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Helicity cascades in rotating turbulence
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The effect of helicity (velocity-vorticity correlations) is studied in direct numerical simulations of
rotating turbulence down to Rossby numbers of 0.02. The results suggest that the presence of net
helicity plays an important role in the dynamics of the flow. In particular, at small Rossby number,
the energy cascades to large scales, as expected, but helicity then can dominate the cascade to small
scales. A phenomenological interpretation in terms of a direct cascade of helicity slowed down by
wave-eddy interactions leads to the prediction of new inertial indices for the small-scale energy and
helicity spectra.

I. INTRODUCTION

Invariants of the equations of motion play an essential
role in the behavior of turbulent flows. The well-known
cascade of energy to the small scales in three dimensional
hydrodynamic turbulence, associated with the energy in-
variant, has been studied at length since the celebrated
paper of Kolmogorov [1]. Less well understood is the
role played by the second quadratic (but non positive
definite) invariant of the Euler equations, namely the he-
licity which embodies the global correlations between the
velocity field u and the vorticity ω = ∇ × u. Helicity
itself plays no role in the Kolmogorov (K41) theory of
turbulence [1]. Shortly after the discovery that helicity
is a quadratic invariant of the three-dimensional Euler
equation [2] (see also [3]), two scenarios were put for-
ward for its dynamical behavior [4]: a dual cascade of
energy and helicity towards smaller scales, and a pure
helicity cascade with no cascade of energy. Studies of
absolute equilibrium ensembles for isotropic helical tur-
bulence [5] gave support to the former scenario, a result
that was later confirmed by two-point closure models of
turbulence [6] as well as by direct numerical simulations
(DNS) [7, 8, 9, 10, 11].

In non-rotating helical hydrodynamic turbulence, both
the helicity and the energy cascade towards smaller scales
with constant fluxes. The assumption that the transfer
rates are determined by the energy flux alone gives Kol-
mogorov scaling in the inertial range of both quantities,
as is observed in the numerical simulations. As a result,
the presence of helicity may globally arrest the energy
transfer (when u is strictly parallel to ω, the nonlinear
term – expressed in terms of the Lamb vector u× ω – is
zero to within a pressure term), but the energy cascade
scaling does not differ from that of non-helical turbu-
lence.

In rotating turbulence, helicity is still an inviscid
quadratic invariant. Perhaps because of the existence of
dual direct cascades in non-rotating turbulence, not much
attention has been paid in the literature to the scaling
of net helicity in the rotating case. Helical-wave decom-
positions were introduced in [12, 13] (see also [14, 15])
and were found useful in the study of rotating turbu-

lence [16, 17]. Theoretical predictions for the helicity
spectrum in the presence of strong rotation were also
given in [18] in the framework of weak turbulence, under
the assumption of a dual cascade. Recently, the effect
of helicity in free-decaying rotating turbulence was stud-
ied in numerical simulations [19]. It was observed that
both effects inhibit the energy transfer through different
mechanisms: helicity diminishes nonlinear interactions
globally, whereas rotation concentrates nonlinear inter-
actions to resonant triads of inertial waves.

The lack of detailed studies of rotating helical flows is
remarkable considering the relevance of helicity in cer-
tain atmospheric processes [20, 21, 22], such as rotating
convective (supercell) thunderstorms the predictability of
which may be enhanced because of the increased stability
associated to the weakening of the nonlinear terms.

Recently, high resolution numerical simulations of ro-
tating flows with non-helical forcing [23] showed that,
while the velocity and vorticity in real space develop
anisotropies and large-scale column-like structures as ex-
pected, the spatial distribution of helicity is more ho-
mogeneous and isotropic and tends to have a short cor-
relation length. This observation motivates the present
study. We present results from DNS of rotating turbu-
lent flows with helical forcing. The results suggest that
rotating helical flows behave in a different way than ro-
tating non-helical flows. In particular, an inverse cascade
of energy and a direct cascade of energy and helicity are
discussed, the latter novel insofar as the transfer rate to
small scales is dominated by the helicity flux.

