
ar
X

iv
:0

80
9.

19
39

v1
  [

as
tr

o-
ph

]  
11

 S
ep

 2
00

8
Astronomy & Astrophysicsmanuscript no. sm˙logNlogS08 c© ESO 2008
September 12, 2008

High precision X-ray logN-logS distributions: implications for the
obscured AGN population

S. Mateos1, R.S. Warwick1, F. J. Carrera2, G.C. Stewart1, J. Ebrero1,2, R. Della Ceca3, A. Caccianiga3, R. Gilli4, M.J.
Page5, E. Treister6, J.A. Tedds1, M.G. Watson1, G. Lamer7, R.D. Saxton8, H. Brunner9, and C.G. Page1

1 X-ray Astronomy Group, Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK
2 Instituto de Fı́sica de Cantabria (CSIC-UC), 39005 Santander, Spain
3 INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milan, Italy
4 Istituto Nazionale di Astrofisica (INAF) - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy
5 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
6 European Southern Observatory, Casilla 19001, Santiago 19, Chile
7 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 144482, Potsdam, Germany
8 XMM SOC, ESAC, Apartado 78, 28691 Villanueva de la Caada, Madrid, Spain
9 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, Garching D-85748, Germany

10 September 2008

ABSTRACT

Context. Our knowledge of the properties of AGN, especially those of optical type-2 objects is very incomplete. Extragalactic source
count distributions are dependent on the cosmological and statistical properties of AGN, and therefore provide a direct method of
investigating the underlying source populations.
Aims. We aim to constrain the extragalactic source count distributions over a broad range of X-ray fluxes and in various energy bands
to test whether the predictions from X-ray background synthesis models agree with the observational constraints provided by our
measurements.
Methods. We have used 1129 XMM-Newton observations at|b| > 20◦ covering a total sky area of 132.3 deg2 to compile the largest
complete samples of X-ray selected objects to date both in the 0.5-1 keV, 1-2 keV, 2-4.5 keV, 4.5-10 keV bands employed in standard
XMM- Newton data processing and in the 0.5-2 keV and 2-10 keV energy bandsmore usually considered in source count studies.
Our survey includes in excess of 30,000 sources and spans fluxes from∼10−15 to 10−12 erg cm−2 s−1 below 2 keV and from∼10−14 to
10−12 erg cm−2 s−1 above 2 keV where the bulk of the CXRB energy density is produced.
Results. The very large sample size we obtained means our results are not limited by cosmic variance or low counting statistics. A
break in the source count distributions was detected in all energy bands except the 4.5-10 keV band. We find that an analytical model
comprising 2 power-law components cannot adequately describe the curvature seen in the source count distributions. The shape of
the logN(>S)-logS is strongly dependent on the energy band with a general steepening apparent as we move to higher energies. This
is due to the fact that non-AGN populations, comprised mainly of stars and clusters of galaxies, contribute up to 30% of the source
population at energies<2 keV and at fluxes≥10−13 erg cm−2 s−1, and these populations of objects have significantly flattersource
count distributions than AGN. We find a substantial increasein the relative fraction of hard X-ray sources at higher energies, from
≥55% below 2 keV to≥77% above 2 keV. However the majority of sources detected above 4.5 keV still have significant flux below
2 keV. Comparison with predictions from the synthesis models suggest that the models might be overpredicting the numberof faint
absorbed AGN, which would call for fine adjustment of some model parameters such as the obscured to unobscured AGN ratio and/or
the distribution of column densities at intermediate obscuration.

Key words. surveys– X-rays: general– cosmology: observations– galaxies: active

1. Introduction

The deepest X-ray surveys carried out to date byChandra
(Chandra Deep Field North, CDF-N; Alexander et al. 2003 and
Chandra Deep Field South, CDF-S; Giacconi et al. 2002, Lou
et al. 2008) and XMM-Newton (Hasinger et al. 2001) have re-
solved up to 90% of the Cosmic X-ray background (CXRB)
at energies below∼5 keV into discrete sources reaching limit-
ing fluxes of∼ 2× 10−17 erg cm−2 s−1 in the 0.5-2 keV band and
∼ 2× 10−16 erg cm−2 s−1 in the 2-8 keV band (Bauer et al. 2004).

However, above∼5 keV the fraction of CXRB resolved into
sources is substantially lower (see e.g. Worsley et al. 2004,
Worsley et al. 2005) although precise estimates are hampered

Send offprint requests to: S. Mateos, e-mail:sm279@star.le.ac.uk

by the remaining uncertainty in the absolute normalisationof
the CXRB (see e.g. Cowie et al. 2002). Additional uncertainties
originate due to variations of the source counts between surveys
arising from both the impact of the large scale structure of the
Universe on the source distribution (Gilli et al. 2003) and,more
mundanely, on cross calibration uncertainties between different
missions (Barcons et al. 2000, De Luca & Molendi 2004).

Follow-up campaigns targeted at the sources detected in
deep-medium X-ray surveys have shown that at high Galactic
latitudes Active Galactic Nuclei (AGN) dominate the X-ray
sky. At bright X-ray fluxes (& 10−14 erg cm−2 s−1), unabsorbed
or mildly absorbed AGN, spectroscopically identified as type-
1 AGN represent the bulk of the population (see e.g. Shanks
et al. 1991, Barcons et al. 2007, Caccianiga et al. 2008).

http://lanl.arXiv.org/abs/0809.1939v1
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Fig. 1. Sky distribution in Galactic coordinates of the selected
observations. The high density of pointings in some areas ofthe
sky correspond to planned surveys of relatively large sky areas
(e.g. the XMM-Newton Large Scale Survey, Pierre et al. 2004).

At intermediate fluxes, absorbed AGN (optical type-2 AGN)
at low redshifts (z.1) become dominant, while at fluxes
. 10−16 erg cm−2 s−1 a population of ‘normal’ galaxies starts to
emerge (Barger et al. 2003, Hornschemeier et al. 2003, Baueret
al. 2004).

Although the nature of the sources that dominate the CXRB
is reasonably clear, there are still large uncertainties inthe cos-
mological and statistical properties of the objects, especially for
type-2 AGN for which the redshift and column density distribu-
tions are rather poorly determined to date.

One of the most important open issues regarding the popu-
lation of absorbed AGN is whether the relative fraction of ob-
scured AGN varies with redshift or X-ray luminosity. Some re-
sults suggest that this fraction is independent of the X-raylu-
minosity and redshift (Dwelly & Page 2006), while others point
to a decrease in the fraction of absorbed AGN with the X-ray
luminosity (Ueda et al. 2003, Barger et al. 2005, Hasinger et
al. 2005, La Franca et al. 2005, Akilas et al. 2006, Della Cecaet
al. 2008) and/or an increase with redshift (La Franca et al. 2005,
Ballantine et al. 2006, Treister & Urry 2006). This issue hasbeen
recently investigated by Della Ceca et al. (2008) via the analy-
sis of a complete spectroscopically identified (∼97% complete-
ness) sample of bright X-ray sources (> 7× 10−14 erg cm−2 s−1)
selected in the 4.5-7.5 keV band. The sources in this study were
bright enough to obtain their absorption properties from a de-
tailed analysis of their X-ray spectra. They report a dependence
of the fraction of obscured AGN on both the luminosity and red-
shift, the measured evolution being consistent with that proposed
by Treister & Urry (2006). A dependence of the fraction of ab-
sorbed AGN on the luminosity has also been suggested by ob-
servations in the optical and mid-infrared (Simpson et al. 2005,
Maiolino et al. 2007).

X-ray surveys are the best way to understand the proper-
ties (i.e. X-ray absorption distributions) and cosmological evo-
lution (i.e. X-ray luminosity functions) of AGN and to test the
predictions of the synthesis models of the CXRB (Treister &
Urry 2006, Gilli et al. 2007). However in order to provide strong
observational constraints these analyses require complete sam-
ples with a high fraction of sources spectroscopically identi-
fied. This is a difficult and very time consuming task that can
only be achieved for relatively small samples of objects. Source
count distributions are dependent on the cosmological and sta-
tistical properties of AGN, and therefore provide a rather di-
rect method of investigating the properties of the underlying
source populations. Constraining the shape of the source counts
is fundamental for cosmological studies of AGN, as it provides
strong observational constraints for the synthesis modelsof the

CXRB. The general shape of the source counts in the 0.5-2 keV
and 2-10 keV bands is well determined from deep and medium
depth X-ray surveys. The results of these analyses show thatat
fluxes∼10−15− 10−14 erg cm−2 s−1 the source count distributions
can be reproduced well with broken power-law shapes (i.e two
power-law, hereafter broken power-law, Baldi et al. 2002, Cowie
et al. 2002, Cappelluti et al. 2007, Carrera et al. 2007, Brunner et
al. 2008). However, mostly due to poor statistics, a proper deter-
mination of the analytical form of the source count distributions
is still unavailable, especially at high energies.

Deep pencil beam surveys are important to study the popu-
lations of sources at the faintest accessible fluxes and therefore
they are best suited to constrain the faint-end slope of the source
counts. However these observations only sample small sky ar-
eas and therefore suffer from significant cosmic variance. For
example, the CDF-N and CDF-S source counts deviate by more
than 3.9σ at the faintest flux levels (Bauer et al. 2004). On the
other hand, wide shallow surveys cover much larger areas of the
sky and therefore are less affected by cosmic variance. However,
they only sample sources at relatively bright fluxes which only
contribute a small fraction of the CXRB emission. Surveys at
intermediate fluxes,∼10−15− 10−13 erg cm−2 s−1, of the type re-
ported here, fill the gap between deep pencil beam and shallow
surveys and sample the fluxes at the break in the source count
distributions, i.e. where the bulk of the CXRB energy density
should be produced. These surveys are therefore appropriate to
accurately determine the position of the break and bright-end
slope of source count distributions.

In this paper we put strong constraints on the analytical shape
of the extragalactic source count distributions in a numberof
different energy bands and over a wide range of fluxes. For this
purpose we have compiled the largest complete samples of X-
ray selected objects to date, ensuring that our results are not lim-
ited by low counting statistics or cosmic variance effects. Taking
advantage of our large samples, we have investigated how the
underlying population of X-ray sources changes as we move to
higher energies. Finally we have used the new observationalcon-
straints provided by our analysis to check the predictions of cur-
rent synthesis models of the CXRB.

The paper is organised as follows: In§2 we describe the se-
lection and processing of the XMM-Newton observations (§2.1),
the source detection procedure and criteria for selection of
sources (§2.2 and§2.3), we discuss how we calculated the fluxes
of the sources from their count rates (§2.4) and we explain how
the sky coverage was calculated as a function of the X-ray flux
(§2.5). In§3 we describe the different representations of source
counts used in this work (§3.1), present source count distribu-
tions in different energy bands (§3.2 and§3.3), discuss the im-
pact on our source count distributions of biases inherent inour
source detection procedure (§3.4), describe the approach used to
fit our distributions (§3.5) and discuss the fractional X-ray back-
ground contributed by our sources (§3.6). In §4 we summarise
the X-ray spectral properties of our objects. The implications of
our analysis for the cosmic X-ray background synthesis models
are presented in§5. Finally, the summary and conclusions of our
analysis are given in§6. Appendix A describes the empirical ap-
proach used to obtain the sky coverage as a function of the X-ray
flux. In Appendix B we compare our source count distributions
with those obtained using data taken directly from the2XMM cat-
alogue.
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Fig. 2. Left: Distribution of Galactic hydrogen column density (inlog units) along the line of sight taken from the 21 cm radio
measurements of Dickey & Lockman (1990). Right: Distribution of the exposure times (after filtering).

