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Abstract

Climate exhibits a vast range of dissipative structures. Some have characteristic times of a few
days; others evolve on thousands of years. All these structures are interdependent; in other words,
they communicate. It is often considered that the only way to cope with climate complexity is to
integrate the equations of atmospheric and oceanic motion with the finer possible mesh. Is this the
sole strategy? Aren’t we missing another characteristic of the climate system: its ability to destroy
and generate information at the macroscopic scale? Paleoclimatologists consider that much of this
information is present in palaeoclimate archives. It is therefore natural to build climate models such
as to get the most of these archives. The strategy proposed here is based on Bayesian statistics and
low-order non-linear dynamical systems, in a modelling approach that explicitly includes the effects of
uncertainties. Its practical interest is illustrated through the problem of the timing of the next great
glaciation. Is glacial inception overdue, or do we need to wait for another 50,000 years before ice caps
grow again? Our results indicate a glaciation inception in 50,000 years.
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L’analyse mathématique peut déduire des
phénomènes généraux et simples l’expression

des lois de la nature; mais l’application spéciale
de ces lois à des effets très-composés exige une

longue suite d’observations exactes. 1

Joseph Fourier (1768 – 1830)

1 In troduction

This quote by Joseph Fourier appeared first
in the “discours préliminaire” of the analyti-
cal theory of heat [1]. At a time when the
reversible Newtonian equations were champi-
oned by Pierre-Simon Laplace (1749 – 1827) and
Joseph Louis Lagrange (1736 – 1813), the ir-
reversible equations governing heat propagation
constituted a genuine mental revolution. With
this sentence, Fourier arguably sets the founda-
tions of complex system theory. He repeated
it at least once, to conclude his mémoire sur
les températures du globe terrestre et des es-
paces planétaires [2] in which Fourier formulates
what is known today as the “greenhouse effect”.
Fourier confesses that “the question of Earth’s
temperature is one of the most important and
difficult of all the Natural Philosophy”[2] and
solving it was one central motivation for the
theory of heat. Clearly, Fourier had fully per-
ceived the complex character of the climate sys-
tem. How, two centuries later, do we cope with
climate’s complexity? Which mathematical anal-
ysis is the most appropriate to get the best out of
observations? With this paper we would like to
convince the reader that the most complex model
is not necessarily the most useful. Predicting and
understanding the climate system requires a con-
sistency between the level of complexity of of ob-
servations, model prediction and what one wants
to predict. Choosing the right model is thus also

1 Mathematical analysis allows you to deduce nature’s
laws from general and simple phenomena; but applying
these laws to highly composite effects requires a long series
of exact observations

a question of information theory.
The case will be illustrated through a polemic

currently taking place in the circle of Quaternary
climate scientists. Here is it. As we shall see in
more detail, the climate history of the past few
million years is characterised by repeated tran-
sitions between “cold” (glacial) and warm (in-
terglacial) climates. The first modern men were
hunting mammoth during the last glacial era.
This era culminated around 19,000 years ago [3]
and then declined rapildy. By 9,000 years ago cli-
mate was close to the modern one. The current
interglacial, called the Holocene, has lasted long
enough compared to previous interglacials. The
polemic is about when it is supposed give way to
a new glacial inception, keeping aside human ac-
tivities that have most probably perturbed nat-
ural cycles.

On the one side, Professor of Environmen-
tal Sciences Bill Ruddiman carefully inspected
and compared palaeo-environmental information
about the different interglacial periods. This
comparison exercise let him to conclude that
glacial inception is largely overdue [4, 5]. Ac-
cording to him, the Holocene was not supposed
to be that long, but the natural glacial inception
process was stopped by an anthropogenic per-
turbation that began as early as 6,000 years ago
(rice plantations and land management by an-
tique civilisations). On the other side, Professor
André Berger and colleagues developed a mathe-
matical model of the climate system, rated today
as a “model of intermediate complexity”[6, 7] in-
cluding 15,000 lines of FORTRAN code to solve
the dynamics of the atmosphere and ice sheets
on a spatial grid of 19 x 5 elements, with a
reasonably extensive treatment of the shortwave
and longwave radiative transfers in the atmo-
sphere. Simulations with this model led Berger
and Loutre conclude that glacial inception is not
due before 50,000 years as long as the CO2 atmo-
spheric concentration stays above 220 ppmv. [8]
Who is right? Both (Crucifix and Berger argued
that the two statements are not strictly incom-
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patible [9])? None? Both Ruddiman and Berger
judge that it is possible to predict climate thou-
sands of years ahead but is it a realistic expecta-
tion after all? Michael Ghil wondered “what can
we predict beyond one week, for how long and
by what methods?” in a paper entitled “Hilbert’s
problem of the geosciences in the XXIst century”
[10]. This is the fundamental motiviation behing
the present article.

2 Steps towards a dynamical
model of palaeoclimates

2.1 Some general remarks about com-
plex system modelling

A system as complex as climate is organised at
different levels : clouds, cloud systems, synop-
tic waves, planetary waves, pluri-annual oscil-
lations such as El-Niño, glacial-interglacial cy-
cles. . . . It is not our purpose to explain here
how, in general, patterns emerge in complex sys-
tems ([11, 12] are up-to-date references on the
subject) but it is useful to have a few notions in
mind. Complex systems and their components
act as information processors. This means that
their dynamics is such that they can destroy, am-
plify and even create information. The difficult
mental barrier to overcome for physicists accus-
tomed to Newtonian mechanics is that while the
definition of information is subjective (it depends
on a choice of variables describing the system),
the processes of destruction and creation of in-
formation rely on general theories.

At the risk of being schematic, one may say in-
formation is created by instabilities (necessarily
fed by some source of energy), and it is destroyed
by relaxation processes (return to equilibrium).
The resulting stationary patterns are a balance
between both. A typical laboratory example is
the Bénard Cells.

In the atmosphere, local hydrodynamical in-
stabilities result in planetary waves, such as

the ones responsible for dominant north-westerly
winds in Canada and south-westerly winds in Eu-
rope. A pure linear thinker might estimate that
the hypothetical butterfly that caused the ini-
tial atmospheric instability is the cause of the
wave. It is, indeed, chronologically the first of a
sequence of events that lead to the macroscopic
pattern. On the other hand, the “non-linear”
thinker will observe that the macroscopic prop-
erties of the wave (for example, its spectral char-
acteristics) do not depend on the position and
time of the butterfly that triggered the initial in-
stability. This information has been destroyed by
the system dynamics. In this view, the “causes”
of the wave are the conditions that made the ini-
tial instability possible.

This lead us to conclude that although there is
no way to know the climate system fully (it is im-
possible to know precisely the position and size of
any molecule of air and ocean and to know all the
chemical reactions occurring at any given time)
it is possible to make useful predictions about
the evolution of some macroscopic variables by
taking advantage of organised patterns. It is
therefore sensible to define climate’s state using
variables relevant for what one wants to predict.
Our goal is to predict the next glacial inception,
so we will concentrate on variables such as ice
volume and carbon dioxide concentration. These
are called order parameters. They describe sys-
tem’s state, but incompletely so, and our goal is
to establish balance equations for these variables
(cf. [12], pp. 36-37).

