1

8. Dynamical evolution of spatially-flat models with zero cosmological

constant

In this section, we restrict our study to models with a vanishing spatial curvature and

cosmological constant (i.e. ∗R = Λ = 0) and find explicit solutions for the time evolution

of the scale factor. The reason for choosing this particular class of models is because they

admit analytical solutions. The dynamics of a homogeneous and anisotropic Weyssenhoff

fluid in a spatially-flat model in the absence of a cosmological constant can be solved
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Figure 14. (w = −1):
r(τ) curves for α = {−5, 0, 9

10}
Figure 15.

(
w = − 1

3

)
:

r(τ) curves for α = {−5, 0, 3
4 ,

9
10}

Figure 16. (w = 0):
r(τ) curves for
α = {−5,− 1

2 , 0,
1
4 ,

1
2 ,

2
3 ,

3
4 ,

9
10}

Figure 17.
(
w = 1

3

)
:

r(τ) curves for
α = {−5,− 1

2 , 0,
1
4 ,

1
2 ,

9
10}

explicitly by determining the asymptotic behaviour of the time evolution of the scale

factor for particular values of the equation of state parameter.

In the absence of curvature and a cosmological constant, the consistency condition

at the bounce (105) reduces to,

s2 − δ2 = 1 . (128)

Using the consistency condition at the bounce (128) the Friedmann (106) and

Raychaudhuri (107) equations can be rewritten in terms of the dimensionless parameters



Big-Bounce cosmology 28

according to, (
r′

r

)2

= r−3(1+w) − r−6 , (129)

r′′

r
= −1 + 3w

2
r−3(1+w) + 2r−6 . (130)

To obtain the explicit time evolution for the scale factor parameter r, the Friedmann

(129) or Raychaudhuri (129) equations have to be integrated. In order to obtain an

analytical result, it is easier to integrate the Friedmann equation (129) according to,

∫
r2dr√

r3(1−w) − 1
=

∫
d|τ | . (131)

The solution of this integral relation depends critically on the value of the

equation of state parameter w. We will consider six special cases given respectively

by w = {−1,−1
3
, 0, 1

3
, 1, 2}, which all admit analytical solutions to (131). The last

two solutions (i.e. w = 1, 2) are physically unacceptable (110) but mathematically

interesting solutions.

We first note, however, that in the limit where the model approaches the bounce

(r → 1), the asymptotic solution for the scale factor parameter has the quadratic form,

r(τ) =

(
1 +

3

4
(1− w)τ 2

)
, (132)

for any equation-of-state parameter w.

Moreover, in the limit where the model is sufficiently far away from the bounce

(r � 1), the asymptotic solution for the scale factor parameter is given by,

r(τ) = exp (|τ |) , (133)

for an equation-of-state parameter w = −1, and evolves according to,

r(τ) =

(
3

2
(1 + w) τ

) 2
3(1+w)

, (134)

for an equation-of-state parameter w satisfying −1 < w < 1. Hence, for a positively

defined cosmic time parameter (τ > 0), the asymptotic solutions for the scale factor

parameter at late times, (r � 1), have the same time dependence as the solutions found

within a GR framework. This is due to the fact that the spin contributions can be

neglected at late times, which implies that the evolution of an effective Weyssenhoff

fluid asymptotically reduces to a perfect fluid in GR at late times.

8.1. w = −1 case

A fluid with an equation-of-state parameter w = −1 behaves like a cosmological

constant. By solving the integrated Friedmann equation (131) for such an equation-

of-state parameter, the symmetric evolution of the scale factor parameter with respect

to the cosmic time parameter is found to be,

r = (cosh (3τ))1/3 . (135)
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For a Weyssenhoff fluid satisfying such an equation-of-state parameter, the symmetric

temporal curvature of the scale factor parameter r̈(τ) is positively defined at all times.

Hence, for a positively defined cosmic time parameter (τ > 0), the model inflates

perpetually. It starts with a power law inflation phase (132) and tends towards an

exponentially inflating solution at late times (133).