2. Data processing and analysis

2.1. The XMM-Newton observations

The observations employed in this study are a subset of those
utilised in producing the second XMM-Newton serendipitous
source catalogue,2XMM1 (Watson et al. 2008, submitted).2XMM is
based on observations from the three European Photon Imaging
Cameras (EPIC) that were public by first of May 20072. Here
for simplicity, we have only used data from the EPIC pn cam-
era (Turner et al. 2001). The data have been processed using the
XMM- Newton Science Analysis System (SAS, v7.1.0, Gabriel
et al. 2004). Because all the observations have been reprocessed
using the same pipeline configuration this guarantees a uniform
data set. Observations have been filtered for high particle back-
ground periods by excluding the time intervals where the 7-15
keV count rate was higher than 10 pn cts/arcmin2/ks.

The aim of this study is to constrain source count distribu-
tions for serendipitous AGN, hence we have selected only ob-
servations that fulfil the following criteria:

1. High galactic latitude fields,|b| > 20◦ (so as to obtain sam-
ples with the contamination from Galactic stars minimised
and with low Galactic absorbing column densities).

2. Fields with at least 5 ks of clean pn exposure time.
3. Fields free of bright and/or extended X-ray sources, i.e.

where most of the field of view (FOV) can be used for
serendipitous source detection.

We have not merged observations carried out at the same sky
position. In these cases we removed the overlapping area from
the observation with the shortest clean exposure time. The result-
ing sample comprises 1129 observations. The sky distribution of
the pointings is shown in Fig. 1. The distribution of Galactic
absorption along the line of sight and the distribution of clean
exposure times, for the set of observations are shown in Fig.2.

2.2. Source detection

We have carried out source count analysis using both the ’stan-
dard’ 0.5-2 keV and 2-10 keV energy bands and also the nar-

1 http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/
2 XMM- Newton observations started on January 2000.

rower energy bands 0.5-1 keV, 1-2 keV, 2-4.5 keV and 4.5-
10 keV3. The former allow comparison with previous results,
whereas the later allow a more detailed study of the spectral
characteristics of the underlying source populations. In order to
make source lists we run the2XMM source detection algorithm on
all energy bands simultaneously. In Appendix B we compare our
0.5-2 keV and 2-10 keV source count distributions with those
obtained combining data from the energy bands used to make
the2XMM catalogue.

Images were created for each energy band. Only pn events
with PATTERN ≤4 (single and double events) were selected. The
SAS taskemask was used to create a detection mask for each
observation, which defines the area of the detector suitablefor
source detection. Energy dependent exposure maps were com-
puted using theSAS taskeexpmap, using the latest calibration
information on the mirror vignetting, quantum efficiency and
filter transmission4. Source lists were obtained using theSAS
taskeboxdetect, which performs source detection using a sim-
ple sliding box cell detection algorithm. Background maps were
obtained with theSAS taskesplinemap. The sources detected

3 In the 4.5-10 keV band pn photons with energies between 7.8-8.2
keV were excluded in order to avoid the instrumental background pro-
duced by Cu K-lines (Lumb et al. 2002).

4 Eexpmap calculates the mirror vignetting function at one single en-
ergy, the centroid of the energy band. Because the mirror vignetting is a
strong function of energy, in the cases where the energy bandis broad,
this approach produces a less accurate determination of theeffective ex-
posure across the FOV. This is more important at high energies, where
the dependence of the vignetting on the energy is much stronger. In or-
der to reduce this effect, for the energy bands 0.5-2 keV, 4.5-10 keV and
2-10 keV we first computed exposure maps in narrower energy bands:
0.5-1 keV and 1-2 keV for band 0.5-2 keV; 2-4.5, 4.5-6 keV, 6-8keV
and 8-10 keV for band 2-10 keV, and 4.5-6 keV, 6-8 keV and 8-10
keV for band 4.5-10 keV. Then we used the weighted mean of these
maps to get the exposure maps in the broader energy bands. In order
to weight the maps we used the number of counts that we should have
detected in each narrow band for a source with a power-law spectrum
of photon indexΓ=1.9 at energies below 2 keV andΓ=1.6 at energies
above 2 keV (the same spectral model we used to convert the count rates
of the sources to fluxes, see Sec. 2.4). The resulting exposure maps
do not strongly depend on the assumed spectral slope. For example,
∆Γ=±0.3 changes the exposure map by.0.003% in the 0.5-2 keV band
and.1.3% in the 2-10 keV and 4.5-10 keV bands respectively.

http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/
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Table 1. Summary of the source detection results.

Energy band Ntot Nsel fext Smin/Smed ctsmin/ctsmed N(> Smin)
(keV) (%) (10−15 cgs) deg−2

(1) (2) (3) (4) (5) (6) (7)
0.5-1 21311 20694 3.6 1.0/5.7 11/42 417.6± 2.9
1-2 21848 21185 2.4 1.2/6.0 10/40 470.7± 3.2

2-4.5 9926 9564 1.0 3.7/15 12/38 302.4± 3.1
4.5-10 1973 1895 0.2 14.0/50 15/46 92.2± 2.1
0.5-2 32665 31837 3.0 1.4/8.4 13/56 605.7± 3.4
2-10 9702 9431 0.7 9.0/35 17/57 315.6± 3.2

(1) Energy band definition (in keV). (2) Total number of sources detected in the band with a significance of detectionL≥15 (after excluding the
targets of the observations, see Sec. 2.3). (3) Final numberof sources selected to compute the source count distributions (see Sec. 2.3 and Sec. 2.5

for details). (4) Fraction of sources in the sample detectedas extended in X-rays. (5) Minimum and median flux of the sources selected to
compute the source count distributions. (6) Minimum and median of the distribution of total pn counts in the band (background subtracted) of the
sources selected to compute the source count distributions. Note that the minimum number of counts correspond to a smallfraction of sources in
the samples. More than 92% of the sources have at least 20 counts in the 0.5-1 keV, 1-2 keV and 2-4.5 keV bands and this fraction increases to

more than 98% in the 0.5-2 keV, 2-10 keV and 4.5-10 keV energy bands. (7) Cumulative sky density of sources in the various energy bands at the
flux limits of our survey.

by eboxdetect are masked out and thenesplinemap per-
forms a spline fit on the resulting image producing a smoothed
background map.Eboxdetect is run a second time using the
background maps produced byesplinemap, which increases
the sensitivity of the source detection. The final list of objects
is obtained from a maximum likelihood fit of the distribution
of source counts on the images by theSAS task emldetect.
Emldetect provides source parameters by fitting the dis-
tribution of counts of the sources detected byeboxdetect
with the instrumental point spread function (PSF). In addition
emldetect carries out a fit with the PSF convolved with a beta-
model profile in order to search for sources extended in X-rays.
Source positions, count rates corrected for PSF losses and vi-
gnetting, extent and detection likelihoods are some of the more
important source parameters provided byemldetect.

2.3. Selection of sources

We filtered the source lists in several ways in order to ensure
the good quality of the data used for the analysis. First for each
energy band we selected only those sources with a detection
likelihood L≥15. This value is related to the probability that
a Poissonian random fluctuation caused the observed counts,
Prandom, asL=− log (Prandom) and corresponds roughly to a 5σ
significance of detection forL=15 (Cash et al. 1979).

The uncertainties in source parameters become much larger
for sources falling near CCD gaps. In order to remove these
sources from our sample we created new detection masks for
each observation with the CCD gaps increased by an amount
equivalent to the radius encompassing 80% of the counts of a
point source at that local position. All sources falling in the
enlarged CCD gaps were masked out. Photons registered dur-
ing the readout of the pn CCDs are assigned the wrong posi-
tion in the readout direction. The background produced by these
so called out-of-time events is included in the modelling ofthe
background maps. However if there is pileup for the source re-
sponsible for the out-of-time events then the correction isun-
derestimated. In these cases the regions of the FOV affected by
out-of-time events were masked out manually.

Because the targets of the observations are likely to be biased
towards certain populations of X-ray objects, the targets (and
target related sources) together with the areas of the FOV con-
taminated by their emission have been excluded from the anal-
ysis. The number of sources at the brightest fluxes sampled by

our survey is rather small. This together with the fact that asig-
nificant fraction of the X-ray brightest sources in our samples
are the target of the observation, means that our survey is not a
proper unbiased and complete statistical sample of sourcesat the
brightest flux levels. Because of this we restricted our analysis
to sources with fluxes≤ 10−12 erg cm−2 s−1 in each energy band.

A summary of the source detection results for each energy
band is given in Table 1.

2.4. Count rate to flux conversion factors

One important issue in this analysis is the conversion from count
rates to fluxes. Ideally we should obtain the fluxes from the best
fit model of the spectrum of each individual object. However,
because the majority of the sources in our analysis are very
faint, we cannot reproduce well the spectral complexity often
observed in the broad band X-ray spectra of extragalactic objects
(see e.g. Caccianiga et al. 2004, Mateos et al. 2005, Mainieri et
al. 2007). Therefore we have made the reasonable assumption
that the spectra of our objects can be well described with a sim-
ple power-law model absorbed by the Galactic column density
along the line of sight.

We have investigated the spectral slope that best reproduces
the X-ray colour5 distribution of the objects detected in each
energy band. In order to provide a better determination of the
spectral shape of the sources we defined the X-ray colours using
count rates in energy bands as close as possible to the band of
interest: (0.5-1 keV vs. 1-2 keV) for bands 0.5-1 keV, 1-2 keV
and 0.5-2 keV and (2-4.5 keV vs. 4.5-10 keV) for the 2-4.5 keV,
4.5-10 keV and 2-10 keV energy bands. Because our sources are
typically faint the uncertainties on their measured X-ray colours
can be large6. In order to account for this we have calculated the
distribution of X-ray colours by adding the probability density
distributions of the X-ray colour of each individual source. For a
given source this distribution was defined as a 1-d Gaussian with
mean and dispersion equal to the value of the X-ray colour and

5 The X-ray colour or hardness ratio is defined as the normalised ratio
of the count rates in two energy bands, HR=(H-S)/(H+S), where H and
S are the count rates in the harder and softer of the two energybands
respectively.

6 The mean error of the X-ray colours was found to be∼0.1-0.15 for
sources detected in the 0.5-2 keV, 0.5-1 keV, 1-2 keV and 4.5-10 keV
energy bands and∼0.2 for sources detected in the 2-4.5 keV and 2-10
keV energy bands.
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Fig. 3. Probability density distributions of the X-ray colour for sources detected in each energy band (i.e. with a detection likelihood
in the bandL≥15). Left panel for bands<2 keV: the vertical line shows the hardness ratio which corresponds to a source with a
spectral slopeΓ=1.9 subject to the average Galactic absorption over the sample of objects (NH ∼ 2× 1020 cm−2). Right panel for
bands>2 keV: the vertical line shows the hardness ratio which corresponds to a source with a spectral slopeΓ=1.6. The horizontal
error bars show the change in X-ray colour for∆Γ=±0.3.

its respective error. The resulting ’integrated’ probability density
distributions are shown in Fig. 3. The spectral parameters that
best characterise the distribution of X-ray colours of our sources
areΓ=1.9 and Galactic absorption NH = 2× 1020 cm−2 (the av-
erage value over the sample of objects) at energies below 2 keV,
andΓ=1.6 at energies above 2 keV. We note that fixingΓ at 1.9
but varying NH by a factor of 2 results in a shift of the HR 0.5-1
vs. 1-2 keV value of just∼ 0.025. The values of the X-ray colour
that correspond to the selected spectral model are shown with
vertical solid lines in Fig. 3. Earlier spectral studies have in fact
confirmed that such values ofΓ are representative of the average
spectra of sources in the flux range of this analysis (Mateos et
al. 2005, Carrera et al. 2007). We note that there is a hardening
of the effective spectral slope of the sources at energies≥2 keV.
This can be easily explained as due to the spectral complexity
of the X-ray emission of the sources at the energies sampled by
our analysis. For example, the signatures of soft excess emission
are mostly detected at rest-frame energies below∼2 keV while
Compton reflection is only important at rest-frame energies&10
keV. On the other hand X-ray absorption can affect the observed
X-ray spectra of the sources over a broad range of energies de-
pending on both the amount of X-ray absorption and the redshift
of the objects.