Behind the mere desire of predicting the
next glacial inception, our more general ambi-
tion is to identify and understand which con-
straints mostly determine climate evolution at
the glacial-interglacial time scale. What do we
need to know to predict the next glacial in-
ception, and why is this information important
? This question prompts us to build mod-
els that take explicitly into account our knowl-
edge and associated uncertainties, and validate
these models, that is, to test that the under-
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lying assumptions are compatible with observa-
tions (e.g.: [13]).

We have already seen that instabilities are
information generators. Macroscopic patterns
therefore depend on the parameters that con-
trol the growth of such instabilities. Only in rel-
atively idealised and simple cases do we know
these parameters with enough accuracy to cor-
rectly predict the macroscopic order parameters.
In most natural cases, instabilities are so numer-
ous and intricate that the resulting effects cannot
possibly be predicted without appropriate obser-
vations. Namely, Saltzman repeatedly insisted
[14, 15] on the fact that neither current observa-
tions nor modelling of the present state of the at-
mosphere can possibly inform us of the ice-sheet
mass balance with sufficient accuracy to predict
their evolution at the timescale of several thou-
sands of years. We need to look at palaeoclimate
history to get this information.

The relevant strategy strategy will therefore
consist in using both first principles and em-
pirical information to formulate the balance
equations governing the dynamics of glacial-
interglacial cycles. Of course, these equations
must be compatible with our knowledge of atmo-
sphere and ocean dynamics at the interannual
time scale, but we accept the fact that we do not
immediately deduce them from it. The process
by which model parameters are estimated on the
basis of observations is called calibration [13].

This empirical, or inductive approach is ac-
ceptable as long as it respects the fundamental
statements of information theory. In particular,
any system of time-differential equations that re-
producibly predicts the evolution of macroscopic
variables must be dissipative (the volume of ini-
tial conditions must collapse to an attractor)
([16] and [12], pp. 195 onwards. )

2.2 Empirical evidence about the
Quaternary

Building a robust theory of glacial-interglacial
cycles requires a profound knowledge of the Qua-
ternary. This section is intended to provide a
glimpse at the vast amount of knowledge that
scientists have accumulated on that period be-
fore we propose a mathematical methodology to
address Ruddiman’s hypothesis.

2.2.1 The natural archives

By the nineteen-twenties, geomorphologists were
able to correctly interpret the glacial moraines
and alluvial terraces as the left-overs of pre-
vious glacial inceptions. Penk and Brückner
([17], cited by [18]) recognised four previous
glacial epochs, named the Günz, Mindel, Riss
and Würm. The wealth of data on the Quater-
nary environments that has since been collected
and analysed by field scientists can be appreci-
ated from the impressive four-volume encyclo-
pedia of Quaternary Sciences recently edited by
Elias [19]. Analysis and interpreting palaeoenvi-
ronmental data involve a huge variety of scientific
disciplines, including geochemistry, vulcanology,
palaeobiology, nuclear physics, stratigraphy, sed-
imentology, glacial geology and ice-stream mod-
elling.

Only a schematic overview of this rich and in-
tense field of scientific activity could possibly be
given here. The reader will find most of the rel-
evant references in the encyclopedia, and only a
few historical ones are provided here.

Stable isotopes constitute one important
class of natural archives. It is indeed known
since the works of Urey [20], Buchanan [21] and
Dansgaard [22] that physical and chemical trans-
formations involved in the cycles of water and
carbon fractionate the isotopic composition of
these elements. To take but a few examples, ice-
sheet water is depleted in oxygen-18 and deu-
terium compared to sea water; clouds formed at
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low temperatures are more depleted in oxygen-
18 and deuterium than clouds formed at higher
temperatures; organic matter is depleted in 13C,
such that inorganic carbon present in biologically
active seas and soils is enriched in 13C. 15N is
another useful stable palaeo-environmental indi-
cator sensitive to the biological activity of soils.
The isotopic compositions of water and bio-
genic carbon are extracted deep-sea sediments,
ice and air trapped in ice bubbles, palaeosols,
lake-sediments and stalagmites. One of the first
continuous deep-sea record of glacial-interglacial
cycles was published by Cesare Emiliani [23].

Radioactive tracers are used to estimate the
age of the record and rate of ocean water re-
newal. At the timescale of the Quaternary, useful
mother-daughter pairs are 230Th / 238,234U (dat-
ing carbonates), and 40K / 40Ar in potassium-
bearing minerals. The ratio 230Th / 231Pa is a
useful indicator of ocean circulation rates.

The chemical composition of fossils is also
indicative of past environmental conditions. In
the ocean, cadmium, lithium, barium and zinc
trapped in the calcite shells of foraminifera indi-
cate the amount of nutrients at the time of cal-
cite formation, while the foraminifera content in
magnesium and strontium are empirically corre-
lated to water-temperature.

Glaciologists have also developed ambitious
programmes to analyse the composition of
air (oxygen, nitrogen, plus trace gases such as
methane, carbon-dioxide and nitrogen oxide, ar-
gon and xenon) trapped in ice accumulating on
ice sheets, of which the European Project for Ice
Core in Antarctica is a particularly spectacu-
lar achievement[24]. It was demonstrated that
the central plateaus of Antarctica offer a suffi-
ciently stable environment to reliably preserve
air’s chemical composition over several hundreds
of thousands of years. The chemical composition
of water is sensitive to atmospheric circulation
patterns and sea-ice area.

Additional sources of informations are ob-
tained from a variety of marine and continental

sources. Plant and animal fossils (including pol-
lens) trapped in lakes, peat-bogs, palaeosols and
marine sediments provide precious indications on
the palaeoenvironmental conditions that condi-
tioned their growth. Their presence (quantified
by statistical counts) or absence may be inter-
preted quantitatively to produce palaeoclimatic
maps [25]. Preservation indicators of ocean cal-
cite fossils are used to reconstruct the history
of ocean alkalinity. Palaeosols and wind-blown
sediments (loess) provide precious indications on
past aridity at low-latitudes. The loess grain-
size distribution is also sensitive to atmospheric
circulation patterns. Geomorphological elements
remain a premium source of information about
the configuration of past ice sheets, which is com-
plemented by datable evidence (typically coral
fossils) on sea-level.

2.2.2 The structure of Quaternary cli-
mate changes

It is barely straightforward to appreciate which
fraction of the information available in a cli-
mate record is relevant to understand climate
dynamics at the global scale. For example, mi-
nor shifts in oceanic currents may have sensi-
ble effects on the local isotopic composition of
water with however no serious consequence for
glacial-interglacial cycle dynamics. One strat-
egy is to collect samples from many areas of the
world and average them out according to a pro-
cess called “stacking”. One of the first “stacks”,
still used today, was published by John Imbrie
and colleagues [26] in the framework of the Map-
ping spectral variability in global climate project.
It is usually referred to as the Specmap stack.
Here we concentrate on the more recent compila-
tion provided by Lisiecki and Raymo [27], called
LR04. The stack was obtained by superimpos-
ing 57 records of the oxygen-18 composition of
benthic foraminifera shells. Benthic foraminifera
live in the deep ocean and therefore record the
isotopic composition of deep water (an indica-
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LR04 benthic stack

time (Myr)

δδ18O    ((per    mil)) interglacial

glacial
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Figure 1: The LR04 benthic δ18O stack constructed
by the graphic correlation of 57 globally distributed
benthic δ18O records [27]. Note that the full stack
goes back in time to -5.2 Myr (1 Myr = 1 million
years). The signal is the combination of global ice
volume (low δ18O corresponding to low ice volume)
and water temperature (low δ18O corresponding to
high temperature). The Y-axis is reversed as stan-
dard practice to get “cold” climates down. Data
downloaded from www.lorraine-lisiecki.com.

tor of past ice volume). However, there is an
additional fractionation associated to the calci-
fication process, which is proportional to water
temperature. The isotopic composition of cal-
cite oxygen is reported by a value, named δ18Oc,
giving the relative enrichment of oxygen-18 ver-
sus oxygen-16 compared to an international stan-
dard. High δ18O indicates either low continental
ice volume and / or high water-temperature.