II. NUMERICAL SIMULATIONS

We solve numerically the equations for an incompress-
ible rotating fluid with constant mass density,

∂u

∂t
+ ω × u + 2Ω× u = −∇P + ν∇2

u + F, (1)

and

∇ · u = 0, (2)
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TABLE I: Parameters used in the simulations. kF gives the
range of forcing wavenumbers, ν is the kinematic viscosity
and Ω the rotation rate; Re, Ro, and Ek are respectively the
Reynolds, Rossby and Ekman numbers. Runs are performed
on grids of 5123 points in all cases and up to 40 turn-over
times.

Run kF ν Ω Re Ro Ek
A1 7–8 6.5 × 10−4 0.06 1200 7.9 6.5 × 10−3

A2 7–8 6.5 × 10−4 0.3 1200 1.6 1 × 10−3

A3 7–8 6.5 × 10−4 7 1200 0.07 6 × 10−5

A4 7–8 6.5 × 10−4 14 1200 0.03 2.5 × 10−5

B1 2–3 6 × 10−4 0.08 5700 2.1 4 × 10−4

B2 2–3 6 × 10−4 3.5 5700 0.05 9 × 10−6

B3 2–3 6 × 10−4 8 5700 0.02 3.5 × 10−6

where u is the velocity field, ω = ∇ × u is the vortic-
ity, P is the total pressure (modified by the centrifugal
term) divided by the mass density, and ν is the kinematic
viscosity. Here, F is an external force that drives the tur-
bulence, and we choose the rotation axis to be in the z
direction: Ω = Ωẑ, with Ω the rotation frequency.

Eq. (1) is solved using a parallel pseudospectral code in
a three dimensional box of size 2π with periodic boundary
conditions and with a spatial resolution of 5123 regularly
spaced grid points. The pressure is obtained by taking
the divergence of Eq. (1), using the incompressibility
condition (2), and solving the resulting Poisson equation.
The equations are evolved in time using a second order
Runge-Kutta method, and the code uses the 2/3-rule for
dealiasing. As a result, the maximum wavenumber is
kmax = N/3 where N is the number of grid points in
each direction. The code is fully parallelized with the
message passing interface (MPI) library [24, 25].

The mechanical forcing F in Eq. (1) is given by the
Arn’old-Beltrami-Childress (ABC) flow [26]

F = F0 {[B cos(kF y) + C sin(kF z)] x̂+

+ [C cos(kF z) + A sin(kF x)] ŷ +

+ [A cos(kF x) + B sin(kF y)] ẑ} , (3)

where F0 is the forcing amplitude, A = 0.9, B = 1,
C = 1.1 [27], and kF is the forcing wavenumber. The
ABC flow is an eigenfunction of the curl with eigenvalue
kF ; as a result, when used as a forcing function, it injects
both energy and helicity in the flow. Table I gives the
parameters used in the simulations. All runs are well
resolved and were continued for over 40 turnover times.
Runs A1 and B1 were started from a fluid at rest, while
the rest of the runs in sets A and B were started from
the turbulent steady state reached at the end of runs A1
and B1 respectively.

The Reynolds, Rossby, and Ekman numbers are de-
fined as usual as:

Re =
LF U

ν
, (4)

Ro =
U

2ΩLF
, (5)

and

Ek =
Ro

Re
=

ν

2ΩL2
F

. (6)

where LF = 2π/kF , and the turnover time at the forc-
ing scale is then defined as T = LF /U where U =

〈

u2
〉

is the r.m.s. velocity measured in the turbulent steady
state or when the inverse cascade of energy starts (see be-
low). The dissipation wavenumbers kη quoted below cor-

respond to the Kolmogorov wavenumber kη = (ǫ/ν3)1/4,
where ǫ is the energy injection rate.

In the following, it will be useful to introduce a micro-
Rossby number as the ratio of r.m.s. vorticity to the
background vorticity (rotation),

Roω =
ω

2Ω
. (7)

The value of the micro-Rossby number plays a central
role in the inhibition of the energy cascade in rotating
turbulence [16]. If the micro-Rossby number is too small,
non-linear interactions are completely damped. Accord-
ing to [28], anisotropies develop in rotating flows when
the Rossby number Ro . 1 and when the micro-Rossby
number Roω & 1 (it is worth noting that the actual values
for the transition depend on the particular flow studied).