We have investigated the effect on our derived source counts
of varying the choice of mean spectral index by calculating
the change in flux associated with the change in the power-law
shape. We find that for∆Γ=±0.3 the largest effect is in the 4.5-
10 keV and 2-10 keV energy bands where the fluxes can change
by up to∼9%. In the other energy bands the effect is much less
important, i.e. roughly 1-2%. This is an expected result since the
effective area of the EPIC pn detector is fairly flat from∼0.5 keV
to ∼5 keV.

However we see in Fig. 3 that a change in the power-law
continuum by∆Γ=±0.3 cannot explain the dispersion in the ob-
served distribution of X-ray colour of the sources. In orderto
account better for the large dispersion in the X-ray colour of the
sources for a given object we use a count rate to flux conversion
based on the value ofΓ derived from its X-ray colour (instead
of a fixed value for all sources). The effect on the source counts

is negligible in all energy bands except in the 2-10 keV and 4.5-
10 keV energy bands, where a change in the normalisation of the
distributions.20% is observed. However, as most of the sources
in our analysis are typically faint, in the majority of the cases
they have a significance of detection well below our selection
threshold in at least one of the energy bands used to calculate
their X-ray colours. Hence the estimation of their spectralslope
on the basis of their X-ray colour could be highly uncertain.On
this basis we adopt the conservative approach of assuming the
same spectral model for all sources.

Energy conversion factors (ec f ) between count rates and
fluxes (corrected for the Galactic absorption along the lineof
sight) were computed for each observation. These values depend
on the amount of Galactic absorption along the line of sight,
the observing mode and the filter utilised in the observation.
By computing anec f for each observation we account for the
changing sensitivity in our softer energy bands (resultingfrom
variations in the Galactic absorption) in the sky coverage calcu-
lation.

On the basis of the above, in order to calculate theec f we
have assumed that the spectrum of our objects can be well de-
scribed with a simple power-law model of photon indexΓ=1.9
for energy bands 0.5-1 keV, 1-2 keV and 0.5-2 keV andΓ=1.6
for energy bands 2-4.5 keV, 4.5-10 keV and 2-10 keV and the
corresponding Galactic column density along the line of sight.

The latest public pn on-axis redistribution matrices (for sin-
gle and double events, v6.9) available at the time of this analy-
sis were used in the computation of the energy conversion fac-
tors for each field together with on-axis effective area files pro-
duced by theSAS taskarfgen. The count rates fromemldetect
are corrected for the exposure map (which includes vignetting
and bad pixel corrections) and the PSF enclosed energy frac-
tion. Hence the effective areas were generated disabling these
corrections, as indicated in thearfgen documentation (see also
Carrera et al. 2007 for details).
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Fig. 4. Distributions of the sky coverage as a function of X-ray flux for the different energy bands.

2.5. Sky coverage calculation

We have used an empirical approach to obtain the sky coverage
as a function of the X-ray flux for the selected threshold in de-
tection significance (L≥15). We compute a “sensitivity map” for
each observation which describes the minimum count rate that
a source must have at each position in the FOV to be detected
with significanceL≥15, taking into account both the local effec-
tive exposure and background level. Full details of the method
can be found in Appendix A of Carrera et al (2007) and also
in Appendix A of this paper. The count rates of the “sensitivity
maps” are converted to fluxes as specified in Sec. 2.4.

In order to make our source lists consistent with the resultsof
the sky coverage calculation we excluded from the computation
of the source count distributions all sources having actualcount
rates below the computed minimum value for detection at the
source position. The fraction of sources removed is less than 4%
in the energy bands 0.5-1 keV, 1-2 keV and 0.5-2 keV,∼5% in
bands 2-4.5 keV and 2-10 keV and∼7% in band 4.5-10 keV (cf.
columns 2 & 3 in Table 1).

The dependence of the sky coverage on the flux for the vari-
ous energy bands is shown in Fig. 4; our survey covers a total sky
area of 132.3 deg2. In order to avoid uncertainties in the compu-
tation of the source count distributions associated with low count
statistics or inaccuracy in the sky coverage calculation atthe very
faint detection limits, we have only used sources if they were de-
tectable over at least 1 deg2 of sky; the result was that less than
0.5% of sources where removed in all energy bands except in
the 4.5-10 keV band where the fraction was∼1.5% while the
change in the flux limits of the survey was negligible. This con-
straint gives rise to the energy band flux limits listed in column
5 of Table 1.

3. The source counts

3.1. Calculation of source count distributions

In X-ray astronomy, it is traditional to use the integral form
to show the shape of source count distributions. However here
we use both binned differential and integral representations.
Differential counts have the advantage that the data points are
independent, which makes it easier to see changes in the under-
lying shape of the distribution.

1. Differential source counts: The number of sources per unit
flux and unit sky area,n(S ), is obtained as

n(S j) =
dN

dS dΩ
=

∑i=m
i=1

1
Ωi

∆S j

wherem is the number of sources in bin j with assigned flux
S j,Ωi is the sky coverage (in deg2) of sourcei in the bin and
∆S j is the bin width. The corresponding 1σ error bars due
to Poissonian statistics are calculated asn(S j)/

√
m. S j refers

to the weighted mean of the fluxes of the sources in the bin,
S j =

∑i=m
i=1 wi × S i, whereS i are the individual source fluxes

and the weights,wi, are determined as:

wi =

1
Ωi

∑i=m
i=1

1
Ωi

S j is a better representation of the centroid of the bin than
the mean of the fluxes of the sources in the bin, especially at
bright fluxes where the number of sources per bin is much
smaller and the impact of the binning is most acute.

2. Integral source counts: The number of sources per unit sky
area with flux higher thanS , N(> S ), is defined as

N(> S j) =
i=M
∑

i=1

1
Ωi

where the sum is over all sources with fluxS i > S j andS j

is the flux of the faintest object in the bin. In this case error
bars are assigned asN(> S j)/

√
(M), based on Poissonian

statistics (but are correlated from bin to bin), whereM is the
total number of sources withS i > S j.

We apply a normalisation to both the differential and integral
distributions,n(S j) × (S j/10−14)2.5 andN(>S j) × (S j/10−14)1.5

respectively. The advantage of using a normalised representation
is that it highlights deviations from the standard Euclidean form
of the counts (with the Euclidean slope corresponding to a hor-
izontal line in the normalised representation). We have defined
the bin sizes of our distributions to have at least 50 sourcesper
bin and a minimum bin size of 0.02 in log units of flux. Note
that later the unbinned differential source counts are fitted with
power-law models (see Sec. 3.5 for details).
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Fig. 5. Source count distributions in both a normalised differential (left) and normalised integral form (right) for sources detected
in the 0.5-2 keV and 2-10 keV bands. The lines show the resultsof the fitting of the data using a model with two (solid) and three
(dashed) power-laws (see Sec. 3.5). Error bars correspond to 1σ confidence.

When comparing source count distributions in different en-
ergy bands it is necessary to rescale the axes of at least one of the
distributions (to that of the other energy band). If the flux rescal-
ing factor isα, the effect is to shift points along the x axis by a
factorα and also up the y axis by a factorα1.5 (due to the nor-
malisation). The energy band scaling factors used in this work
are listed in Table 2. The values are normalised to unit flux in
the 0.5-10 keV band.

Hereafter we will use the term ‘steeper’ source counts to re-
fer to those distributions having a greater numerical indexfor the
slope, while ‘flatter’ distributions will be those having smaller
values of|Γ|.

3.2. The broad band source counts

In Fig. 5 we show the differential and integral source count distri-
butions derived in the ’standard’ 0.5-2 keV and 2-10 keV bands.
A comparison with those obtained using data taken directly from
the2XMM catalogue is presented in Appendix B.

Our survey provides tight constraints on the X-ray source
counts over more than 2 decades of X-ray flux in both energy
bands. In Fig. 5 the solid and dashed lines show the results of
the fitting to the differential source counts with a power-law with

Table 2. Scaling factors used to convert fluxes to different energy
bands.

Energy band α = S b/S 0.5−10 keV

(1) (2)
0.5-1 0.15
1-2 0.16

2-4.5 0.29
4.5-10 0.39
0.5-2 0.32
2-10 0.68
2-8 0.56
2-12 0.79

4.5-7.5 0.24
5.0-10 0.35
0.5-10 1.0

(1) Energy band definition (in keV). (2) Flux scaling factor normalised
to a unit flux in the 0.5-10 keV band, whereS b is the flux in the band

andS 0.5−10 keV is the flux in the 0.5-10 keV band. The values were
obtained from an unabsorbed power-law spectrum ofΓ=1.9 below 2

keV andΓ=1.6 above 2 keV.

two and three components (see Sec. 3.5 for details). A break in
the source count distributions is obvious in both bands, although
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Fig. 6. Comparison of the 0.5-2 keV (left) and 2-10 keV (right) normalised integral source count distributions (filled circles)with a
set of representative results from previous surveys. Errorbars correspond to 1σ confidence.

Table 3. The cumulative angular density of sources in the broad
bands.

Flux N(> S) N N(> S) N
0.5-2 keV 2-10 keV

(1) (2) (3) (4) (5)
-14.84 605.7± 3.4∗ 31837 - -
-14.70 474.0± 2.7 31465 - -
-14.43 287.4± 1.7 27944 - -
-14.40 268.4± 1.6 27119 - -
-14.10 132.9± 1.0 16715 - -
-14.04 111.2± 0.9 14283 315.6± 3.2∗ 9431
-13.85 65.9± 0.7 8674 181.2± 1.9 8911
-13.80 57.0± 0.7 7521 155.6± 1.7 8628
-13.50 21.7± 0.4 2871 54.0± 0.7 5443
-13.20 8.0± 0.2 1057 17.0± 0.4 2172
-12.90 3.0± 0.2 395 5.3± 0.2 704
-12.60 1.0± 0.1 138 1.6± 0.1 213
-12.30 0.4± 0.1 53 0.4± 0.1 55

(1) Energy band flux in log units. (2) Cumulative angular density of
sources in units of deg−2 above a given flux in the 0.5-2 keV energy

band. (3) Number of sources above given flux in the 0.5-2 keV energy
band. (2) Cumulative angular density of sources in units of deg−2

above a given flux in the 2-10 keV energy band. (3) Number of sources
above given flux in the 2-10 keV energy band.∗ Cumulative angular

density of sources at the flux limits of our survey in the 0.5-2keV and
2-10 keV bands.

in the 2-10 keV band the measurements do not go deep enough
to properly define the shape of the distribution below the break.
The cumulative angular density of sources in the broad energy
bands at different fluxes is given in Table 3.