Visual inspection of the LR04 stack (Figure
1) nicely evidences the gradual transition from
the Pliocene — warm and fairly stable — to the
spectacular oscillations of the late Pleistocene.
The globally averaged temperature at the early
Pliocene was about 5◦ C higher than today ([28]
and references therein); that one at the last
glacial maximum (20,000 years ago) was roughly
5◦ C lower. The central research question we
are busy with is to characterise these oscilla-
tions, understand their origin and qualify their
predictability.

time (Myr)
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41
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LR04 stack −− Morlet CWT (modulus)

Figure 2: Modulus of the continuous Morlet Trans-
form of the LR04 stack according to the algorithm
given in Torrence and Compo [90] using ω0 = 5.4
but with a normalisation c(s) = s/

√
∆t. R routine

adapted by J.L. Melice and the author from the orig-
inal code supplied by S. Mallat [91]. The wavelet
transform evidenes the presence of quasi-periodic sig-
nals (shades) around periods of 41 kyr (1 kyr = 1,000
years) and 1000 kyr.

The Morlet Continuous wavelet transform pro-
vides us with a first outlook on the backbone of
these oscillations (Figure 2). The LR04 record is
dominated most of the time by a 40,000-yr sig-
nal until roughly 900,000 years ago, after which
the 40,000-yr signal is still present but topped
by longer cycles. At the very least, this picture
should convince us that LR04 contains struc-
tured information susceptible of being modelled
and possibly predicted.

How many differential equations will be
needed? There will be no clear-cut answer
to that question. Time-series extracted from
complex systems are sometimes characterised
by their correlation dimension, which is an
estimator for the fractal dimension of the
corresponding attractor [29]. The first estimates
for the Pleistocene were provided by Nicolis
and Nicolis [30] (d = 3.4) and Maasch et al.[31]
(4 ≤ d ≤ 6). For this article we calculated
correlation dimension estimates for the LR04
stack (d = 1.54) and the HW04 stack [32]
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(d = 3.56). HW04 is similar to LR04 but it is
based on different records and dating assump-
tions. Several authors, including Grassberger
himself [33, 34, 35] have discouraged the use of
correlation dimension estimates for the “noisy
and short” time series typical of the Quaternary
because they are overly sensitive to sampling
and record length. They are therefore unreliable.

In response to this problem Ghil and col-
leagues [35, 36] promoted single-spectrum anal-
ysis, in which a time series is linearly decom-
posed into a number of prominent modes (which
need not be harmonic), plus a number of small-
amplitude modes. Assuming that the two groups
are indeed separated by an amplitude gap, the
first group provides the low-order backbone of
the signal dynamics while the second group is
interpreted as stochastic noise. Single spectrum
analysis was applied with a certain success to
various sediment and ice-core records of the few
last-glacial interglacial cycles [36] and have in
general confirmed that the backbone of climate
oscillations may be captured as a linear com-
bination of a small number of amplitude and
/ or frequency-modulated oscillations. Single-
spectrum analysis of the last million years of
LR04 (Figure 3) confirms this statement.

2.2.3 The Achille heel

Now time has come to mention a particularly dif-
ficult and intricate issue: dating uncertainty in
palaeoclimate records. No palaeoclimate record
is dated with absolute confidence. Marine sedi-
ments are coarsely dated by identification of a
number of reversals of Earth’s magnetic field,
which have been previously dated in rocks by
radiometric means ([37] and references therein).
Magnetic reversals are pretty rare (four of them
over the last 3 million years) and their age is
known with a precision no better than 5,000
years. Local sedimentation rates may vary con-
siderably between these time markers such that
any individual event observed in any core taken

in isolation is hard to date. Irregularities in the
sedimentation rate blur and destroy information
that might otherwise be evidenced by spectral
analysis.

One strategy to contend this issue is to assume
synchrony between oscillation patterns identi-
fied in different cores. Statistical tests may
then be developed on the basis that dating er-
rors of the different cores are independent. For
example, Huybers (2007) [38] considered the
null-hypothesis that glacial-interglacial transi-
tions (they are called terminations in the jar-
gon of palaeoclimatologists) are independent on
the phase of Earth’s obliquity. While this null-
hypothesis could not be rejected on the basis of
a single record, the combination of 14 cores al-
lowed him to reject it with 99% confidence, prov-
ing once more the effect of the astronomical forc-
ing on climate. First tests of this kind were car-
ried out by Hays et al. in a seminal paper [39].
Note that in many cases the oscillation patterns
recognised in different cores are so similar that it
is hard to dispute the idea of somehow “matching
them”, but it is remarkable that rigorous statis-
tical tests assessing the significance of a correla-
tion between two ill-dated palaeoclimate records
are only being developed (Haam and Huybers,
manuscript in preparation).

Another strategy is known as orbital tuning.
The method consists in squeezing or stretching
the time-axis of the record to match the evolu-
tion of one or a combination of orbital elements,
possibly pre-filtered by a climate model [39, 26].
The method undeniably engendered important
and useful results (e.g. [40]), but the astute
reader has already perceived its potential per-
versity: orbital tuning injects a presumed link
between orbital forcing and the record. Experi-
enced investigators recognise that orbital tuning
has somehow contaminated most of most of the
dated palaeoclimate records available in public
databases. This has increased the risk of tauto-
logical reasoning.

For example, compare the two SSA analyses
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Figure 3: Single Spectrum Analysis (SSA) of the LR04 and HW04 benthic stacks. Displayed are the eigenvalues
of the lagged-covariance matrix of rank M = 100 as given by [92], equation (6). The records were cubic-spline
interpolated (∆t = 1kyr) and only the most recent 900 kyr were kept. The SSA decomposition of LR04 is very
typical: it evidences three oscillators (recognisable as pairs of eigenvectors), then about four modes that are
generally interpreted as harmonics of the dominant ones, and finally a number of modes typically interpreted
as stochastic background. The HW04 stack contrasts with LR04 because the dominant modes are not so easily
evidenced. HW04 uses less benthic records than LR04, but it also relies on more conservative dating assumptions
and this probably resulted in blurring the quasi-periodic components of the signal. HW04 data were obtained
from www.people.fas.harvard.edu/ phuybers/.

shown in figure 3. As we mentioned, LR04 and
HW04 are two stacks of the Pleistocene but LR04
contains more information. It is made of more
records (57 instead of 21 in HW04) and it is as-
tronomically tuned. We can see from the SSA
analysis that LR04 presents more quasi-periodic
structures than HW04 (recall that quasi-periodic
modes are identified as pairs of eigenvalues with
quasi the same amplitude). Why is this the case?
Is this because age errors in HW04 blurred the
interesting information, or is it because this in-
formation has been artificially injected in LR04
by the tuning process? There is probably a bit
of both (but note that HW04 displays a similar
wavelet structure as LR04).