The energy integral scale is given by

L = 2π

∫ kmax

1
E(k)k−1dk

∫ kmax

1
E(k)dk

, (8)

where E(k) is the isotropic energy spectrum (defined by
averaging in Fourier space over spherical shells). An in-
tegral scale for the helicity can also be defined as

LH = 2π

∫ kmax

1
H(k)k−1dk

∫ kmax

1
H(k)dk

. (9)

where H(k) is the isotropic helicity spectrum. Perpen-
dicular and parallel integral scales (e.g., L⊥ and L‖) are
useful to measure the development of anisotropies and
are defined by replacing k by k⊥ or k‖ in Eqs. (8) and
(9). Here, the wavenumbers k⊥ and k‖ denote the re-
duced spectra – e.g., E(k⊥) and E(k‖) – computed av-
eraging in Fourier space respectively over cylinders and
over planes (see [23] for more details).

III. NUMERICAL RESULTS

A. Energy inverse cascade at low Rossby numbers

For strong rotation, it is known that the flow becomes
quasi two-dimensional and an inverse cascade of energy is
expected [12, 13]. Figure 1 shows the energy and helicity
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FIG. 1: Energy (solid line) and helicity (dash line) spectra
in run A2 with forcing around k ≈ 7.5 and almost negligi-
ble rotation. The inset shows the energy and helicity fluxes
indicative of two classical direct cascades.

spectra at late times in run A2, for a moderate Rossby
number, as well as their fluxes. One observes that the
flux of energy Π(k) and of helicity Σ(k) are both neg-
ligible for k < kF and are of order unity and positive
at wavenumbers larger than the forcing wavenumber kF

(here and in the following, the helicity spectrum and flux
are plotted normalized by the forcing wavenumber kF , to
have them of the same order than the energy spectrum
and flux when helicity injection is maximal). The iner-
tial ranges of both the energy and helicity show similar
scaling, close to K41 except for bottleneck (and possibly
intermittency) corrections. Similar results are obtained
in run A1 which has hardly any rotation effect.

However, runs A3 and A4 at low Rossby number show
a different behavior (see Fig. 2): at scales larger than the
forcing scale, an inverse cascade of energy is observed,
with constant and negative energy flux, and with its am-
plitude roughly an order of magnitude larger than in the
large Rossby number case. However, the spectrum of he-
licity in this inverse range is approximately flat, and the
flux of helicity towards large scales is almost negligible.

The development of anisotropies and the inverse cas-
cade of energy in rotating flows, leading for example
to zonal flows in planetary atmospheres, has been ex-
plained in terms of near-resonant triad interactions of
inertial waves: energy in three dimensional modes is
transferred by a subset of the resonant interactions to
modes with smaller vertical wavenumber [12, 13], a pro-
cess that drives the flow to be quasi-two dimensional at
large scales. The lack of an inverse transfer of helicity
to large scales can be understood considering the par-
tial two-dimensionalization of the flow at large scales: a
helical flow is three-dimensional, while a two-dimensional
flow has no helicity. Indeed, the energy spectra and fluxes
in the direction perpendicular to Ω are similar to the
isotropic spectrum (see Fig. 3), while the spectrum in
the direction parallel to Ω peaks at k‖ = 0 (details of
how much energy is in the modes with k‖ = 0 in each
run are given in Table II).

FIG. 2: Energy (solid) and helicity (dash) spectra in run A3
with same forcing than run A2 but lower Rossby number.
Different slopes are shown as a reference. The inset gives
the energy and helicity fluxes and shows that there is both
a direct and an inverse cascade of energy but only a direct
cascade of helicity.

FIG. 3: Energy (solid) and helicity (dash) spectra as a func-
tion of k⊥ in run A3. Different slopes are shown as a reference.
The inset shows the energy and helicity fluxes in terms of k⊥.