We have compared our results with previous findings
from deep and shallow representative surveys (see Fig. 6).
In the 0.5-2 keV band, the form of the source counts be-
low ∼10−14 erg cm−2 s−1 has been determined previously from
both medium-deep XMM-Newton (ELAIS-S1: Puccetti et
al. 2006,XMM-COSMOS: Cappelluti et al. 2007, An XMM-Newton
International Survey (AXIS): Carrera et al. 2007) andChandra
surveys (CDF-N and CDF-S: Bauer et al. 2004,Champ: Kim
et al. 2007). Fig. 6 (left) also shows the data from Hasinger et
al. (2005, HMS05) which is a compilation of results from vari-
ousROSAT, XMM- Newton andChandra surveys. In general the

present measurements are in good agreement with the published
results.

At bright 0.5-2 keV fluxes, where the number of sources in-
cluded in the surveys is much lower, there are still uncertainties
in the shape of the source count distributions. We note that in
the flux range 2× 10−14− 2× 10−13 erg cm−2 s−1 our distribution
tends to lie above the results from theXMM-COSMOS andChamp
surveys. One important difference in our analysis (and also in the
AXIS survey) is that our source count distributions include both
point and (modestly) extended sources, while the distributions
from theXMM-COSMOS andChamp surveys are for point sources
only. Indeed if we exclude the sources detected in our analysis
as extended, then a better agreement between our results andthe
XMM-COSMOS survey is obtained, although the shape of the dis-
tribution is still somewhat steeper than the one from theChamp
survey.

In the 2-10 keV band a detailed comparison is made more
difficult by the fact that the effective area of the X-ray detec-
tors typically varies substantially across the band, whichmay
introduce systematic errors in the comparison of the results from
different instruments. For example, because of the low effective
area of the X-ray detectors on-boardChandra above∼8 keV,
publishedChandra results are limited to the 2-8 keV band. In
Appendix B we compare the source count distributions in the 2-
10 keV and 2-8 keV energy bands for our sources. There is in
general a good agreement between these distributions although
the slope of the source counts below the break is marginally flat-
ter for the distribution in the 2-8 keV band. In addition the results
from theXMM-COSMOS survey in the 2-10 keV band are based on
source detection in the 2-4.5 keV energy band, and hence their
analysis could be missing a population of sources with very hard
X-ray spectra. Additional discrepancies between source counts
may be explained by the different spectral assumption used in
their construction. As we explained in Sec. 2.4, this could affect
the measured normalisation of the source count distributions by
up to ∼20%. Finally if we adopt a conservative 10% estimate
on the absolute flux calibration of the EPIC pn camera, then a
∼15% uncertainty in the normalisation of the source counts ob-
tained with XMM-Newton might still be present (Stuhlinger et
al. 2008).

Despite these caveats the overall agreement between most
surveys in the 2-10 keV energy band is better than 10% at
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Fig. 7. Source count distributions in both normalised differential (left) and normalised integral form (right) for sources detected in
the 0.5-1 keV, 1-2 keV, 2-4.5 keV and 4.5-10 keV bands. The lines show the results of the fitting of the data using a model withtwo
(solid) and three (dashed) power-laws (see Sec. 3.5). Errorbars correspond to 1σ confidence.
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Table 4. Cumulative angular density of sources in the narrow energy bands.

Flux N(> S) N N(> S) N N(> S) N N(> S) N
0.5-1 keV 1-2 keV 2-4.5 keV 4.5-10 keV

(1) (2) (3) (4) (5) (6) (7) (8) (9)
-15.00 417.6± 2.9∗ 20694 - - - - - -
-14.93 363.0± 2.5 20604 470.7± 3.2∗ 21185 - - - -
-14.84 315.8± 2.2 20394 404.4± 2.8 21059 - - - -
-14.70 239.4± 1.7 19429 300.3± 2.1 20338 - - - -
-14.43 132.9± 1.1 14856 157.6± 1.2 16004 302.4± 3.1∗ 9564 - -
-14.40 122.3± 1.0 14054 144.5± 1.2 15212 272.5± 2.8 9523 - -
-14.10 56.1± 0.7 7291 58.2± 0.7 7452 110.6± 1.2 7980 - -
-14.04 46.3± 0.6 6071 47.1± 0.6 6125 89.6± 1.0 7325 - -
-13.85 26.5± 0.4 3501 24.9± 0.4 3286 46.8± 0.7 5022 92.2± 2.1∗ 1895
-13.80 22.8± 0.4 3013 21.1± 0.4 2796 39.0± 0.6 4407 73.8± 1.7 1867
-13.50 8.9± 0.3 1183 7.5± 0.2 989 12.3± 0.3 1598 22.1± 0.6 1432
-13.20 3.4± 0.2 453 2.9± 0.1 380 4.0± 0.2 534 6.6± 0.2 731
-12.90 1.4± 0.1 187 1.0± 0.1 134 1.3± 0.1 175 2.3± 0.1 293
-12.60 0.6± 0.1 73 0.4± 0.1 55 0.5± 0.1 66 0.7± 0.1 89
-12.30 0.1± 0.1 18 0.1± 0.1 16 0.1± 0.1 15 0.2± 0.1 27

(1) Energy band flux in log units. (2) Cumulative angular density of sources in units of deg−2 above given flux in the 0.5-1 keV energy band. (3)
Number of sources above given flux in the 0.5-1 keV energy band. (4) Cumulative angular density of sources in units of deg−2 above given flux in
the 1-2 keV energy band. (5) Number of sources above given fluxin the 1-2 keV energy band. (6) Cumulative angular density ofsources in units
of deg−2 above given flux in the 2-4.5 keV energy band. (7) Number of sources above given flux in the 2-4.5 keV energy band. (8) Cumulative

angular density of sources in units of deg−2 above given flux in the 4.5-10 keV energy band. (9) Number of sources above given flux in the 4.5-10
keV energy band.∗ Cumulative angular density of sources at the flux limit of oursurvey in the various narrow energy bands.

fluxes≤ 10−13 erg cm−2 s−1. At brighter fluxes, the largest dis-
crepancy is found when comparing with the results from the
ASCA Medium Sensitivity Survey (AMSS, Ueda et al. 2005)
which has a normalisation∼20-30% higher than ours. A higher
normalisation on theASCA source counts compared with previ-
ous XMM-Newton surveys has been already reported (Cowie et
al. 2002). Cross calibration effects need to be taken into account
when comparing results from different missions and could ex-
plain the observed discrepancies. Snowden (2002) investigated
the cross calibration between different missions, includingASCA
and XMM-Newton and found an agreement betweenASCA and
XMM- Newton fluxes at the∼10% level. Since this analysis,
changes in EPIC-pn 2-10 keV fluxes associated with improve-
ments in the calibration have been∼1-2%, and therefore the
∼10% discrepancy betweenASCA and XMM-Newton EPIC-pn
still holds. We conclude that the observed discrepancy withre-
spect toASCA source counts cannot be explained as a cross cali-
bration effect alone.

We also note that the recently published source count distri-
butions for sources detected by XMM-Newton in the Lockman
Hole field in the 0.5-2 keV and 2-10 keV energy bands are
also consistent with our results within 1 to 2-σ at fluxes
≤ 10−14 erg cm−2 s−1 (Brunner et al. 2008). In order to compare
our source count distributions with previous results at fluxes
brighter than those sampled by our analysis we compare with
the ROSAT All-Sky Survey data in the 0.5-2 keV band (HMS05,
Fig. 6 left) and the HEAO1 A-2 all-sky survey in the 2-10 keV
band for AGN-only sources (Piccinotti et al. 1982, Fig. 6 right).
The extrapolation to brighter fluxes of our source counts, shows
that our distributions lie marginally below these results.This dis-
crepancy can be explained as being due to the fact that surveys
using pointed observations (such as this survey) may be biased
against bright sources because the targets of the observations
have to be excluded from the analysis.

Fig. 8. Comparison of the measured normalised integral 4.5-10
keV source count distribution (filled circles) with a sampleof
representative results from previous surveys. Error bars corre-
spond to 1σ confidence.

3.3. The narrow band source counts

If we compare the 0.5-2 keV and 2-10 keV source counts we see
that there is a strong dependence of the shape of the distributions
on the energy band. A similar trend is found when we compare
the source count distributions in our narrow energy bands, 0.5-1
keV, 1-2 keV, 2-4.5 keV and 4.5-10 keV (see Fig. 7): the source
count distributions become steeper both at faint and brightfluxes
as we move to higher energies. The cumulative angular density
of sources in the narrow energy bands at different fluxes is given
in Table 4.

In Fig. 8 we show the source count distribution in the high-
est energy range sampled in our analysis, namely 4.5-10 keV.
We also include some representative results from previous sur-
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veys for comparison: in the 5-10 keV band the results from
ELAIS-S1 (Puccetti et al. 2006), CDF-S 1σ (Rosati et al. 2002),
XMM-COSMOS (Cappelluti et al. 2007) and the XMM-Newton 13H

field (Loaring et al. 2005); in the 4.5-7.5 keV energy band the
XMM- Newton Hard Bright Serendipitous Survey (HBSS, Della
Ceca et al. 2004) andAXIS (Carrera et al. 2007); in the 4.5-10
keV band the Beppo SAX data from Fiore et al. (2001). In order
to convert the fluxes from these surveys to the 4.5-10 keV en-
ergy band we assumed that the spectra of the sources can be well
represented by a power-law of slopeΓ=1.6. The corresponding
factors used to convert fluxes to the 4.5-10 keV energy band are
listed in Table 2.

At energies&4.5 keV there is still a lack of strong obser-
vational constraints in the shape of the source count distribu-
tion, as large discrepancies in the results for both the shape and
normalisation of the distribution are evident. In some cases this
amounts to>30%. Because the effective area of the X-ray detec-
tors at these energies is relatively small, the number of sources
involved in these analyses is correspondingly limited. In addi-
tion, a∼10-20% uncertainty in the normalisation can arise due
to the uncertainty in the absolute flux calibration of the instru-
ments and the spectral shape chosen in the count rate to flux con-
version (see Sec. 2.4). The latter, however, cannot fully explain
the observed discrepancies in the results as most of the surveys
compute their fluxes using the same spectral index. We note that
the measurements of Beppo SAX (Fiore et al. 2001) are sys-
tematically higher than the results based on XMM-Newton data.
The disagreement with the Beppo SAX results was already noted
by Della Ceca et al. (2004), who suggested that an offset in the
Beppo SAX absolute flux calibration of∼30% could explain the
discrepancy in the results.

Thanks to our study we can now constrain the shape and
normalisation of the source counts above 4.5 keV over a
reasonably broad range of flux, from∼ 10−14 erg cm−2 s−1 to
∼ 3× 10−13 erg cm−2 s−1. Note that in the 4.5-10 keV band no
break in the source count distribution is detected down to the
limiting flux of our survey,∼1.4× 10−14 erg cm−2 s−1. This is
consistent with the results from deeper X-ray surveys which
suggest that the break in the source counts at energies above
∼4.5 keV must occur at fluxes.5-8×10−15erg cm−2 s−1 (see
e.g. Loaring et al. 2005, Brunner et al. 2008, Georgakakis et
al. 2008).

3.4. Confusion, bias and other systematic effects in source
counts

We have not corrected our source count distributions for bi-
ases associated with the source detection procedure such as
Eddington bias, source confusion or spurious detections. It is
therefore important to quantify the potential effect of these bi-
ases on our results.

First we note that there is excellent agreement between
our results and previous surveys which have gone substantially
deeper and hence are less susceptible to bias effects at flux
thresholds relevant to the current survey (e.g. Bauer et al.2004,
Cappelluti et al. 2007). This suggests that our source countdis-
tributions are not strongly affected by source detection biases.