Leads and lags between CO2 and ice volume
is another difficult problem where risks posed by
hidden dating assumptions and circular reason-
ing lie at every corner. Here is one typical illus-
tration: Saltzman and Verbitsky showed at sev-
eral occasions (e.g.: [41]) a phase diagram show-
ing the SPECMAP δ18O stack versus the first

full ice-core records of CO2 available at that time
[42, 43]. It is reproduced here (Figure 4, left).
The phase diagram clearly suggests that CO2

leads ice volume at the 100-kyr time scale. How-
ever, a detailed inspection of the original publi-
cations reveals that the SPECMAP record was
astronomically tuned, and that the Vostok time-
scale uses a conventional date of isotopic stage
5.4 of 110 kyr BP . . . by reference to SPECMAP
[43] ! The hysteresis is therefore partly condi-
tioned by arbitrary choices. On Figure 4 we fur-
ther illustrate the fact that the shape of the hys-
teresis depends on the stack record itself. The
situation today is that there is no clear consen-
sus about the phase relationship between ice vol-
ume and CO2 at the glacial interglacial time scale
(compare [44, 45, 46]). According to the quite
careful analysis of [45], CO2 leads ice volume at
the precession (20 kyr) period, but CO2 and ice
volume are roughly synchronous at the obliquity
(40 kyr) period. Current evidence about the lat-
est termination is that decrease in ice volume
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and the rise in CO2 were grossly simultaneous
and began around 19,000 years ago [44, 47]

2.3 Getting physical laws into the
model

So far we learned that palaeoclimate oscillations
are structured and that it is not unreasonable
to attempt modelling them with a reduced order
model forced by the astronomical variations of
Earth’s orbit. What is the nature of the physi-
cal principles to be embedded in such a model,
and how can they be formalised? The history
of Quaternary modelling is particularly enlight-
ening in this respect (the reader will find in [18]
an extensively documented review of Quaternary
climates modelling up to the mid-eighties). Af-
ter Joseph Adhémar (1797 – 1862) [48] suggested
that the cause of glaciations is the precession of
the equinoxes, Joseph John Murphy and James
Croll (1821 – 1890) argued about how preces-
sion may affect climate. Murphy maintained
that cold summers (occurring when summer is
at aphelion) favour glaciation [49], while Croll
considered that cold winters are critical [50].

Croll’s book demonstrates a phenomenal en-
cyclopaedic knowledge. His judgements are
at places particularly far-sighted, but they are
barely substantiated by the mathematical analy-
sis Fourier was so much insistent about. The na-
ture of his arguments are essentially phenomeno-
logical, if not at places frankly rhetorical.

Milutin Milankovitch (1879 – 1958) is then
generally quoted as the one having most deci-
sively crossed the step towards mathematical cli-
matology. In a highly mathematical book that
crowns a series of articles written between 1920
and 1941 [51], Milankovitch extends Fourier’s
work to estimate the zonal distribution of Earth’s
temperature from incoming solar radiation. He
also computes the effects of changes in preces-
sion, eccentricity and obliquity on incoming solar
radiation at different latitudes to conclude, based
on geological evidence, that summer insolation is

indeed driving glacial-interglacial cycles.
Mathematical analysis is the process that al-

lows Milankovitch to deduce the consequences of
certain fundamental principles, such as the laws
of Beer, Kirchhoff and Stefan, on global quanti-
ties such as Earth’s temperature. On the other
hand, Milankovitch uses empirical macroscopic
information, such as the present distribution of
the snow-line altitude versus latitude, to esti-
mate the effects of temperature changes on the
snow cover. In today’s language, one may say
that Milankovitch had accepted that some infor-
mations cannot be immediately inferred from mi-
croscopic principles because they depend on the
way the system as a whole has been dealing with
its numerous and intricate constraints (Earth’s
rotation, topography, air composition etc.).

The marine-record study published by Hays,
Imbrie and Shackleton [39] is often cited as the
most indisputable proof of Milankovitch’s theory.
Hays et al. identified three peaks in the spectral
estimate of climate variations that precisely cor-
respond to the periods of obliquity (40 kyr) and
precession (23 kyr and 19 kyr) calculated analyt-
ically by André Berger 2.

However, sensu stricto, Milankovitch’s theory
of ice ages was invalidated by evidence — al-
ready available in an article by Broecker and van
Donck [56] — that the glacial cycle is 100,000
years long, ice build up taking about 80,000 years
and termination about 20,000 years [56, 39].
Neither the 100,000-year duration of ice ages,
nor their saw-tooth-shape were predicted by Mi-
lankovitch. The bit Milankovitch’s theory is
missing is the dynamical aspect of climate’s re-
sponse. Glaciologist Weertman [57] consequently
addressed the evolution of ice sheet size and vol-
ume by means of an ordinary differential equa-
tion, thereby opening the door to the use of dy-
namical system theory for understanding Qua-

2the supporting papers by Berger would only appear
in the two following years [52, 53, 54]; Hays et al. based
themselves on a numerical spectrum estimate of the or-
bital time-series provided by Vernekar [55]
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Figure 4: The concentration in CO2 measured in the Vostok ice core record [80] over the last glacial-interglacial
cycle is plotted versus two proxies of continental ice volume: (left) : The planctonic δ18O stack by Imbrie et al.
(1984) and (right) : The benthic δ18O stack by Lisiecki and Raymo (2004). Numbers are dates, expressed in
kyr BP (before present). While the Imbrie stack suggests an hysteresis behaviour with CO2 leading ice-volume
variations, the picture based on LR04 is not so obvious.

ternary oscillations.
In the meantime, general circulation models

of the atmosphere and oceans running on su-
percomputers became widely available (cf. [58]
for a review), and used for palaeoclimate pur-
poses [59, 60, 61]. The interest of these models
is that they provide a consistent picture of the
planetary dynamics of the atmosphere and the
oceans. Just as Milankovitch applied Beer and
Kirschoff’s laws to infer Earth’s temperature dis-
tribution, general circulation models allow us to
deduce certain aspects of the global circulation
from our knowledge of balance equations in each
grid cell. However, these balance equations are
uncertain and quantifying the consequences of
these uncertainties at the Earth global scale is a
very deep problem that only begins to be system-
atically addressed [62]. While general circulation
models are undeniably useful to constrain the im-
mediate atmospheric response to changes in or-
bital parameters, they are far too uncertain to
reliably estimate glacial accumulation rates with

enough accuracy to predict the evolution of ice
sheets over tens of thousands of years [14].

In the following sections we will concentrate on
a 3-dimensional climate dynamical model writ-
ten by Saltzman. This choice was guided by
the ease of implementation as well as the im-
pressive amount of supporting documentation
[15]. However, they were numerous alterna-
tives to this choice. The reader is referred to
the article by Imbrie et al. [63] and pp. 264-
265 of Saltzman’s book [15] for an outlook with
numerous references organised around the dy-
namical concepts proposed to explain glacial-
interglacial cycles (linear models, with or with-
out self-sustained oscillations, stochastic reso-
nance, model with large numbers of degrees of
freedom).