8.2. w = −1
3

case

A fluid with w = −1
3

behaves like a macroscopic fluid made of cosmic strings. This

result has been established by Vilenkin by performing a spatial averaging over a chaotic

distribution of linear strings made of matter fields [21]. For such an equation-of-state

parameter, an implicit relation for the symmetric time evolution of the scale factor

parameter is found according to,

|τ | = 1

r

√
r4 − 1 + Re

(
1√
2

F

(
arccos

(
1

r

)
,

1√
2

)
−
√

2E

(
arccos

(
1

r

)
,

1√
2

))
, (136)

where F (φ, k) and E(φ, k) are the elliptic integral of the first and second kind

respectively. As in the previous case, the symmetric temporal curvature of the scale

factor parameter r̈(τ) is positively defined at all times. For a positively defined cosmic

time parameter (τ > 0), the scale factor parameter r(τ) tends asymptotically towards

a constant rate of expansion (i.e. lim
τ→∞

r̈(τ) = 0) in this limiting case.

8.3. w = 0 case

A fluid with w = 0 behaves like dust. The non-singular behaviour of dust with spin was

first investigated by Trautman [4] and extended by Kuchowicz [22]. The integrated

Friedmann equation (131) for an isotropic Weyssenhoff dust can be solved exactly.

The symmetric evolution of the scale factor parameter with respect to the cosmic time

parameter is given by,

r =

(
1 +

9

4
τ 2

)1/3

, (137)

which agrees with the result established by Trautman.

8.4. w = 1
3

case

A fluid with w = 1
3

behaves like radiation. For such an equation-of-state parameter, an

implicit relation for the symmetric time evolution of the scale factor parameter is found

according to,

|τ | = 1

2

(
r
√
r2 − 1 + arccosh (r)

)
. (138)

As in the anisotropic case, the isotropic solution of the scale factor parameter for a

relativistic fluid with spin (138) has a clear physical meaning. It is an interpolation

between two limiting solutions, which describe an inflationary (132) and a radiation

dominated (134) era respectively.
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8.5. w = 1 case

A fluid with w = 1 behaves like stiff matter. For such an equation-of-state parameter,

the derivative of the integrated Friedmann equation (131) with respect to the cosmic

parameter yields a vanishing rate of expansion,

r′ = 0 . (139)

The value of the scale factor parameter at the bounce is given by r(0) = 1. Hence, the

trivial solution for the evolution of the scale parameter with respect to the cosmic time

parameter is found according to,

r = 1 . (140)

8.6. w = 2 case

Finally, a fluid with w = 2 behaves like ultra stiff matter. A fluid with an equation-of-

state parameter w > 1 is physically unreasonable given that for such a fluid the speed

of sound exceeds the speed of light (cs > c). However, such a solution is mathematically

interesting because it leads to the presence of singularities. By solving the integrated

Friedmann equation (131) for an equation-of-state parameter w = 2, an implicit relation

for the symmetric time evolution of the scale factor parameter is found according to,

|τ | = 1

3

(√
r3 (1− r3) + arctan

√
r−3 − 1

)
. (141)

For a Weyssenhoff fluid with an equation-of-state parameter w = 2, the time-

symmetric temporal curvature of the scale factor parameter r̈(τ) is negatively defined

at all times (83). To ensure the continuity of the expansion rate Θ at the bounce, the

energy density at the bounce ρ0 has to satisfy (79) even if the cosmological solution leads

to the presence of singularities. As the absolute value of the cosmic time parameter |τ |
increases, the value of the scale factor parameter decreases before eventually collapsing.

From the implicit dynamical relation (141), the cosmic time parameter |τc| at the collapse

− defined by a vanishing scale factor parameter r(|τc|) = 0 − is found to be,

|τc| =
π

6
. (142)

The collapse of the scale factor R→ 0 is equivalent to the divergence of the expansion

rate Θ→∞. For an equation of state parameter w = 2, the collapse of the scale factor

parameter represents a mathematical singularity for the evolution of the scale factor

parameter with respect to the cosmic time parameter given that the rate of expansion

diverges at that point, Θ(τc) =∞.

8.7. Graphic solutions

The cosmological constant (w = −1), cosmic strings (w = −1
3
), dust (w = 0), radiation

(w = 1
3
), stiff matter (w = 1) and ultra stiff matter (w = 2) solutions for the evolution

of the scale factor parameter with respect the cosmic time parameter r(τ) are shown
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in Figure 18. For a positively defined cosmic time parameter (τ > 0), the inflection

point on the graph of r(τ) − for the dust and radiation solutions − corresponds to the

end of inflation. The coordinates of this point are (1.28, 1.41) for the radiation case and

(1.15, 1.59) for the dust case.