Source confusion occurs when two or more sources fall in
a single resolution element of the detector, and depends on the
sky density of sources and the size of the telescope beam. As
shown in Loaring et al. (2005), the XMM-Newton confusion
limit is reached at a source density of∼2000 deg−2, correspond-
ing to fluxes< 10−16 erg cm−2 s−1 in all energy bands. This is
well below the flux limits reached by our survey (see Table 1).
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Fig. 9. Top: Dependence of the 4.5-10 keV normalised source
count distribution in integral form on the exposure time of
the observations. Bottom: Comparison of our 4.5-10 keV nor-
malised source count distribution in integral form (L≥15) with
the distributions obtained if lower/higher detection likelihood
thresholds are used instead. Error bars correspond to 1σ con-
fidence.

Therefore we expect the effect of source confusion on our source
count distributions to be negligible. Furthermore, due to the rel-
atively high threshold in detection likelihood used in our analy-
sis (L≥15), we expect the fraction of spurious detections in our
samples to be low. From Fig. 6 in Loaring et al. (2005), a detec-
tion likelihoodL=10 corresponds to a∼2.6% fraction of spuri-
ous detections in the 5-10 keV band, i.e. the expected number
of spurious sources per XMM-Newton pointing in this energy
band is∼1.1. Because we have increased the detection likelihood
threshold by 5, the number of spurious sources in our survey in
the 4.5-10 keV band is effectively reduced bye−5=6.7 × 10−3.
Therefore for our selected threshold in significance of detection,
L≥15, the expected number of spurious detections per field in
our 4.5-10 keV band is∼ 7× 10−3 and the total number of spu-
rious detections in our 1129 fields is∼8.3. As we have 1895 ob-
jects in the 4.5-10 keV band the fraction of spurious detections
in this band is≤0.44%. Note however that the computation of
the fraction of spurious detections forL=15 from an extrapola-
tion of the results forL=10 is probably too conservative, and the
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Table 6. Results of theχ2 fits to our source count distributions with a model with threepower-laws.

Energy band Γb Γi Γf S b
b S f

b K F-test
(keV) (10−14 cgs) (10−14 cgs) (deg2) prob. (%)

(1) (2) (3) (4) (5) (6) (7) (8)
0.5-1 2.34+0.02

−0.02 1.91+0.02
−0.03 1.56+0.06

−0.06 0.97+0.06
−0.07 0.31+0.04

−0.02 57.6+4.9
−3.7 99.99

1-2 2.51+0.02
−0.02 2.28+0.04

−0.04 1.74+0.03
−0.03 1.21+0.15

−0.20 0.52+0.04
−0.01 47.9+12.4

−7.6 99.99
2-4.5 2.72+0.03

−0.03 2.39+0.04
−0.03 1.93+0.13

−0.22 2.2+0.19
−0.16 0.72+0.06

−0.08 40.4+5.9
−5.9 97.3

4.5-10 2.72+0.03
−0.03 - - - - 270.7+17.2

−16.2
0.5-2 2.44+0.03

−0.02 2.10+0.03
−0.04 1.61+0.03

−0.02 2.42+0.19
−0.22 0.80+0.04

−0.06 46.0+6.1
−4.0 99.99

2-10 2.69+0.02
−0.03 2.40+0.01

−0.04 0.96+0.40
−0.51 4.09+0.22

−0.69 1.24+0.04
−0.13 60.2+6.9

−3.4 94.3

(1) Energy band definition (in keV). (2), (3) and (4) Power-law slopes at the brightest, intermediate and fainter fluxes respectively. (5) and (6)
Flux breaks (in units of 10−14 erg cm−2 s−1) at bright and faint fluxes. (7) Normalisation of the model ineach band. (8) F-test significance of

improvement of the quality of the fit with respect to a broken power-law model. Errors are 1σ uncertainty.

Table 5. Results of the maximum likelihood fits to our source
count distributions with a broken power-law model.

Energy band Γb Γf S b K
(keV) (10−14 cgs) (deg−2)

(1) (2) (3) (4) (5)
0.5-1 2.30+0.02

−0.01 1.78+0.01
−0.02 0.81+0.01

−0.01 71.3+1.5
−11.6

1-2 2.43+0.01
−0.01 1.81+0.01

−0.01 0.65+0.01
−0.01 112.3+2.2

−1.0

2-4.5 2.62+0.02
−0.02 2.24+0.04

−0.03 1.46+0.15
−0.07 72.6+4.7

−12.1

4.5-10a 2.69+0.03
−0.03 —- —- 264.8+15.8

−14.7

0.5-2 2.31+0.01
−0.01 1.66+0.01

−0.02 1.06+0.13
−0.01 124.9+1.8

−18.6

0.5-2b 2.29+0.01
−0.55 1.63+0.01

−0.33 1.00+0.01
−0.01 131.9+1.1

−45.5

2-10 2.65+0.02
−0.02 2.30+0.05

−0.03 3.29+0.15
−0.08 84.4+3.3

−6.1

2-10a 2.54+0.01
−0.01 —- —- 482.6+10.8

−9.2

2-10b 2.55+0.03
−0.02 1.19+0.01

−0.01 0.78+0.01
−0.10 709.3+110.6

−18.0

(1) Energy band definition (in keV). (2) Power-law slope above the
flux break. (3) Power-law slope below the flux break. (4) and (5) Flux
break (in units of 10−14 erg cm−2 s−1) and normalisation in each band.
Errors are 1σ uncertainty.a Best fit parameters from using a single

power-law.b Best fit parameters from fitting our data together with the
data from the CDF-N and CDF-S.

real fraction is probably marginally higher (∼1-2%, see Watson
et al. 2008). The fraction of spurious detections is largestin the
4.5-10 keV band so we can conclude that the fraction of spurious
detections is.2% in all our energy bands.

The Eddington bias (i.e. a systematic offset in the num-
ber of detected sources at a given flux) depends on the un-
certainty in the measured fluxes and the shape of the source
count distributions (Eddington 1913). The steeper the source
counts the stronger the Eddington bias. As shown in Loaring et
al. (2005) if a less-conservative detection limit is used (L≥6-8),
the Eddington bias can increase the measured source counts by
up to∼23% at the faintest fluxes. In the present study we expect
Eddington bias effects to be most important in the 4.5-10 keV
band, since the background is higher (and therefore for a source
at a given flux the corresponding statistical error is higher) and
due to the fact that the source count distribution is steeperfor
this energy band (see Sec. 3.3). On this basis we have focused
our attention on the impact of the Eddington bias in the measured
source count distributions in the 4.5-10 keV band.

Because we use a set of observations having a broad range
of exposure times our source counts are expected to be affected
by Eddington bias over a broad range of flux. We have investi-
gated how the shape of our source count distribution changesif
we use observations with different exposure times. We divided
our 1129 observations into four groups having different ranges

of exposures and calculated source count distributions foreach
subsample. The degree of Eddington bias is not directly related
to the exposure time as within each field the flux limit increases
for larger offaxis angles due to the vignetting. However, we have
defined the range of exposure times within each group broadly
enough to account for the variation of the flux limit within each
observation. No obvious changes in the shape of the distributions
are seen suggesting that Eddington bias effects must be rather
small (see Fig. 9 top).

We also have compared source count distributions obtained
when one increases the threshold in the significance of detection
of sources. The results of this test are shown in Fig. 9 (bottom).
For comparison we have also included the distribution obtained
using a threshold in the significance of detectionL=10. AtL=10
we see deviations of up to 10 percent with respect to the other
curves, suggesting that Eddington bias would have an influence
if we had adopted this likelihood threshold for our study. Incon-
trast, the results are entirely consistent for likelihood thresholds
of 15 and larger, implying that Eddington bias is smaller than our
statistical errors at the detection threshold that we have adopted
for this work.

3.5. Maximum likelihood fitting to the source counts

3.5.1. Two power-law fitting model

Number counts below∼10 keV can be well fitted by broken
power-law shapes with the break in the distributions occurring at
fluxes∼ 10−15− 10−14 erg cm−2 s−1 (see e.g. Cowie et al. 2002,
Moretti et al. 2003, Ueda et al. 2003, Bauer et al. 2004, Carrera et
al. 2007). We have fitted the unbinned differential source count
distributions using the parametric, unbinned maximum likeli-
hood method described in Carrera et al. (2007). In Eq. 2 of that
paper, a Poisson term was added to the ’usual’ maximum likeli-
hood expression to take into account the difference between the
observed number of sources in each sample and the expected
number given the model parameters being fitted. This analysis
is equivalent to the one used in Marshall et al. (1983) to fit the
luminosity function of quasars. However, the analysis presented
in Carrera et al. (2007) also takes into account both the errors in
the fluxes of the sources and the changing sky area with flux.

The model adopted to represent the shape of the distributions
is a broken power-law,

dN
dS dΩ
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Table 7. Intensity of the X-ray background contributed by our sources in the various energy bands.

Energy band S min S max ICXRB(S min ≤ S ≤ S max) ICXRB fCXRB

(keV) (cgs) (cgs) (10−12cgs deg−2) (10−12cgs deg−2)
(1) (2) (3) (4) (5) (6)

0.5-1 9.9× 10−16 10−12 2.4 2.96 0.81
10−12 0.32 0.11

1-2 1.2× 10−15 10−12 2.5 4.50* 0.55
10−12 0.12 0.03

2-4.5 3.7× 10−15 10−12 3.3 7.80 0.42
10−12 0.08 0.01

4.5-10 14× 10−15 10−12 2.8 12.4 0.22
10−12 0.14 0.01

0.5-2 1.4× 10−15 10−12 4.9 7.50* 0.65
10−12 0.48 0.06

2-10 9.0× 10−15 10−12 8.0 20.2* 0.39
10−12 0.39 0.02

(1) Energy band definition (in keV). (2) and (3) Minimum and maximum flux used in the integration. (4) Intensity of the X-raybackground
contributed by our sources. Note that the quoted values include the contribution from both clusters of galaxies and stars. (5) Total X-ray

background intensity. Errors are 1σ uncertainty. The values indicated with an asterisk are fromMoretti et al. (2003). These values were used to
estimate the CXRB intensity in the various energy bands assuming a power-law model ofΓ=1.4 (see Sec. 3.6 for details). (6) Fraction of X-ray

background resolved by our sources.

This model has four independent parameters: the break fluxS b,
the normalisationK and the slopes of the differential counts at
bright (Γb) and faint (Γf ) fluxes.

The results of the fits are summarised in Table 5 while the
best fit broken power-law models are represented as solid lines
in Fig. 5 and Fig. 7. Table 5 also lists the best fit parameters
obtained when fitting the current measurements simultaneously
with the CDF-N and CDF-S counts in both the 0.5-2 keV and
2-10 keV energy bands.

In the 0.5-2 keV band we see that the broken power-
law model provides only a modest fit to the data above its
break suggesting that the curvature of the source counts in
the 0.5-2 keV band cannot be well represented by a simple
broken power-law model. Although in the 2-10 keV band the
model seems to provide a better representation of the shape of
the source counts, this is only achieved by allowing a break
at a flux > 3× 10−14 erg cm−2 s−1, well above the value of
∼ 10−14 erg cm−2 s−1 typically found in deeper surveys (see e.g.
Cappelluti et al. 2007). We interpret this as an indication that
the curvature of the source counts also in the 2-10 keV band
cannot be well reproduced by the broken power-law model. For
the narrow energy bands the broken power-law model providesa
somewhat better although far from perfect fit to all the data sets
(see Fig. 7).

3.5.2. Three power-law fitting model

In order to improve the quality of the fits to our source counts
we performed aχ2 fitting to the binned differential distributions
using a model with three power-law components. This model
has six independent parameters: the break fluxes at bright and
faint fluxes,S b

b andS f
b; the normalisationK at the bright flux

break and the slopes at bright (Γb), intermediate (Γi) and faint
(Γf ) fluxes. A summary of the results of the fitting are given in
Table 6. Column 8 lists the F-test significance of improvement
of the fits relative to a model with two power-laws.