The series of models published by Ghil and col-
leagues [64, 65, 66] are among the ones having the
richest dynamics. They present self-sustained os-
cillations with a relatively short period (6,000
years). The effects of the orbital forcing are
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taken into account by means of a multiplicative
coefficient in the ice mass balance equation. This
causes non-linear resonance between the model
dynamics and the orbital forcing. The result-
gin spectral response presents a rich background
with multiple harmonics and band-limited chaos.
More recently, Gildor and Tziperman [67] pro-
posed a model where sea-ice cover plays a cen-
tral role. In this model, termination occurs when
extensive sea-ice cover reduces ice accumulation
over ice sheets. Like Saltzman’s, this model
presents 100-kyr self-sustained oscillations that
can be phase-locked to the orbital forcing.

Field scientists with life-long field experience
have also proposed models usually qualified as
“conceptual”, in the sense that they are formu-
lated as a worded causal chain inferred from a
detailed inspection of palaeoclimate data with-
out the support of differential equations. Good
examples are [45, 63, 68, 69]. In the two lat-
ter references, Ruddiman proposes a direct effect
of precession on CO2 concentration and tropi-
cal and southern-hemisphere sea-surface temper-
atures, while obliquity mainly affects the hydro-
logical cycle and the mass-balance of northern
ice sheets.

2.4 The Saltzman model (SM91)

As a student of Edward Lorenz, Barry Saltz-
man ( - 2002) contributed to the formulation and
study of the famous Lorenz63 dynamical system
[70] traditionally quoted as the archetype of low-
order chaotic system3. Saltzman was therefore in
an excellent position to appreciate the explana-
tory power of dynamical system theory. Between
1982 and 2002 he and his students published a
small dozen of dynamical systems deemed to cap-
ture and explain the dynamics of Quaternary os-
cillations [71, 14, 72, 73, 74, 15]. In the present

3The acknowledgments of the Lorenz (1963) paper
reads: “The writer is indebted to Dr. Barry Saltzman
for bringing to his attention the existence of nonperiodic
solutions of the convection equations.

article we choose to analyse the “palaeoclimate
dynamical model” published by Saltzman and
Maasch (1991) [73]. We will refer to this model
as SM91.

Saltzman estimated that the essence of Qua-
ternary dynamics should be captured by a three-
degree-of-freedom dynamical system, possibly
forced by the variations in insolation caused by
the changes in orbital elements [14]. The evolu-
tion of climate at these time scales is therefore
represented by a trajectory in a 3-dimensional
manifold, which Saltzman called the “central
manifold”. The three variables are ice vol-
ume (I), atmospheric CO2 concentration (µ) and
deep-ocean temperature (θ). It is important to
realise that Saltzman did not ignore the existence
of climate dynamics at shorter and longer time
scales than those that characterise the central
manifold, but he formulated the hypothesis that
these modes of variability may be represented by
distinct dynamical systems. In this approach,
the fast relaxing modes of the complex climate
system are in thermal equilibrium with its slow
and unstable dynamical modes. This assump-
tion is called the “slaving principle” and it was
introduced by Haken [75].

The justification of time-scale decoupling is a
very delicate one and it deserves a small digres-
sion. In some dynamical systems, even small
scale features may truly be informative to pre-
dict large-scale dynamics. This phenomenon,
called “long-range interaction”, happens in the
Lorenz63 model [76]. The consequence is that
one might effectively ignore crucial information
by averaging the fast modes and simply assume
that they are in thermal equilibrium. To justify
his model, Saltzman used the fact that there is
a “spectral gap”, that is a range of periods with
relatively little variability, between weather (up
to decadal time-scales) and climate (above one
thousand years). This gap indicates the pres-
ence of dissipative processes that act as a barrier
between the fast and the slow dynamics. It is
therefore reasonable to apply the slaving princi-
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ple. In relation to this, Huybers and Curry re-
cently published a composite spectral estimate of
temperature variations ranging from sub-daily to
Milankovitch time scales [77]. No gap is evident,
but Huybers and Curry identify a change in the
power-law exponent of the spectral background:
Signal energy decays faster with frequency at the
above the century time scale than below. They
interpret this as an indice that the effective dis-
sipation time scale is effectively larger above the
century that below, and, therefore, that the dy-
namics of slow and fast climatic oscillations are
at least partly decoupled.

We now enunciate the three differential equa-
tions of SM91.

The ice-mass balance is the result of the con-
tribution of four terms: a drift, a term inversely
proportional to the deviation of the mean global
temperature compared to today (τ), a relax-
ation term, and a stochastic forcing representing
“all aperiodic phenomena not adequately param-
eterised by the first three terms”:

dI

dt
= ϕ1 − ϕ2τ̄ − ϕ3I +WI(t). (1)

According to the slaving principle, τ is in ther-
mal equilibrium with the slow variables {I, µ, θ}
and its mean may therefore be estimated as a
function of the latter:

τ̄ = τ̄τ (I) + τ̄µ(µ) + τ̄θ(θ) + τ̄R(R), (2)

where τ̄x(x) is the contribution variation of x
compared to a reference state, to τ̄ keeping the
other slow variables or forcing constant. R des-
ignates the astronomical forcing (Saltzman used
incoming insolation at 65o N at summer solstice).
The different terms τ̄(.) were replaced by linear
approximations, the coefficients of which were es-
timated from general circulation model experi-
ments.

The CO2 equation includes the effects of ocean
outgassing as temperature increases, a forcing
term representing the net balance of CO2 in-
jected in the atmosphere minus that eliminated

by silicate weathering, a non-linear dissipative
term and a stochastic forcing:

dµ

dt
= β0 − βθθ + Fµ −Kµµ+Wµ,(3)

with Kµ = β1 − β2µ+ β3µ
2.

The dissipative term (Kµµ) is a so-called Landau
form and its injection into the CO2 equation is
intentional to cause instability in the system. In
an earlier paper (e.g. [78]), Saltzman and Maash
attempted to justify similar forms for the CO2

equation on a reductionist basis: each term of
the equation was identified to specific, quantifi-
able mechanisms like effect of sea-ice cover on
the exchanges of CO2 between the ocean and
the atmosphere or that of the ocean circulation
on nutrient pumping. It is telling that Saltzman
and Maash gradually dropped and add terms to
this equation (compare [78, 72, 73]) to arrive at
the above formulation by which they essentially
posits a carbon cycle instability without explic-
itly caring about which mechanisms that cause
it.