Figure 18. Symmetric evolution of the scale factor parameter r with respect to
the cosmic time parameter τ for particular values of the equation-of-state parameter
w = {−1,− 1

3 , 0,
1
3 , 1, 2} for spatially-flat models with zero cosmological constant.

9. Conclusions

We have used the 1+3 covariant approach to perform a dynamical analysis of an effective

homogeneous and irrotational Weyssenhoff fluid. Contrary to the case of a perfect fluid

in GR, the effective spin contributions to the fluid dynamics act like centrifugal forces

preventing the formation of singularities for isotropic and anisotropic models satisfying

the spin-shear constraint (74). The temporal evolution of the models is symmetric with

respect to t = 0.

In a cosmological context, the energy density at the bounce state ρ0 has

to be sufficiently dense in order to seed large scale structures from primordial

quantum fluctuations. For cosmological parameters which are consistent with current

cosmological data (80) (81), the temporal curvature of scale factor of a Weyssenhoff

fluid is positively defined near the bounce (84). However such a fluid is not a suitable

candidate for inflation given that the only way to include an inflation phase of about

50 − 70 e-folds, is by considering a fluid with a very fine-tuned equation-of-state (95),

which does not reduce to the standard cosmological fluid at later times.
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It is worth emphasizing that the time evolution of the scale factor of a homogeneous

and irrotational Weyssenhoff fluid exhibits eternal oscillations, without any singularities.

By contrast, the corresponding solutions obtained for a perfect fluid in GR are cycloids,

which do exhibit singularities. Hence, the absence of singularities for a specific range of

parameters is a genuinely new feature of cosmological models based on a Weyssenhoff

fluid.
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Appendix A. 1+3 covariant formalism

We choose to restrict our scope to a homogeneous and irrotational Weyssenhoff fluid,

thus implying a vanishing vorticity, ωµν = 0, and acceleration, aµ = 0. To study the

dynamics of an such a fluid, we use the 1+3 covariant approach which has been described

in detail in our previous paper [7], and will be summarised below to clarify our notation.

The approach relies on a 1 + 3 decomposition of geometric quantities with respect to a

timelike velocity field uµ defining an observer according to,

∇µuν = Dµuν = 1
3
Θhµν + σµν = Θµν , (A.1)

where

• hµν ≡ gµν−uµuν is the induced metric on the orthogonal instantaneous rest-spaces

of observers moving with 4-velocity uµ.

• Dµuν ≡ hµ
ρhν

σ∇ρuσ is the projected covariant derivative of the worldline on the

orthogonal instantaneous rest-space.

• Θ ≡ Dµu
µ is the scalar describing the volume rate of expansion of the fluid (with

H = 1
3
Θ the Hubble parameter).

• σµν ≡ D〈µuν〉 is the trace-free rate-of-shear tensor describing the rate of distortion

of the matter flow.

• Θµν is the symmetric fluid evolution tensor describing the rate of expansion and

distortion of the fluid.

It is useful to introduce another scalar quantity, namely the rate of shear scalar defined

as,

σ2 = 1
2
σµνσ

µν ≥ 0 . (A.2)

Moreover, we define two projected covariant derivatives which are the time projected

covariant derivative along the worldline (denoted ˙ ) and the orthogonally projected
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covariant derivative (denoted Dµ). For any general tensor T µ... ν..., these are respectively

defined as

Ṫ µ... ν... ≡ uλ∇λT
µ...

ν... , (A.3)

DλT
µ...

ν... ≡ hελh
µ
ρ . . . h

σ
ν . . .∇εT

ρ...
σ... . (A.4)

Furthermore, the dynamics is determined by projected tensors that are orthogonal to

uµ on every index. The angle brackets are used to denote respectively the orthogonally

projected symmetric trace-free part (PSTF) of rank-2 tensors and their time derivative

along the worldline according to,

T 〈µν〉 =
(
h(µ

ρh
ν)
σ − 1

3
hµνhρσ

)
T ρσ (A.5)

Ṫ 〈µν〉 =
(
h(µ

ρh
ν)
σ − 1

3
hµνhρσ

)
Ṫ ρσ . (A.6)

The orthogonal projection of the covariant time derivative of a general tensor T µ...ν... is

denoted by,

(T µ...ν...)
·
⊥ ≡ hµρ . . . h

σ
ν . . . u

λ∇λT
ρ...
σ... . (A.7)
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