The results for the 0.5-1 keV, 1-2 keV and 0.5-2 keV spectral
regimes confirm that the curvature of the source counts in these
energy bands cannot be well reproduced with the standard bro-

ken power-law model. The same result probably applies also to
the source counts in the 2-4.5 keV and 2-10 keV energy bands,
although in this case the lower significance of improvement in
the fits is probably due to the fact that our survey is not deep
enough at these energies to provide strong constraints on the
shape of the distributions below the region of downward cur-
vature in the counts.

3.6. Contribution to the cosmic X-ray background

We have used the best fit parameters of our source count dis-
tributions (three power-law model, see Table 6) to estimatethe
intensity contributed by our sources to the cosmic X-ray back-
ground in the various energy bands. The results are presented
in Table 7. Here we use the CXRB intensity measurements ob-
tained by Moretti et al. (2003) in the 1-2 keV and 2-10 keV
bands, which are consistent within 1σwith the more recent mea-
surements of the X-ray background intensity obtained by De
Luca & Molendi (2004) and Hickox & Markevitch (2006). In
order to compute the values in our energy bands we assumed
a spectral model with power-lawΓ=1.4, which is known to be
an appropriate representation of the CXRB spectrum at ener-
gies above 2 keV (Lumb et al. 2002). The shape of the CXRB
spectrum at energies below∼1 keV is rather uncertain although
source stacking analyses suggest a marginally softer spectrum
(e.g. Streblyanska et al. 2004). We decided to use the same value
of Γ down to 0.5 keV and therefore the value of the CXRB in-
tensity in the 0.5-1 keV band reported in Table 7 could be po-
tentially underestimated. In Table 7 we also list the valuesof
the CXRB intensity contributed by sources with fluxes above
10−12 erg cm−2 s−1. These values were obtained by integrating
the best fit model of our source count distributions. We estimate
that the uncertainty in the values reported in Table 7 is dominated
by systematics (e.g. those associated with spectral assumptions,
flux conversions and instrumental calibrations), i.e. not source
statistics, and therefore uncertainties in our measurements of the
CXRB intensity should be. 5%.

The source count distributions obtained by Moretti et
al. (2003) in the 0.5-2 keV and 2-10 keV energy bands have been
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Fig. 10. Distributions of the X-ray colour vs. flux for sources detected in our broad energy bands. The contours show the 90%, 75%
and 50% level of peak intensity. Flux limits in the band are shown with a vertical solid line. The X-ray colour for a power-law
spectral model withΓ=1.9 and different values of redshift and rest-frame absorption (NH in units of 1022 cm−2) are represented with
horizontal lines. The error bars at the top of the plots indicate the mean error in the X-ray colour at different fluxes.

frequently used to estimate the contribution from bright sources
to the X-ray background (e.g. Worsley et al. 2004, Worsley et
al. 2005). However, it has already been pointed out that the
Moretti et al. (2003) bright end slopes might be too steep sug-
gesting that bright-end corrections for the CXRB intensitycould
be an underestimate (see Worlsley et al. 2005). We also found
that the bright end slope of our source counts is flatter than the
value reported in Moretti et al. (2003) (2.82+0.07

−0.09). However in
the 2-10 keV band our bright end slope is marginally flatter al-
though still compatible with the Moretti et al. (2003) valueat
less than 2σ (2.57+0.10

−0.08).
At energies below∼2 keV our sources contribute more than

∼60% of the CXRB intensity, while the fraction reduces to
∼40% at higher energies. We also note that there is an impor-
tant decline in the fraction of CXRB resolved by our sources as
a function of energy, especially across the 2-10 keV bandpass,
where the value goes down from∼40% in the 2-4.5 keV band to
just∼22% above 4.5 keV.

4. X-ray spectral properties of the sources

Our analysis has revealed that the shape of the source count dis-
tributions becomes substantially steeper as we move to higher
X-ray energies. In order to understand the origin of this effect
we have investigated the overall properties of the X-ray source
populations detected in different energy bands at the fluxes sam-
pled by our analysis. Fig. 10 shows in the form of density dis-
tributions7 the X-ray colour distribution of sources detected in
the 0.5-2 keV and 2-10 keV energy bands as a function of flux.

7 In order to account for the uncertainty in both the measured flux and
X-ray colour, we added the probability density distribution of the X-ray
colour-flux of each individual source. This distribution was defined as
a 2-d Gaussian centred at the measured value of the X-ray colour and
flux and with dispersion equal to the corresponding 1σ errors of the
parameters.

The contours overlaid indicate the 90%, 75% and 50% levels of
the peak intensity while the flux limit in the band is shown by
a vertical solid line. The error bars at the top of the plots indi-
cate the mean error in the X-ray colour at different fluxes. The
X-ray colour for each source was obtained as the normalised ra-
tio of the count rates in the energy bands 0.5-2 keV and 2-10
keV. In the same figure we also show for comparison the X-ray
colour for a power-law model of photon indexΓ=1.9 at redshift
z=0 and z=0.7 (the majority of type-2 AGN identified in surveys
at intermediate fluxes have redshifts z.0.7-0.8, see Barcons et
al. 2007, Caccianiga et al. 2008, Della Ceca et al. 2008) and vari-
ous amounts of rest-frame absorption (NH in units of 1022 cm−2).
The peak of the distribution of X-ray colours corresponds tothe
X-ray colour typical for a power-law spectral model with low
observed X-ray absorption. This result seems to hold for sources
detected in both the 0.5-2 keV and 2-10 keV energy bands and
at all fluxes sampled by our analysis although there seems to be
a larger contribution from sources with hard X-ray colours in the
2-10 keV band.

We have computed the probability density distributions of
the X-ray colour for sources detected in our broad energy bands
by projecting the distributions in Fig. 10 onto the y axis. These
distributions together with the corresponding cumulativedistri-
butions are shown in Fig. 11. Both distributions peak at a similar
X-ray colour, however at energies≥ 2 keV sources with very
soft X-ray colours become less important while sources with
hard X-ray colours become more important. In Fig. 11 (top right)
we show the corresponding probability density distributions for
sources detected in the narrow energy bands. These distributions
show the same energy dependent trends as observed in our broad
energy bands. Because the typical errors in the X-ray colourof
the sources are∆HR≤0.1-0.2 in all energy bands they cannot
alone account for the observed large dispersion in the distribu-
tion of X-ray colours.
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Fig. 11. Top: Probability density distributions of the X-ray colourfor sources detected in different energy bands. Bottom:
Cumulative distributions of the X-ray colour for sources detected in different energy bands. The vertical solid lines indicate the
X-ray colour for an object at redshift z=0.7 with a power-law spectrum of photon indexΓ=1.9 and different amounts of rest-frame
absorption (in units of 1022 cm−2).

The decrease in the apparent fraction of sources with very
soft X-ray colours at high energies can be explained by a signif-
icant decrease in the contribution from non-AGN sources such
as stars and clusters of galaxies as we move to higher energies.
On the other hand, in the harder band we are less biased against
absorbed sources and hence we expect more absorbed sources
to be detected at these energies. In order to estimate the con-
tribution from absorbed objects from the observed X-ray colour
distributions, we used as a dividing line between unabsorbed and
absorbed AGN the value of the X-ray colour for a source with
spectral slopeΓ=1.9 at redshift z=0.7 and rest-frame absorp-
tion NH = 4× 1021 cm−2. According to Caccianiga et al. (2008),
the separation between optically absorbed (type-2) and opti-
cally unabsorbed (type-1) AGN corresponds to an optical extinc-
tion AV ∼2 mag. This value, assuming a Galactic AV/NH rela-
tion, corresponds to a column density NH = 4× 1021 cm−2. For
a threshold corresponding to a power-law spectrum with rest-
frame absorption NH = 4× 1021 cm−2 at redshift z=0.7 we find
that the fraction of ’hard’ sources is 0.46, 0.57, 0.74 and 0.77
at 0.5-1 keV, 1-2 keV, 2-4.5 keV and 4.5-10 keV respectively.
The corresponding values for the broad energy bands are 0.55at
0.5-2 keV and 0.77 at 2-10 keV. These numbers should be con-

sidered as lower limits to the fraction of X-ray absorbed objects
contributing to the AGN source population at different energies
because if the sources are moderately absorbed but at higherred-
shift the signatures of absorption will be outside of the applicable
energy bandpass, and hence these objects will exhibit the X-ray
colours of unabsorbed AGN.

We can also compare the measured cumulative sky density
of sources in the soft energy bands at a given flux with the val-
ues obtained in higher energy bands at the expected flux for the
source. For example, assuming an unabsorbed power-law spec-
trum with Γ=1.9 at a flux of 1.5× 10−14 erg cm−2 s−1 in the 1-2
keV energy band8 we measure a cumulative sky density in the
band of 23±1 deg−2. The corresponding fluxes in the 2-4.5 keV
and 4.5-10 keV energy bands are 1.9× 10−14 erg cm−2 s−1 and
2× 10−14 erg cm−2 s−1 respectively. At these fluxes the cumula-
tive sky density of sources is 30±1 deg−2 in the 2-4.5 keV band
and 50±1 deg−2 in the 4.5-10 keV band. The implied substantial
increase in the sky density of objects as we move to higher en-
ergies suggests that a fraction of sources in the 4.5-10 keV band

8 The flux was chosen to be high enough to guarantee that the ex-
pected flux in the energy bands at higher energies is well above the flux
limit in the bands.
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Fig. 12. Normalised source count distribution in integral form
for stars in the 0.5-2 keV band from two XMM-Newton
serendipitous surveys at high galactic latitudes (|b| >20◦): the
XMM- Newton Medium Sensitivity Survey (XMS, circles) and
the XMM-Newton bright survey (XBS, squares). The dashed line
shows the best fit to the 0.5-2 keV source count distribution for
clusters from Rosati et al. (1998). Error bars correspond to1σ
confidence.

must have a spectrum harder than the assumedΓ=1.9 power-law.
Furthermore, the substantial increase in the sky density from the
2-4.5 keV to the 4.5-10 keV band indicates that∼40% of the
sources detected in the 4.5-10 keV band must have absorbing
column densities high enough (∼ 1022− 1023 cm−2) to signifi-
cantly reduce the observed flux in the 2-4.5 keV band. This is
consistent with the shape of the probability distribution of X-ray
colours presented in Fig. 11. The higher efficiency of selection
of type-2 AGN at energies>4.5 keV has already been reported
(Caccianiga et al. 2008, Della Ceca et al. 2008).

The overall emission properties of the objects change with
the energy band, but it is unclear whether this effect is entirely
due to the fact that we are sampling a different spectral range
at different energies or we are detecting an intrinsically differ-
ent population of sources as we move to higher energies. The
fraction of non-AGN sources decreases as we move to higher
energies. This has an effect on both the distribution of the X-
ray colours, as shown previously and, as we will see in Sec. 5.2,
on the shape of the source count distributions. At energies≥2
keV we find that∼5% of the sources detected in the 4.5-10 keV
band were not detected in the 2-4.5 keV band, however the ma-
jority of 4.5-10 keV sources were detected both in the 2-10 keV
(≥99%) and 0.5-2 keV (≥88%) energy bands. Thus, we do not
have any strong evidence that highly absorbed AGN with no soft
flux dominate the source counts in the harder energy bands. The
changes in both the overall emission properties of the objects
and the shape of the source counts at different energies are best
explained by the varying mix of the population of objects at dif-
ferent fluxes and energies and the different sampling of the spec-
tra of AGN. The dependence of the contribution from different
populations of objects to the CXRB on the energy band was al-
ready noticed by Bauer et al. (2004). However their analysiswas
based on relatively broad X-ray energy bands (0.5-2 keV and 2-
8 keV). The use of narrower bands has allowed us to investigate
the varying mix of different populations of objects and the rela-
tive contribution from absorbed and unabsorbed AGN through-

out these bandpasses and to extend the study to higher energies
(10 keV).