The deep-ocean temperature simply assumes
a negative dependency on ice volume with a dis-
sipative relaxation term:

dθ

dt
= γ1 − γ2I − γ3θ +Wθ (4)

The carbon cycle forcing term Fµ is assumed
to vary slowly at the scale of Quaternary os-
cillations. It may therefore be considered to
be constant and its value is estimated assuming
that that the associated equilibrium is achieved
for a CO2 concentration of 253 ppmv. We
shall note {I0, µ0, θ0} the point of the central
manifold corresponding to that equilibrium, and
{I ′, µ′, θ′} the departure from it. Further con-
straints are imposed by semi-empirical knowl-
edge on the relaxation times of ice sheet mass
balance (10,000 years) and deep-ocean tempera-
ture (4,000 years).
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Saltzman and Maasch explored the different
solution regimes of this system [79, 73] and they
observed that climate trajectories converged to
a limit cycle characterised by saw-tooth-shaped
oscillations for a realistic range of parameters.
When the model is further forced by the astro-
nomical forcing, the uncertainty left on the em-
pirical parameters of equations (1 – 4) provides
the freedom to obtain very convincing solutions
for the variations in ice volume and CO2 dur-
ing the late Quaternary. Figure 5 reproduces
the original solution [73], using the parameters
published at the time. As in the original pub-
lication, the solution is compared with Imbrie’s
δ18O-stack [26] interpreted as a proxy for ice vol-
ume, and CO2 record extracted from the Vostok
and EPICA(Antarctica) ice cores [80, 81].

Limit-cycle solutions in SM91 (Figure 2.4) owe
their existence to cubic terms in the CO2 equa-
tion. In fact, all parameters being constant, a
limit-cycle occurs only for certain carefully cho-
sen values of µ0, which led Saltzman to conclude
that the cause of glacial-interglacial oscillations
is not the astronomical forcing (a linear view of
causality) but rather the gradual draw-down of
µ0 at the tectonic time scale that permitted the
transition between a stable regime to a limit-
cycle via a Hopf bifurcation. According to this
approach, astronomical forcing controls in part
the timing of terminations by a phase-locking
process, but terminations essentially occur be-
cause negative feedbacks associated to the car-
bon cycle become dominant at low CO2 concen-
tration and eject the system back towards the
opposite region of its phase space.

3 The Bayesian inference pro-
cess

Approaches founded on low-order dynamical sys-
tems are regularly suspected of being tautolog-
ical: what can you learn from a model if you
tuned it to match observations? There is no
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Figure 5: Response of the palaeoclimate model of
Saltzman and Maasch (1991) [73]. Shown are the
insolation forcing, taken as the summer solstice in-
coming solar radiation at 65◦ N after [54]; the ice
volume anomaly (full), overlain with the SPECMAP
planctonic δ18Oc stack [26] (dashed), the CO2 atmo-
spheric concentration, overlain with the Antarctic ice
core data from Vostok and EPICA [80, 81], and fi-
nally deep-ocean temperature. Note that I ′ and θ′

are anomalies to the tectonic average. A similar fig-
ure was shown in the original article by Saltzman and
Maasch

doubt that the empirical content of any model
— i.e., its capacity of being in conflict with ob-
servations — has to be assessed with the utmost
care. Several authors have in particular insisted
on the difficulty of finding discriminating tests
for models with similar dynamical characteris-
tics but built on different interpretations of the
climate system’s functioning [82, 83]. It is there-
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Figure 6: Phase-space diagrams
of trajectories simulated with the
SM91 model, using standard pa-
rameters. The model exhibits a
limit cycle in absence of external
forcing, with a trajectory that re-
sembles those obtained with data
(Figure 4). The astronomical
forcing adds a number of degrees
of freedom that complicates the
appearance of the phase diagram.

fore challenging but important to identify and
design powerful tests for such models.

Nevertheless, it has to be appreciated that
the risk of tautology is also present in the most
sophisticated general circulation models of the
atmosphere and ocean. Once assembled, these
models are “tuned” to capture major and global
characteristics of climate such as the overturning
cell or the global mean temperature (e.g.: [84]).
This “tuning” is an effective way of incorporating
macroscopic information in the model, and this
information can no longer said to be “predicted”.

Statistical decision theory allows us to address,
at least partly, these difficult problems. We will
concentrate on one branch of it: Bayesian infer-
ence. The paradigm of Bayesian inference finds
its roots in early works by Bayes, Laplace and
Bernouilli who were looking for ways of augment-
ing their knowledge of certain quantities such
as initial conditions or parameters, by means of
observations [16]. Rougier (2007) [13] explains
how Bayesian inference methods may be applied
to the problem of climate prediction. His con-
clusions are summarised hereafter, but adapted
were relevant to the problems posed by palaeocli-
mate time-series analysis. Compared to Rougier
(2007), we more explicitly consider here the fact
that climate is a dynamical body, whose evo-
lution has to be predicted by means of time-
differential equations.

Before embarking on the mathematical de-
tails, it is useful to recall two aspects inherent

to complex system modelling introduced in sec-
tion 2.1. The first one is that by focussing on
certain modes of climate variability we ignore a
large body of information, such as its synoptic
variability and, for example, the occurrence of
a particular volcanic eruption at any particular
moment. This ignorance causes prediction er-
rors that we have to parameterise, typically as a
stochastic forcing or error (we will here neglect
the epistemological distinction between stochas-
tic forcing and error). Model validation con-
sists in verifying that the model assumptions are
compatible with observations. A crucial but of-
ten forgotten point is that the validation tests
depends on the judgements we will have made
about the probability distribution of the model
error: if we considered that the model error could
take any value, the model would always be com-
patible with observations, but it would also be
useless.

The second aspect of complex system mod-
elling is that we accept to consider information
that it is not immediately deduced from our
knowledge of microscopical interactions. In the
case we are busy with, these extra statements
take the form of conjectures about the math-
ematical expressions of carbon, ocean and ice-
sheet feedbacks, which are calibrated by reference
to observations.

Our purpose is to formalise as rigorously as
possible the validation and calibration processes.
To this end, let us denote y(t) a vector describing
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the state of climate at a given time t. We further
notate symbolically y the climate evolution over
a given time interval not necessarily restricted
to the observable past. It is useful to distinguish
notationally the variable Y , which may a priori
take any value in a given space, from its realisa-
tion y. The exact value of y is never known be-
cause any measurement or prediction is affected
by errors, but the fact of positing the existence
and attaching a meaning to y enables us to struc-
ture and justify our judgements.

Palaeoclimatologists attempt to retrieve in-
formation on y by taking measurements in a
palaeoenvironmental record. Let z be a series
of such observations like, for example, delta-
Deuterium of ice in an Antarctic ice core sampled
at certain depths. They estimate that z is con-
ditionally dependent on y, which one may write
as :

y
p // z (5)

This means that their expectation on z depends
on their knowledge of y. This expectation can
be quantified by means of a probability density
function for Z, thought of as a function of z:

P (Z = z|Y = y, p) (6)

Building an expression for (6) requires to for-
mulate a number of assumptions forming a cli-
mate proxy model that we have symbolically de-
noted p. In practice, it may be preferable to de-
compose this model into a chronological chain of
nested processes, each bearing uncertainties: ef-
fect of climate on the hydrological cycle, isotopic
fractionation, accumulation of ice, preservation
of the signal in the core, drilling and actual mea-
surement. The more there are uncertainties, the
wider P (Z = z|Y = y, p) will be.

