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We explore the possibility to improve the ΛCDM model at megaparsec scales by introducing
a scalar interaction which increases the mutual gravitational attraction of dark matter particles.
Using N-body simulations, we study the spatial distribution of dark matter particles and halos. We
measure the effect of modifications in the Newton’s gravity on properties of the two-point correlation
function, the dark matter power spectrum and the cumulative halo mass function. The results
look promising: the scalar interaction improves the agreement between theoretical predictions and
observations at megaparsec scales without spoiling the ΛCDM successes at larger scales.

PACS numbers: 98.80.-k, 11.25.-w, 95.35.+d, 98.65.Dx

I. INTRODUCTION

The ΛCDM model successfully passes almost all ob-
servational tests (see WAMP recent results [1]). It does,
however, experience some difficulties. They appear at
length scales below few megaparsecs. The model is less
effective in evacuating cosmic voids than the real Uni-
verse. It also shows high accretion rate of intergalactic
debris onto galaxies continuing to the present time, con-
trary to observational evidence. The very existence of
large galaxies like our Milky Way, with its spiral structure
intact, and suggesting lack of mergers in recent history
appears to be inconsistent with the ΛCDM simulations.
For an excellent discussion of the observational situation
and comparison with the ΛCDM model, see Refs. [2], [3]
and [4], and the references therein.

To improve the agreement of the standard model with
the observations at small scales without spoiling the suc-
cesses at large scales, G. Farrar and J. Peebles [5] have re-
cently proposed a modification of the gravitational force
acting between two dark matter (DM) particles (see also
Refs. ). The physical motivation for this model comes
from the string theory (cf. Ref. [6] on string gas cosmol-
ogy theory). These theoretical suggestions were followed
by the work of Nusser et al. [3], exploring the cosmologi-
cal implications with N-body simulations. Some perlim-
inary results on similiar scalar model was also obtained
by Rodŕıguez-Meza et al. [7, 8, 9]. Our own work, pre-
sented here should be regarded as the next step in this
line of research. Like Nusser et al., we study the two-
point correlation function and the statistical properties
of the mass distribution of the dark matter halos. To our
knowledge, for the first time in the literature, we also
study the power spectra for a set of scalar field parame-
ters. Although the number of particles in our simulations
is the same as in those used by Nusser et al. and our res-
olution is similar to their resolution, we consider a wider
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range of scalar model parameters. As a consequence, we
do resolve the power spectrum near the screening length
characteristic scale. Our results show a clear feature in
the power spectrum near a wavenumber, which is the
inverse of the screening length. The extra power seen
at higher wavenumbers is generated by the gravitational
field, enhanced by the scalar interaction. Nusser et al.
could not see a similar feature in their correlation func-
tion because the screening lengths they considered were
too close to the mean interparticle separation in their
simulations. Apart from this important difference, we
confirm their results. The scalar field generates lower
density in voids. It also suppresses low redshift accre-
tion.

This paper is organized as follows: In section II we
present the effective gravitational potential we use as an
approximation of the scalar field. In section III we de-
scribe our N-body simulations. Our results are presented
in Section IV. A brief summary and discussion appears
in section V.

II. THEORY

Following Refs. [10, 11], we consider DM particles as
strings. Their dynamics is defined by conventional grav-
ity as well as an additional attractive force, induced by
an exchange of a massless scalar. This force is well rep-
resented by a Yukawa-like potential with a characteristic
screening length dynamically generated by the presence
of the light particles coupled to scalar (see Ref. [5] for
details on dynamical screening mechanism). We consider
one species of strings as DM particles. The force between
two DM particles, each of mass m, arises from the po-
tential

Φ(r) = −
Gm

r
g(x) , (1)

with

g(x) = 1 + β e−x/rs . (2)
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Here G is Newton’s constant; r and x = r/a(t) are, re-
spectively, the particle separation vector in real space and
comoving coordinates; t is the cosmological time; a is the
scale factor, normalized to unity at present,

a(t0) = 1 . (3)

Here and below the subscript “0” denotes the present
epoch. The parameter rs is the screening length and β is
a measure of the relative strength of the scalar interaction
compared to conventional gravity. The screening length
rs is constant in comoving coordinates because of the
dynamical screening mechanism, specific to the class of
scalar fields considered here [10, 11].