Although the overall emission properties of the objects in
the 2-4.5 keV and 4.5-10 keV energy bands have changed sub-
stantially due to the strong increase in the fraction of absorbed
objects at the highest energies, the slope of the source count dis-
tributions in these energy bands has not varied significantly, in-
dicating that the cosmological evolution of the sources detected
in the two energy bands must be quite similar.

5. Implications for CXRB synthesis models

5.1. The contribution of stars and clusters

Before comparing our source counts in different energy bands
with the predictions from current CXRB synthesis models we
need to account first for the contribution from non-AGN to our
samples of X-ray sources. The two most important contributors
are clusters of galaxies and stars, especially at bright fluxes and
soft X-ray energies.

1. Source counts for clusters: In order to account for cluster
contribution, we have used the 0.5-2 keV source count dis-
tribution for clusters from Rosati et al. (1998), that covers the
flux range from∼ 10−14 erg cm−2 s−1 to ∼ 10−12 erg cm−2 s−1

(see Fig. 12). We have checked whether our source detec-
tion algorithm is able to detect all clusters at these fluxes
(either as point like or extended). In order to do that we
cross-correlated our sample of objects detected in the 0.5-
2 keV band with the 50 clusters from theXMM-COSMOS
survey (Finoguenov et al. 2007) that lie in the area cov-
ered by our survey. We found that 18 of their clusters
have been detected in our 0.5-2 keV band, 8 as extended
and 10 as point like sources. We detected allXMM-COSMOS
clusters with 0.5-2 keV fluxes≥ 10−14 erg cm−2 s−1 (5 as
point like sources and 8 as extended sources), while only
∼13% XMM-COSMOS clusters with 0.5-2 keV fluxes below
∼ 10−14 erg cm−2 s−1 are in our sample (all detected as point
like objects). Although the numbers involved are very small,
this test demonstrates that the assumption that all clusters
with fluxes∼ 10−14 erg cm−2 s−1 are included in our samples
is reasonable.
We also need to estimate the contribution of clusters to the
0.5-1 keV and 1-2 keV energy bands (the contribution from
clusters at energies≥2 keV is negligible). Assuming that all
clusters are also detected in these bands we have rescaled the
0.5-2 keV distribution to estimate the contribution to these
bands. In order to convert the fluxes we have assumed that
the mean spectrum of clusters can be well represented by a
thermal spectrum with temperature=3 keV, abundance=1/3
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Fig. 13. Comparison of the normalised source count distributions inintegral form in the 0.5-1 keV, 1-2 keV, 2-4.5 keV and 4.5-10
keV bands with the predictions from the synthesis models of the CXRB of Treister & Urry (2006) and Gilli et al. (2007): AGN only
(solid lines), AGN+clusters+stars (dashed lines). Error bars correspond to 1σ confidence.

Fig. 14. Comparison of the normalised source count distributions inintegral form in the 0.5-2 keV and 2-10 keV bands with the
predictions from the synthesis models of the CXRB of Treister & Urry (2006) and Gilli et al. (2007): AGN only (solid lines),
AGN+clusters+stars (dashed lines). Error bars correspond to 1σ confidence.



18 S. Mateos et al.: High precision X-ray logN-logS distributions: implications for the obscured AGN population

and redshift=0.2 (apecmodel in Xspec, Arnaud 1996)9.

2. Source counts for stars: We have calculated source count
distributions for stars using the data from two XMM-
Newton serendipitous surveys at high galactic latitudes (|b| >
20◦): the XMM-Newton Medium Sensitivity Survey (XMS;
Barcons et al. 2007) and the XMM-Newton Bright Survey
(XBS; Della Ceca et al. 2004, Caccianiga et al. 2008). The
XMS survey covers a total sky area of 3.33 deg2 and it has
spectroscopically identified all stars in the sample (15 ob-
jects) down to a 0.5-2 keV flux∼ 1.5× 10−14 erg cm−2 s−1.
On the other hand theXBS covers a total sky area of 28.1 deg2

and has a complete sample of stars (49) down to a 0.5-4.5
keV flux ∼ 7× 10−14 erg cm−2 s−1. Stars at the fluxes sam-
pled by our analysis have mainly low temperature thermal
spectra (see e.g. Della Ceca et al. 2004, Lopez-Santiago et
al. 2007). Therefore 0.5-2 keV fluxes were scaled to our var-
ious energy bands assuming a thermal model with a temper-
ature of 0.7 keV. The 0.5-2 keV source count distributions
for XMS andXBS stars are shown in Fig. 12.
The contribution of stars to the 2-4.5 keV and 2-10 keV
energy bands at high galactic latitudes is much less certain
because of the lack of data at these energies. According to
the XBS survey, the cumulative sky density of stars in the
above bands at a flux of 10−13 erg cm−2 s−1 (where the sur-
vey is complete) is 0.21±0.09 deg−2. We have used this value
to estimate the effect of stars on the observed source count
distributions in the two hard energy bands at bright fluxes
(see Sec. 5.2). Because stars have a thermal soft spectrum
their contribution to our source counts should decrease sig-
nificantly as we move to higher energies and above∼4.5
keV their contribution is negligible (Barcons et al. 2007,
Caccianiga et al. 2008).

5.2. Comparison with CXRB synthesis models

In principle synthesis models of the CXRB incorporate all the
available information about the mean spectral properties and
cosmological evolution of the sources. Therefore a comparison
of our observational constraints with their predictions can give
us some insight into the origin of the observed trends in the
source count distributions. Conversely, any deviation of the mea-
surements from the predictions, might indicate the need forre-
finement of the model assumptions.

We have compared our data with the predictions from
the synthesis models of Treister & Urry (2006) and Gilli et
al. (2007). These models have different recipes for the X-ray
luminosity function and assume somewhat different distribu-
tions of X-ray absorption. One fundamental ingredient of these
models, is the fraction of obscured AGN,F, its evolution and

9 From the bolometric luminosity-temperature relation, a cluster
with a temperature∼3 keV has a luminosity∼ 1043 erg s−1. If the
cluster is at a redshift of 0.2 the expected observed flux willbe
∼ 3× 10−14 erg cm−2 s−1, i.e. in the range of fluxes sampled by our
survey. From the cluster luminosity function objects with very high
temperature (∼10 keV) are relatively rare, while for a flux limited
survey the volume sampled for less luminous clusters (hencewith
low temperatures) is small. This implies that flux limited surveys
are expected to be dominated by clusters with typical luminosities
∼ 1043 − 1044 erg s−1 (i.e. with temperatures∼3-4 keV). More luminous
clusters (∼ 1045 erg s−1) will be relatively rare, and, at the flux level sam-
pled by our survey, they will be at high redshift (z∼1) and hence they
will exhibit X-ray spectra very similar to the more common, less lumi-
nous objects (Henry et al. 1991).

its dependence on luminosity. In the Treister & Urry (2006)
model, F ∝ (1 + z)0.4, and its dependence on the X-ray lu-
minosity is linear, from 100% at LX = 1042 erg s−1 to 0% at
LX = 3× 1046 erg s−1. On the other hand, in the Gilli et al. (2007)
model no evolution ofF is assumed and the dependence ofF on
the luminosity is much flatter than in the Treister & Urry (2006)
model. The significantly different assumption, relating to the in-
trinsic absorption properties of AGN inherent in the two models
would suggest that the predictions of the two models might dif-
fer, especially at low energies where the results are more affected
by X-ray absorption effects. We see in Fig. 13 that the predicted
source counts from the two models are very similar above 4.5
keV, especially at the fluxes sampled by our survey. Differences
between the two model predictions become more clear as we
move to lower energies. The two most important differences are:

1. At bright fluxes the Treister & Urry (2006) model predicts a
larger number density of AGN than the Gilli et al. (2007)
model. The effect becomes more important at low ener-
gies. For example, at∼ 10−13 erg cm−2 s−1 the Treister &
Urry (2006) model predicts 25-35% more AGN (depending
on the energy band) than the Gilli et al. (2007) model.

2. At all fluxes the slope of the source counts is flatter in the
Treister & Urry (2006) model than in the Gilli et al. (2007)
model (in the sense that the implied value of|Γ| is lower).

The comparison of our measured source count distributions
with the predictions from the two models is shown in Fig. 13 and
Fig. 14. We show both the AGN-only predictions from the mod-
els (solid lines) and the predictions after adding to the AGN-only
source counts (in the 0.5-1 keV, 1-2 keV and 0.5-2 keV bands)
the contribution from non-AGN sources (clusters of galaxies and
stars) as explained in Sec. 5.1.

At energies below 2 keV and at bright fluxes
(> 10−14 erg cm−2 s−1) the measured source count distribu-
tions lie significantly above model predictions for AGN-only.
This appears to be due to the fact that at these energies the
contribution from non-AGN sources, mainly stars and clusters
of galaxies, is not negligible. We estimated that the contribution
from stars and clusters to the X-ray source population increases
from ∼13-22% at fluxes≥ 10−14 erg cm−2 s−1 to ∼44-54% at
fluxes ≥ 10−13 erg cm−2 s−1 in the 0.5-2 keV band (the exact
value depending on the CXRB model used to calculate the
fractions). The net effect of stars and clusters on the shape of
the source counts is that the bright slopes of the distributions
are substantially flatter compared with the expectations from
the models for AGN-only sources. Once we include the con-
tribution from stars and clusters the predictions of the models
are in better agreement with our results, although both models
seem to overpredict the observed source counts by 20-30%
at the brightest fluxes sampled by our survey (although with
the caveat that the exact contribution of stars and clustersof
galaxies has some uncertainty). Below 2 keV and at faint fluxes
(< 10−14 erg cm−2 s−1) both models overpredict the source
counts. The effect is more important from the comparison with
the Gilli et al. (2007) model, resulting in a discrepancy of the
data with the model predictions∼10-20%.

In the 2-4.5 keV band and at bright fluxes the Gilli et
al. (2007) model seems to underpredict the source counts. We
have estimated the contribution from stars in this energy band
at bright fluxes using the results from theXBS survey as spec-
ified in Sec. 5.1 (0.21± 0.09 deg−2 at 10−13 erg cm−2 s−1). We
find that the net effect of stars is to increase the source counts
at 10−13 erg cm−2 s−1 by ∼11% with respect to the AGN-only
distributions, obtaining a much better agreement of the model
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predictions with our data. On the other hand, at faint fluxes we
find that both models overpredict the 2-4.5 keV source countsby
10-20%, as we found from the comparison of the source counts
at energies below 2 keV.

In the 2-10 keV and 4.5-10 keV energy bands the agree-
ment of our data with the predictions from the models for
AGN-only is better than 10%. Only in the 4.5-10 keV band do
the model predictions seem to slightly underpredict our source
counts at the faintest fluxes sampled by our analysis. This ef-
fect could be explained if the break in the source counts in this
energy band is located at lower fluxes than those predicted by
the synthesis models as suggested from deeper X-ray surveys
(.5-8×10−15erg cm−2 s−1, e.g. Loaring et al. 2005, Brunner et
al. 2008, Georgakakis et al. 2008). The effect of stars on the
source counts in these energy bands is negligible.