Bayesian inversion then indicates us how z is
informative on y :

P (Y = y|Z = z, p) =
P (Z = z|Y = y)P (Y = y)

P (Z = z|p)
(7)

This equation bears important lessons. First, up-
dating an estimate of y on the basis of obser-
vations requires to have some prior judgement
expressed in the form P (Y = y). This im-
portant question will be kept aside a moment.
Second, the denominator at the right-hand-side
is independent on y. It represents a marginal
likelihood, which may be thought of as a point-
estimate of a predictive distribution of Z given
our prior judgement on y along with the assump-
tions contained in p. In practice it is evaluated
as:

P (Z = z|p) =
∫
P (Z = z|Y = y, p)P (Y = y) dy

(8)
The validation of p consists in determining if

P (Z = z|p) lies in the tails of its distribution.
The presence of an observation in the tails of its
predictive distribution means that it was little
likely to occur according to the theory expressed
in p. Such an outcome will incline us to con-
fidently reject the theory in the same way that
one rejects a null-hypothesis in classical statistics
tests. This is easily diagnosed in the case where
z is a scalar, in which case it may be checked if
the marginal probability P (Z < z|p) is not too
close to zero or one.

P (Z < z|p) =
∫
P (Z < z|Y = y, p)P (Y = y) dy

(9)
In practice, z is often highly dimensional and its
predictive distribution may be particularly intri-
cate, especially in chaotic dynamical systems.

At present, it is useful to split y into its “past”
(yp) and “future” (yf ) components. If the past
is known, the record content is obviously inde-
pendent on the future, i.e. :

P (Z = z|Yp = yp, Yf = yf ) = P (Z = z|Yp = yp).
(10)

(7) and (10) tell us that in absence of any
additional assumption, past observations
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are not informative on the future. Predict-
ing climate requires to assume a certain dynami-
cal structure to climate evolution to link yf to yh.
This is the role of the climate model. It is in prin-
ciple always possible to formulate this model in
terms of first-order differential stochastic equa-
tions if the climate state y(t) is suitably defined.
Climate time-series are in this case Markovian:
Given climate at any time t0, the probability
density function of climate at time t1 may be
estimated and written:

P (y(t1)|y(t0), c, A = a) (11)

where we distinguish the ensemble of model
equations (symbolically denoted c) from their pa-
rameters, gathered into a single vector variable
denoted A. More generally, the model allows us
to estimate the probability density of any climate
time-series, which we shall write:

y(t0)

c

��
a c // y

(12)

The model makes it thus possible to build a
predictive distribution function for y given any
prior estimate of the possible values of a and
y(0).

The climate and climate proxy models may
then be combined to form a Bayesian network
:

y(t0)

c

��
a c //

c

""DDDDDDDD yh
p //

c

��

z

yp

(13)

Solving the network means to find the joint
distribution of a, y(t0), yh, yp and z compatible
with all the constraints expressed in p and c (e.g.
: [85], pp. 167 and onwards). Keeping in mind
that the arrows may be “inverted” by application

of Bayes’ theorem, it appears that there are two
routes by which z constrains yp : via yh (that
is, constraining the initial conditions to be input
to the model forecast of the future), and more
indirectly via a. In the latter route, all obser-
vations concur to constrain a distribution of the
model parameters that is compatible with both
the model structure and the data.

Two more remarks. First, (13) shows that the
climate model has solved the problem of finding
a prior to y (it is provided by the model), but
this is at the price of having to find a prior for
parameters a. It may happen that one parameter
has no clearly identified physical meaning (like β4

in eq. (3)) and we would like to express our total
ignorance about it, except for the fact that it is
positive. It happens that there is no definitive
solution to the problem of formulating a totally
ignorant prior. However, if the observations are
very informative, the posterior distribution of a
is expected to depend little on its prior.

The second remark is about the marginal like-
lihood, that is, our assessment of the plausible
character of observations z given the structural
assumptions in models p and c along with the
prior on a. It is crucial to be clear about what
is being tested. For example, one may be con-
tent to assess the position of z thought of as a
n-dimensional vector (n is the number of obser-
vations) in the manifold of likely Z values given
the prior on a. This test takes for granted that
the stochastic error is effectively white-noise dis-
tributed. This being said, it may be useful to
effectively test the white-noise character of the
model error, typically example by estimating the
likelihood of the lagged-correlation coefficients
of the stochastic error. Lagged-correlation co-
efficients significantly different than zero almost
surely indicate that there is information in the
stochastic error terms. This would prove that
the model is incomplete in the sense that its pre-
dictive ability can almost surely be improved.
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4 An application of the particle
filter

4 Network (13) is an example of combined param-
eter and time-varying state estimation problem.
This kind of problem is highly intractable, but
statisticians have been looking at ways of find-
ing approximate solutions based on Monte-Carlo
simulations. Here we use an implementation of
the particle filter developed by Liu and West [86].
This is a filter, that is a sequential assimilation
method: observations are used to refine parame-
ter distribution estimates as the time-integration
of the model progresses. The reader is referred
to the original publication for a fuller discussion
of the method and we will briefly summarise here
the sequential algorithm.

First we reformulate (13) into a more tractable
problem:

y(t0)

c

��
y1

p //

c

��

z1

y2
p //

c

��

z2

a

c

EE���������������

<<yyyyyyyyy

""FFFFFFFF

��333333333333333

��)))))))))))))))))))))))))))) · · ·
c

��
ym

p //

c

��

zm

ym+1

c

��
· · ·
c

��
yn

(14)

4This section outlines work in progress carried out by
the author in close collaboration with Jonathan Rougier,
Department of Statistics at the University of Bristol, UK.

The important difference with (13) is that the
observations are bound to individual state vec-
tors. This implies that their dating is certain
(they can unambiguously be associated to a cli-
mate state at a given time) and that there is no
diffusion of the signal within the record.

The climate model (c) is SM91 (1 – 3), the
equations of which are summarised hereafter:

dI ′

dt
= −a1[kµµ′ + kθθ

′ + kRR
′(t)]−KII

′ +WI

(c1)
dµ′

dt
= b1µ

′ − b2µ′2 + b3µ
′3 − bθθ +Wµ (c2)

dθ′

dt
= −c1I ′ −K ′θ +Wθ (c3)

The coefficients ai, bi, ci and Ki are functions
of the φi, βi, γi determined using the condition
that the equations for {I ′, µ′, θ′} present a fixed-
point at 0 (i.e., {I0, µ0, θ0} is a long-term, “tec-
tonic” equilibrium). Coefficients kx appear in
the process of linearising the short-term response
and can in principle be estimated with general
circulation models. The reader is referred to the
original publications for fuller details.

The climate proxy model (p) is very simple.
We will use the Specmap stack of planctonic
foraminifera to constrain ice volume [26], and
the Vostok (Antarctica) ice core by Petit et al.
(1999) [80] for CO2.

δ18Oc =
0.71

45 1018 m3
I ′ +Wδ (p1)

CO2 = µ+WCO2 (p2)

Equation (p1) uses the fact that the Imbrie
et al. record is expressed in standard deviation
units with zero mean, along with the constraint
that a total ice melt of 45 1015 m3 is recorded
as a drop of 0.71 (unitless) in Imbrie et al. We
therefore neglect the influence of ocean tempera-
ture on the record, while this issue is contentious.
Errors are parameterised by means of additive
stochastic Gaussian white noise with standard
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deviations of 0.2 (p1) and 20 ppm (p2), respec-
tively.

The above approximations (neglecting dating
uncertainty, in-core diffusion and unduly simple
isotope model) will no longer be tenable as this
research project develops but they are suitable
for a first application of the particle filter algo-
rithm. Consequently, results should be consid-
ered with the necessary caution.