Switching from the discrete particle picture to fluid
dynamics, we will now introduce the dark matter density
field, given by the expression

ρ(x, t) = 〈ρ〉 (1 + δ) , (4)

where 〈ρ(t)〉 is the ensemble average of the dark matter
density at time t, and δ(x, t) describes local deviations
from homogeneity. The structure formation is driven
only by the spatially fluctuating part of the gravitational
potential, φ(x, t), induced by the density fluctuation field
δ,

φ(x)

G〈ρ〉a2
= −

∫

d3x′δ(x′)

|x − x′|
g (|x − x′|) . (5)

The Fourier transform of this equation is

φk = −
3H2

0ΩM

2a

δk
k2

[

1 +
β

1 + (krs)−2

]

, (6)

where

φk ≡ (2π)−2/3

∫

φ(x) e−ik·x d3x (7)

and

δk ≡ (2π)−2/3

∫

δ(x) e−ik·x d3x (8)

are the Fourier transforms of φ(x), and δ(x), respectively;
k is the comoving wavevector, and the quantities

ΩM ≡ 8πG 〈ρ〉0 /3H2
0 (9)

and H0 are, respectively, the present values of the dime-
sionless mean dark matter density and the Hubble pa-
rameter. From now on, we will also use the symbols
h and ΩΛ, denoting the dimensionless H0, expressed in
units of 100 km s−1Mpc−1, and the cosmological constant
contribution to the present mean density.

Note that when β = 0 or x ≫ rs, equations (5) and
(6) become identical with conventional gravity [12]. In-
deed, consider the fractional deviation from the Newto-
nian gravitational potential,

∆φk

φk

≡
φk − φN

k

φN
k

. (10)

Throughout this paper, the label ’Newton’, and the sub-
script ’N’ refer to the ΛCDM cosmology with the con-
ventional Newtonian gravity. Equation (6) gives

∆φk

φk

=
β

1 + (krs)−2
. (11)

This is the Fourier image of the spatial decline of the
Yukawa potential: in the limit krs → 0, the above ex-
pression vanishes. In the opposite limit, the fractional
deviation from Newtonian gravity reaches a finite value,

∆φk/φk → β for krs ≫ 1, (12)

∆φk/φk → 0 for krs ≪ 1 . (13)

We consider values of β of order unity and screening
lengths of order of few megaparsecs or smaller. There-
fore, we can expect that our model predictions differ from
the ΛCDM cosmology only on scales ∼ 1h−1 Mpc, while
on larger scales these two models are indistinguishable,
unlike other modifications of gravity, considered recently,
for example the DGP model [13], f(R) theories [14] ,mod-
ifications of the Newtionan gravity on megaparsec scales
[15, 16, 17, 18] or MONDian cosmological simulations
[19].

Here we study only the distribution of the dynami-
cally dominant dark matter particles. We will study the
baryon distribution as well in our next paper.

III. SIMULATIONS

In this section we describe our numerical experiments.

A. Initial Conditions

To set up the initial conditions, we have to define the
power spectrum of the dark matter density fluctuations,

P (k) =
〈

|δk|
2
〉

. (14)

We use a power spectrum, derived from the cmbfast code
by Seljak & Zaldarriaga [20] with cosmological parame-
ters h = 0.7, ΩM = 0.3, ΩΛ = 0.7 and σ8 = 0.8. The
last in this set of parameters is the present value of the
root-mean-square density contrast of dark matter spatial
fluctuations within a 8 h−1 Mpc sphere. This is the con-
ventional normalization parameter and a measure of the
degree of inhomogeneity of the dark matter distribution.

The resulting power spectrum, together with the
PMcode by Klypin & Holtzman [21] is used to displace
1283 particles from their regular lattice positions, fol-
lowing the Zel’dovich approximation (see Ref. [22] for
details). The number of individual simulations for each
set of model parameters has to be large enough to al-
low a decent average over simulation-to-simulation phase
fluctuations. We decided that for our purposes “a large
enough number” = 5 to 10, depending on the size of the
simulation box.
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B. The code

We use the open source code AMIGA (Adaptive Mesh In-

vestigations of Galaxy Assembly) by Knebe, Green, Gill
& Saar which is the successor of the MLAPM code [23].
AMIGA is a Particle Mesh code with implementation of
the Adaptive Mesh Refinements(AMR) technique to ob-
tain high force resolution. We have turned off the AMR
part of the code leaving only the pure PM kernel, reduc-
ing the simulation time at the expense of the force reso-
lution. To accommodate for the poor force resolution we
have divided our simulations into two sets.

The first set of simulations was used to study the power
spectrum and the spatial correlation function of the dark
matter density fluctuations. The simulation box in this
series of simulations has a width 200h−1 Mpc, allowing
a proper treatment of the fundamental mode of density
perturbations, which remains in the linear regime at red-
shift z = 0.