FIG. 4: Time evolution of the energy (solid), helicity (dash),
and enstrophy (dot) in run A3. The helicity is normalized by
kF , and the enstrophy is rescaled by the dissipation wavenum-
ber kη ≈ 100. Only the energy undergoes an inverse cascade,
thereby growing with time.
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TABLE II: Anisotropies measured at t ≈ 40 in all runs . Roω

is the micro-Rossby number as defined in Eq. (7), L⊥/L‖ is
the ratio of perpendicular to parallel integral scales as defined
in Eq. (8), LH

⊥/LH
‖ is the same ratio but based on the helicity

spectrum as in Eq. (9), E(k‖ = 0)/E is the ratio of energy in
all modes with k‖ = 0 to the total energy, and H(k‖ = 0)/H
is the ratio of helicity in those modes to the total helicity.

Run Roω L⊥/L‖ LH
⊥/LH

‖ E(k‖ = 0)/E H(k‖ = 0)/H

A1 160 0.56 0.56 0.05 0.04
A2 31 0.55 0.55 0.06 0.05
A3 0.6 1.28 0.53 0.95 0.74
A4 0.2 1.27 0.49 0.98 0.90
B1 95 0.86 0.85 0.30 0.33
B2 1.1 1.51 1.20 0.96 0.85
B3 0.5 1.36 1.07 0.96 0.86

The absence of an inverse cascade of helicity is fur-
ther confirmed by the time evolution of the total energy,
helicity and enstrophy (see Fig. 4). While the energy
increases monotonically after t ≈ 10, the helicity and
the enstrophy decay until reaching a steady state after
t ≈ 25. The monotonic increase of the total energy is the
result of the piling up of energy at k⊥ = 1 as the inverse
cascade develops over time.

However, the distributions of both the energy and the
helicity become anisotropic as time evolves. Table II
gives the micro-Rossby number for all the runs at t ≈ 40,
the ratios of perpendicular to parallel integral scales for
the energy and for the helicity, L⊥/L‖ and LH

⊥/LH
‖ , and

finally the amount of energy and helicity in the modes
with k‖ = 0 normalized respectively by the total energy
and helicity. As the Rossby number decreases, the ra-
tios L⊥/L‖ and LH

⊥/LH
‖ increase. However, the ratio of

scales based on the helicity is smaller than the ratio of
scales based on the energy, specially in the runs in set
A where there is a larger separation between the largest
scale in the box and the injection scale. This trend is
accompanied by an increase in the amount of energy and
helicity in the modes with k‖ = 0, although here again
the ratio E(k‖ = 0)/E is larger than H(k‖ = 0)/H . This
can be understood in terms of the Schwarz inequality for
each mode in Fourier space. As the energy undergoes an
inverse cascade, some helicity is transfered to the large
scales (note the flat spectrum of helicity at large scales
in Fig. 2 compared with the steep spectrum in Fig. 1).
According to the instability assumption of [13] (see also
[29] and [12]), the energy is transfered toward modes with
wavevectors perpendicular to the rotation axis. From
the Schwarz inequality, the helicity in each wave mode k

must satisfy |H(k)| ≤ |k|E(k), and the large scale helic-
ity must be transfered towards k⊥ to satisfy this relation.

FIG. 5: Ratio of helicity flux to energy flux towards small
scales as a function of inverse Rossby number and at a fixed
Reynolds number for each set (see Table I). Diamonds corre-
spond to runs in set A, and triangles correspond to runs in
set B. Note the increase in relative strength of the helicity
cascade to small scales as rotation increases.

B. The case for direct cascades

At scales smaller than the forcing scale, the energy
spectrum in runs A3 and A4 at low Rossby numbers is
slightly steeper than k−2 (see Fig. 3), and (unlike the
case of non-rotating turbulence), the helicity spectrum
is possibly shallower than the energy spectrum (a con-
firmation of this using runs in set B is discussed below).
Furthermore (see Fig. 5), the energy flux Π(k) becomes
smaller than the (normalized) helicity flux Σ(k)/kF at
wavenumbers larger than kF as the Rossby number is
decreased.