We now review the particle-filter algorithm. A
particle is essentially a realisation of the state
vector (say : y(t0)) associated to a realisation of
the parameters (A = {ln(ai, bi, ci)}) and a weight
(w). Ten thousand (n) particles are initialised
by sampling the prior of y(t0) and A. Prior pa-
rameter distribution are log-normal around the
values given in SM91 (Figure 7). Only the ai, bi,
c1 and kθ are considered to be uncertain, while
the dissipative exchange coefficients KI and Kθ

as well as the climate sensitivities kµ and kR are
assumed to be known (Table 1).

All weights are initialised to 1. The filter then
consists of an iterative six-step process. Say we
are at time t.

1. Propagation, that is, time-integration of
all particles until the time (t+1) correspond-
ing to the next available data (either CO2 or
δ18O.

2. Shrinkage. Particles are now dispersed in a
region of the {Y,A}. This region in shrunk,
that is, the particles are made closer to each
other by a factor α.

3. Weight estimate Particle weights are mul-
tiplied by the likelihoods P (Z = z|Y = yj),
where yj is the state of particle j, and z is
the encountered data.

4. Importance resampling based on pos-
terior estimate. After step 2, some parti-
cles may be given a large weight while others
only a small one. Particles are therefore re-
sampled in such a way that they all get a

a1    ((m3 K yr))

9e+14

b1    ((1 yr))

6e−05 3e−04

b1    ((1 ppm yr))

5e−07 3e−06

b1    ((1 ppm2 yr))

2e−08 8e−08

bθθ    ((ppm K yr))

0.001 0.004 0.015

bθθ    ((K m3 yr))

2e−24 8e−24

kθθ    ((unitless))

0.1 0.3 0.7

Figure 7: Prior (dashed) and posterior (full) density
estimates of the parameters allowed to vary in SM91.
The filter has been successful in narrowing down the
distributions.

similar weight. This implies that some par-
ticles are duplicated while others are killed.
Particles are now distributed along k < n
kernels.

5. Resampling of kernels Each kernel is bro-
ken apart into particles with parameters
scattered with variance h2.

6. Weight update Particles weights are up-
dated according to their likelihood.

Shrinkage and kernel sampling are artefacts in-
troduced to avoid filter degeneracy. Liu and
West [86] note that the estimator is unbiased for
α = (3δ − 1)/2δ and h2 = 1 − α2. The param-
eter δ is called a discount factor. It must lie in
]0, 1] and typically around 0.95 – 0.99. Here we
choose δ = 0.95. We found that the parameter
disturbance due to the filter dominates any rea-
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Figure 8: Filtered state estimates with the SM91
model constrained by the SPECMAP data (squres),
and the Antarctic ice core data (pluses). The state
estimates are represented by shades, dark and light
gray representing the [25th; 75th] and [5th; 95th] quan-
tiles of the particle weighted distributions, respec-
tively. The lower graph represents, for each data,
the model predictive probability that the data would
have been lower than it actually was, given the pre-
vious parameter and state estimates. The repetition
of probabilities below 0.05 or above 0.95 tend to in-
validate the model.

sonable amount of stochastic error that could be
parameterised via W. Therefore, we decided not
to account for the model stochastic error noise
to gain computing efficiency.

Figure 8 summarises the essential features of
the particle filter run. It represents, for each
prognostic variable, the evolution of the state es-
timate (shaded) along with the data. The dark
and light shades represent the central 50 and 90
% percentiles of the weighted particle distribu-
tion. The filter algorithm updates the parameter
estimates as it meets the data (The posterior pa-
rameter distributions are compared to the prior

on Figure 7), which explains why the state esti-
mates become narrowed as time progresses. The
dots and pluses are the observation estimates of
ice volume and CO2. The fourth panel is a first
step towards model validation. It display, for
each observation, the model predictive probabil-
ity that this observation was smaller or equal
than its value, exactly in the spirit of equation
(9). Values too close to zero or one cast doubt
on the model.

It was unexpected that the fit of the state esti-
mates of the ice volume on SPECMAP would be
so poor. In fact, the model systematically over-
estimates ice volume during interglacials and this
occurs as soon as CO2 observations are taken into
account. Strictly speaking, the model is invali-
dated. Where does the problem lie ?

The most obvious possibility is that we have
incompletely modelled the SPECMAP stack. In-
deed, we know that water temperature con-
tributes to the δ18Oc signal but this contribu-
tion is missing in the model ([46, 87, 88, 89], the
latest reference being another example of data
reanalysis).

In spite of this weakness, we will assume that
the model estimates of I ′ give a correct rep-
resentation of ice volume anomalies around a
tectonic-time-scale average. Ice-volume levels
typical of the last interglacial then correspond
to I ′ = −15 · 1018 m3 in the model. The model
prediction is an immediate but slow decrease in
CO2 concentration (Figure 8) but without glacial
inception before about 50,000 years (this is the
Berger and Loutre prediction [8]!). The particle
filter also tells us that given the information at
disposal (the model, the data, and the parameter
priors), it is not possible to provide a reliable es-
timate of the evolution of climate beyond 50,000
years.

What about Ruddiman’s hypothesis? Ruddi-
man considers that humans perturbed climate’s
evolution around 8000 years ago. Therefore, we
want to only consider data until that time, and
see whether the model prediction differs to the
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Figure 9: State estimate with the SM91 model, given
data on CO2 and ice volume between 410 kyr BP and
8 kyr BP (white) or 0 lyr BP (grey). The subsequent
prediction, with glacial inception in 50 kyr, is little
affected by the data between 8 and 0 kyr BP. This is
opposed to Ruddiman’s hypothesis

parameter fixed value
kµ 0.04 K / ppm /yr
kθ 0.5 1/yr
kR 0.08 K / Wm−2/yr
KI 1.e-4 1/yr
Kθ 2.5e-4 yr−1

Table 1: Values of SM91 fixed parameters used both
in the original publications and in the present article

previous one. The experiment was carried out
and the results are presented on Figure 9. The
grey boxes provide the prediction with data as-
similated until 8,000 years ago, and the white
ones is the prediction with data assimilated until
today. The two predictions are clearly undistin-
guishable. Contrarily to Ruddiman, our model
was therefore not “surprised” by the fact that
CO2 continued to increase during the last 6,000
years.

5 Conclusion

Behind this paper is the message that climate
modelling is not and should not be a mere tech-
nological question. Of course, general circula-
tion models skillfully predict many complicated
aspects of atmosphere and ocean dynamics; in
that sense they are important and useful. Yet,
they are but one aspect of the theoretical con-
struct that underlies state-of-the-art knowledge
of the climate system. Important questions are
how we validate and calibrate climate models to
provide the most informed predictions on climate
change.

Palaeoclimates offer a premium playground to
test the paradigms of complex system theory. We
have been insistent on the fact that palaeocli-
mate theory must rely on two pillars of modern
applied mathematics: dynamical system theory
and statistical decision theory. Along with the
fact that palaeoclimate data have to be inter-
preted and retrieved by skillful field scientists,
their analysis turns to be a truly multidisci-
plinary experience. The exceptionnally difficult
challenges so posed are definitevely at the fron-
tier of knowledge.
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