We find that the CXRB models overpredict by 10-20% the
source counts at energies below 4.5 keV and at faint fluxes. Itis
important to note that the models have been tuned to be in agree-
ment with theChandra Deep Field source counts at faint fluxes,
but these appear to be only marginally higher (.10%) than those
estimated by our analysis. The results of the comparison suggest
that the synthesis models might be overpredicting the number
of faint absorbed AGN as has been reported in the past by pre-
vious surveys (e.g. Piconcelli et al. 2002, 2003, Caccianiga et
al. 2004). This would call for fine adjustment of some model pa-
rameters such as the obscured to unobscured AGN ratio and/or
the details of the distribution of column densities at interme-
diate obscuration (NH = 1022− 1023 cm−2) and the dependence
of these on the X-ray luminosity and/or redshift (see e.g. Della
Ceca et al. 2008).

6. Summary and Conclusions

We have used the largest samples of X-ray selected sources
available to date to provide strong observational constraints
on the X-ray source count distributions over a broad range of
fluxes and at different X-ray energies. Our source lists were built
from 1129 XMM-Newton observations at high galactic latitudes,
|b|> 20◦, covering a total sky area of 132.3 deg2. We have fo-
cused our study on four ’narrow bands’ and the two ’standard’
energy bands, 0.5-2 keV and 2-10 keV, where we have in excess
of 30,000 sources. Our data encompass roughly 3 decades of
flux, from ∼ 10−15 erg cm−2 s−1 to ∼ 10−12 erg cm−2 s−1 at ener-
gies.2 keV and more than 2 decades in flux at higher energies,
≥2 keV, from∼ 10−14 erg cm−2 s−1 to ∼ 10−12 erg cm−2 s−1. Our
sources contribute more than∼60% of the CXRB intensity at en-
ergies below∼2 keV and∼40% above∼2 keV (although there
is a marked decline in the fraction of CXRB resolved across the
2-10 keV bandpass). Thanks to the large size of the samples em-
ployed, our results are not limited by cosmic variance effects or
low counting statistics. For the first time we have been able to
investigate how the changing population of X-ray sources, as we
move to different energies, modifies the shape of the measured
distributions. The main results are summarised below:

1. A comparison with previous representative surveys at the
fluxes of interest shows overall a good agreement. The
largest discrepancies from the comparison were found at
bright fluxes≥ 10−14 erg cm−2 s−1, where the results of the
majority of the surveys are limited by low counting statistics.
Although cross-calibration issues between missions might
contribute to the scatter, especially at energies≥2 keV, we
have seen that it cannot fully explain some of the observed
discrepancies. We have also shown that different spectral as-

sumptions made in converting count rates to fluxes can also
introduce some additional scatter particularly above 2 keV,
where the effective areas of the X-ray detectors vary strongly
with the energy.

2. Maximum likelihood fits to our distributions have been car-
ried out using a broken power-law model. A break in the
distributions is detected in all energy bands, except in the
4.5-10 keV band, where our survey does not go deep enough
to detect the change in slope of the distribution. However, the
results of the fits indicate that the measured curvature of our
source count distributions cannot be well fitted with a sim-
ple broken power-law shape. A model with three power-law
components provided a significantly better representationof
the shape of our distributions across the set of energy bands.

3. We find that our source count distributions become signif-
icantly steeper both at high and low fluxes as we move to
higher energies, where we have shown that the contribution
from objects with hard X-ray colours becomes more impor-
tant. We explain this on the basis of a varying mix of the
population of objects at different fluxes and energies and the
different sampling of the spectra of AGN. Stars and clusters
of galaxies become significantly less important as we move
to higher energies, while sources with hard X-ray colours
become substantially more important at high energies. We
did not find any strong evidence that AGN with no soft flux
dominate the source counts at the highest energies sampled
by our survey.

4. We have compared our distributions with the predic-
tions from the CXRB synthesis models from Treister &
Urry (2006) and Gilli et al. (2007) which assume different
absorption properties for the underlying population of AGN.
Once we account for the contribution from clusters and stars
at bright fluxes, the models seem to overpredict by 20-30%
the source counts at energies below 2 keV. However our cor-
rection for the contribution from stars and clusters might
contribute to the observed discrepancy. The two CXRB mod-
els predict different shapes for the source count distributions
at faint fluxes, however both models overpredict our source
counts (especially the Gilli et al. 2007 model) by 10-20% at
energies below 4.5 keV and at faint fluxes. This result sug-
gest that the synthesis models might overpredict the number
of faint absorbed AGN. On the other hand the models seem
to underpredict our 4.5-10 keV source counts at the faintest
fluxes sampled by our analysis. This could be explained if,
as suggested by deep X-ray surveys, the break in the source
counts in this energy band is located at lower fluxes than
those predicted by the models. The high statistical precision
of source counts will allow fine tuning of some model param-
eters such as the obscured to unobscured AGN ratio and/or
the details of the distribution of column densities at interme-
diate obscuration (NH = 1022− 1023 cm−2).
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Appendix A: Empirical sensitivity maps calculation

A detailed description of the method used in this work to ob-
tain the sky coverage as a function of the X-ray flux is given in
Appendix A in Carrera et al. (2007). Briefly, assuming Poisson
statistics hold, it is possible to determine, for a given detection
likelihood,L, the source detection threshold at each sky posi-
tion. The minimum count rate that a source must have in order
to be detected at a certain position is given by solving the equa-
tion:

− log(Pbgdim(≥ (bgdim + crpoisim × expim)) = L

wherebgdim andexpim are respectively, the total background
and mean exposure time within a circle of 5 pixel10 radius (the
effective size of the FOV used to calculate the parameters for
each object) at the source position.Crpoisim is the minimum
count rate that the object must have to be detected with a detec-
tion likelihoodL at the source position. TheSAS task that creates
the source lists we have used for our analysis,emldetect, per-
forms a maximum likelihood fit to the distribution of counts of

10 The images were created with a 4 arcsec pixel side.



S. Mateos et al.: High precision X-ray logN-logS distributions: implications for the obscured AGN population 21

Fig. A.1. Count rates given by theemldetect SAS task vs pure Poissonian count rates (in units of cts s−1). The best fit to the
observed distributions is also shown with a dashed line. Thecontours show the 90%, 75% and 50% level of peak intensity.
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the sources in the images convolved with the PSF of the tele-
scope at the source positions. Therefore, the count rate values
resulting fromemldetect are not Poissonian. However, as it is
shown in Appendix A of Carrera et al. (2007), there exists a lin-
ear relationship between the Poissonian count rates,crpoisim,
and those obtained byemldetect, RATE. The same linear re-
lationship (RATE = LI × crpoisim) is found in our data and
therefore we have used it to correct empirically from all non-
Poissonian effects introduced byemldetect to the values ofcr-
poisim (see Fig. A.1). The corrections we have applied to the
Poissonian count rates are listed in Table A.1. We note that al-
though the correction is small in all cases, it is nevertheless, very
significant.

Appendix B: Soft and hard 2XMM source counts

The source detection pipeline used to make the2XMM catalogue
was run on data from the three EPIC cameras (MOS1, MOS2
and pn) and on five different energy bands simultaneously: 0.2-
0.5 keV, 0.5-1 keV, 1-2 keV, 2-4.5 keV and 4.5-12 keV.

In principle it is possible to combine source parameters
(fluxes and detection likelihoods) from different energy bands in
order to obtain soft (combining2XMM energy bands 0.5-1 keV
and 1-2 keV) and hard (combining2XMM energy bands 2-4.5
keV and 4.5-12 keV) band parameters. Detection likelihoods
in the 0.5-2 keV (L23) and 2-12 keV (L45) energy bands are
obtained by combining the detection likelihoods in the individ-
ual energy bands via the recipe in theemldetect documenta-
tion. Firstemldetect detection likelihoods (Li) have to be con-
verted to probabilities (L′i): L23 = − log(1− P(ν/2,L′2 + L

′

3)),
whereP is the incomplete Gamma function andν is the number
of degrees of freedom:ν=4 for point sources andν=5 for ex-
tended sources. The valuesL′i are obtained solving the equation
Li = − log(1−P(ν/2,L′i)). In this caseν=3 for point sources and
ν=4 for extended sources. Fluxes are obtained adding the fluxes
from the individual energy bands.

Source count distributions derived from the combined2XMM
bands can be compared with those obtained from running the de-
tection algorithm directly on the 0.5-2 keV and 2-10 keV band
data. Fig. A.2 shows the result for the soft energy band and
Fig. A.3 for the hard energy band. Fluxes have been converted
to the 2-10 keV band using the scaling factors in Table 2.

We see that in the 0.5-2 keV band the distributions obtained
following the two approaches look very similar, the only dif-
ference being that the distribution from the combined band has
a marginally higher normalisation at bright fluxes and a flat-
ter slope at fluxes below the break. The latter is maybe due to
the fact that detection likelihoods obtained when combining the
2XMM bands are systematically lower than those obtained from
the single band analysis (≈2 units lower) so the combination of
the bands results in the loss of a small fraction of the sources
detected at the very faint limit of the observations (when a fixed
likelihood threshold is applied).

However important differences are seen in both the shape
and normalisation of the 2-12 keV source counts with respectto
the distribution obtained for the 2-10 keV band11 (see Fig. A.3).
The origin of the different results is probably due to a combina-
tion of various effects, such as different background levels and
different source properties. It is important to note that above 10

11 The effective area of the XMM-Newton detectors decreases rapidly
above∼5 keV and it is very low above∼10 keV, hence we expect that
the results in the 2-12 keV band will not differ significantly from those
in the 2-10 keV band.

keV the effective area of the EPIC-pn detector is very low, but
the background is high, so extending the energy band from 10
keV to 12 keV is expected to reduce the signal to noise of the
data.

Some previous results, mostly using data fromChandra are
based on a selection of sources in the 2-8 keV band, so we also
show the distribution obtained from our source detection inthis
band for comparison. The source count distribution in the 2-8
keV band seems to have a marginally flatter slope below the
break than the distribution obtained for sources detected in the
2-10 keV energy band.
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Fig. A.2. Comparison of the normalised differential (left) and integral (right) source count distributions for sources detected in the
0.5-2 keV band from our source detection (triangles) and forsources in the2XMM catalogue (circles). The source parameters for
2XMM sources were obtained from the combination of parameters from the2XMM energy bands 0.5-1 keV and 1-2 keV. Error bars
correspond to 1σ confidence.

Fig. A.3. Comparison of the normalised differential (left) and integral (right) source count distributions for sources detected in the
2-10 keV band from our source detection (triangles) and for sources from the2XMM catalogue (circles). Source parameters for2XMM
sources were obtained from the combination of parameters from the2XMM energy bands 2-4.5 keV and 4.5-12 keV. We also show
for comparison the source count distribution in the 2-8 keV band obtained from our source detection (stars). Error bars correspond
to 1σ confidence.


	Introduction
	Data processing and analysis
	The XMM-Newton observations
	Source detection
	Selection of sources
	Count rate to flux conversion factors
	Sky coverage calculation

	The source counts
	Calculation of source count distributions
	The broad band source counts
	The narrow band source counts
	Confusion, bias and other systematic effects in source counts
	Maximum likelihood fitting to the source counts
	Two power-law fitting model
	Three power-law fitting model

	Contribution to the cosmic X-ray background

	X-ray spectral properties of the sources
	Implications for CXRB synthesis models
	The contribution of stars and clusters
	Comparison with CXRB synthesis models

	Summary and Conclusions
	Empirical sensitivity maps calculation
	Soft and hard 2XMM source counts