This change can be understood as follows. The energy
injection rate ǫ and the helicity injection rate δ are related
by δ ∼ kF ǫ (these two quantities are equal when maxi-
mally helical forcing is applied at a single wavenumber).
The Schwarz inequality in each shell |H(k)| ≤ kE(k)
implies that, at large scale (in the limit k → 0), there
must be a negligible flux of helicity (unless of course
E(k) → ∞); thus helicity is bound to cascade to small
scales. However, the development of an inverse cascade
of energy decreases the amount of energy flux that can
go to small scales, and as a result the helicity flux dom-
inates for k > kF . This can be illustrated by plotting
the ratio Σ+/(kF Π+) (Fig. 5), where Σ+ and Π+ denote
respectively the amount of helicity and energy flux that
goes towards small scales. Note that Σ+/(kF Π+) ≈ 1
for Ro > 1 (both quantities direct cascade), while as the
Rossby number decreases Σ+/kF > Π+.

We can also introduce the differences between the di-
rect and inverse energy and helicity fluxes, respectively as
∆Σ = (Σ+−Σ−)/kF and ∆Π = Π+−Π− (where Σ− and
Π− are negative and denote respectively the amount of
helicity and energy that go towards large scales). Figure
6 shows the normalized ratio

ρ = (∆Σ + ∆Π) / ∆Σ .
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This ratio is roughly independent of the Rossby number,
which further confirms that the dominance of the helicity
flux for k > kF is associated with the energy flux lost in
that range because of the inverse cascade of energy.

FIG. 6: Sum, for the energy and helicity, of the normalized
differences between their direct and inverse fluxes (see text).
Only runs in set A (diamonds) are shown because runs in set B
do not have enough scale separation between the forcing and
the largest scale in the box to compute Σ− and Π− reliably.

As a result, the direct transfer in the small scales of a
rotating helical turbulent flow is dominated by the (nor-
malized) helicity flux. In the limit of a pure helicity cas-
cade with no direct energy cascade, and considering the
effect of rotation, the helicity flux can be expressed as

Σ(k) ∼ δ ∼
hℓ

τ2
ℓ

τΩ, (10)

where hℓ is the helicity at the scale ℓ, τℓ ∼ ℓ/uℓ is the
eddy turnover time at the same scale, and τΩ ∼ 1/Ω is
the characteristic time of inertial waves. This expression
takes into account the slowing-down of transfer to small
scales due to three-wave interactions (see e.g., [30, 31]), in
a similar fashion as what was proposed by Iroshnikov and
Kraichnan for Alfvén waves in the presence of a magnetic
field [32, 33] (the extension to the anisotropic case can be
trivially obtained considering the turnover time as τℓ ∼
ℓ⊥/uℓ, see e.g., [31]). From this expression, it follows that
if E(k) ∼ k−n (n ≤ 2.5, with the equality holding for the
case with maximum helicity at all scales from Schwarz
inequality), then

H(k) ∼ kn−4, (11)

i.e., resulting in a shallower helicity spectrum for n ≥ 2
(note that for n < 2 the helicity spectrum is steeper than
the energy spectrum).

Although the runs in set A have a helicity spectrum
that is indeed slightly shallower than the energy spec-
trum, the forcing is applied at intermediate scales and
the scale separation between the forcing and dissipative
scales is not enough to confirm the scaling prediction
of Eq. (11). Indeed, the micro-Rossby numbers are

FIG. 7: Energy spectrum compensated by kn with n = 5/3
(solid), helicity spectrum compensated by km with m = n
(dots), and compensated by m = n − 4 ≈ 2.33 (dash line),
in run B1 with large-scale forcing and weak rotation. Note
that the helicity and the energy in this run have the same
Kolmogorov scaling in the inertial range. The inset shows
the energy and normalized helicity fluxes with solid and dash
lines respectively.

FIG. 8: Energy spectrum compensated by kn with n = 2.15
(solid), helicity spectrum compensated by km with m = n
(dot), and compensated by m = n − 4 = 1.85 (dash line),
in run B2 with large-scale forcing and low Rossby number.
Note that the helicity and the energy spectra in this run have
different scalings in the inertial range (different from each
other and different from K41), and both are flat only when
compensated following Eq. (11). The inset again shows the
energy and (normalized) helicity fluxes; note the domination
of the latter in this high-rotation regime.

Roω ≈ 0.6 for run A3 and ≈ 0.2 for run A4 (see Ta-
ble II). A larger direct inertial range and larger micro-
Rossby numbers are needed in order to check the validity
of the predicted scaling.

To that effect, we now report on the runs in set B (see
Tables I and II) which have a forcing function concen-
trated in the large scales; the inverse cascade is thus not
so well resolved but it allows for a more developed di-
rect inertial range. In particular, we will focus on run
B2 which as a Rossby number Ro ≈ 0.05 and a micro-
Rossby number Roω ≈ 1.1. Figures 7 and 8 show the
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compensated energy and helicity spectra for runs B1 and
B2 (run B3 behaves as run A3). It is observed that while
in run B1 (corresponding to weak rotation), the helicity
and energy spectra have the same scaling (∼ k−5/3 with
bottleneck and intermittency corrections), in run B2 the
compensated helicity and energy spectra are horizontal
and parallel only when using the scaling law predicted by
Eq. (11).

The same scaling is observed in k⊥. As previously men-
tioned, it is straightforward to recast Eqs. (10) and (11)
to take into account the anisotropies in the flow, again
similarly to the magnetohydrodynamic case. The results
exemplified by Fig. 8 confirm that the small-scale scaling
of energy and helicity differ in rotating turbulence, unlike
the non-rotating case (see e.g., Fig. 7) where energy and
helicity follow the same spectral laws.

IV. CONCLUSION

Even though the Rossby number in the atmosphere of
the Earth is not very large, the existence of inertial waves
that can interact with turbulent eddies is bound to affect
the dynamics of the turbulent flow, as has been studied
by several authors. Helicity, which is also observed in
atmospheric flows, is known to play an important role in
the evolution of tornadoes. But, as already found in [19],
the two physical phenomena (rotation on the one hand,
helicity on the other hand) reduce nonlinear interactions
in different ways. Thus a study combining both effects
at high Reynolds number can shed some light on the
dynamics of such flows.

This paper shows that for strong rotation, the direct
cascade to small scales is now dominated by the helicity
flux (and the inverse cascade, as expected, by the energy).
Moreover, the resulting spectrum is different from what
Kolmogorov scaling predicts for the non-rotating case,
and from what a pure direct cascade of energy slowed
down by eddy-wave interactions predicts for the rotating
non-helical case. In this context it is worth mentioning
that, using phenomenological arguments, a direct cascade

of helicity in rotating flows has also been argued recently
in [34], although the arguments predicted a different scal-
ing and were based on Fjortoft’s theorem which does not
necessarily apply to the helicity since is not a positive
definite quantity [5].

A novel phenomenological argument based on a cas-
cade of helicity towards small scales slowed down by
wave-eddy interactions lead to different inertial indices
for the small-scale energy and helicity spectra, and pro-
vides a good fit to the results of the simulations presented
in this paper. The spectral indices are bounded by the
value that corresponds to a flow with maximum helic-
ity, and depend on the amount of relative helicity in the
flow. The result differs from non-rotating turbulence,
where the energy and the helicity follow the same scal-
ing laws [4, 8, 10]. Although the DNS runs confirm the
scaling, due to computational limitations well-resolved
inverse and direct cascades had to be studied in separate
simulations. In the future, a simulation of helical rotating
turbulence at very large resolution will be performed to
confirm these results with a better resolved coexistence
of the direct and inverse cascades.

The study of the intermittency of a mixture of turbu-
lence and waves in the presence of rotation and helicity
will also be the topic of a future work; it is of partic-
ular interest since it will shed some light on the statis-
tics, structures and interactions of extreme events which,
when combined with realistic physics of the atmosphere
(e.g., adding weak compressibility, moisture and geome-
try), will lead eventually to a better understanding and
prediction of the behavior of atmospheric flows.
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