In the second set of simulations we have used a box of
width 16h−1 Mpc. These simulations are used to study
the cumulative halo mass function and the redshift evolu-
tion of halo abundances. This approach provides a better
force and mass resolution, but due to smallnes of the box
we lack some power in large-scales. For a discussion of
the influence of the box-size on the dynamics and statis-
tics of simulations, see Ref. [24, 25].

In each experiment we save the particle positions and
velocities at redshifts 5; 2; 1; 0.5; 0.3; 0.2; 0.1; 0.05, and
the reshift of the final output, z = 0. This archive is
used to study the evolution of the dark matter distribu-
tion with reshift. For an experiment, involving Np dark
matter particles in a box of size L at present, the particle
mass, mp, is given by

mp = 〈ρ〉 (L3/Np). (15)

For our simulations, Np = 1283. The other important
simulation parameters are: the force resolution ε, the
interparticle separation,

ℓ = (L3/Np)
1/3 , (16)

and the Nyquist wavenumber,

kNyq = π/ℓ . (17)

We list the above parameters, evaluated for the large
and the small box, in Table I.

C. The Green’s Function

For conventional gravity in Fourier space, the discrete
Poisson equation can be written as

φk =
3H2

0ΩM

2a
δk Gk , (18)

where Gk is the Green’s function. We use the seven-point
finite-difference approximation to the Green’s function to
solve the Poisson’s equation in a cubic box with periodic
boundary conditions. It is defined for a discrete set of
arguments,

q = {qj} = k · L/(2π) , (19)

where L is the present size of the comoving simulation
box. The subscripts j = 1, 2 or 3 denote the three di-
mensions in k-space. The number of grid cells in each
dimension is N (256 in our simulations), so the cell num-
bers assume integer values in the range

qj = 1, 2, . . . ,N . (20)

Each integer triple defines the grid point, at which the
Green’s function is evaluated:

GN
q = −π



N 2

3
∑

j=1

sin2(πqj/N )





−1

. (21)

Using the equation. (6), we modify Green’s function to
get the proper potential for our model of scalar interac-
tions:

Gscalar
k = GN

k

(

1 +
β

1 + (krs)−2

)

. (22)

The AMIGA code uses equation (18) and the fast Fourier
transform technique to evaluate the gravitational poten-
tial at grid points. Then particle positions and momenta
are updated in the standard way for PM algorithms.

D. Particles and Halos

To identify collapsed objects from now on called ’ha-
los’ we have used AMIGA’s Halo Finder (AHF) which is the
most recent version of MHF halo finder by Gill, Knebe
& Gibson [26]. The AHF uses AMR to find halo centers,
then it probes the halo density profile around each center
in nested radial bins until the spatially averaged density
contrast reaches the virial overdensity, ∆. At z = 0, in a
ΛCDM universe [27], ∆ = 340. Given our mass resolu-
tion in the bigger box, we can expect to follow the assem-
bly of halos, corresponding to clusters and superclusters,
and study the statistics of clustering at large scales. Sim-
ulations in the small box should be good enough to in-
vestigate the assembly of much less massive objects, like
halos of clusters, galaxies and groups of galaxies.

It is important to bear in mind that at small scales we
are limited by poor force resolution. The smallest size of
gravitationally bound objects which can form in our box
is 2ε (see Table 1 and Ref. [28]). We allso suffer from the
well-known problem of overmerging described in great
detail by Klypin et al. in Ref. [29]. As a consequence, our
simulations underestimate low-mass object abundances.
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FIG. 1: Slices cut through centers of simulation boxes of width 200h−1 Mpc at z = 0. The plots show particle positions, x, in
the (x1, x2) plane. Each slice has dimensions 200 × 200(h−1 Mpc)2 in this plane and a thickness of 10h−1 Mpc along the x3

coordinate axis.

TABLE I: Simulation parameters. L is the box size [h−1 Mpc]; z is the initial redshift; mp is the mass of a single particle
[h−1MS ]; ε is the force resolution [h−1 kpc]; ℓ is the mean interparticle separation [h−1 Mpc]; kNyq is the Nyquist wavenumber
[hMpc−1]; N.R. is the number of realizations for each pair of rs and β ; rs is the screening length [h−1 Mpc]; β is the relative
strength of the scalar force.

L z mp ε ℓ kNyq N.R. rs β

200 30 3.18 · 1011 800 1.563 2.01 10 1; 2; 5 −0.5; 0; 0.2; 0.5; 0.7; 1
16 40 1.60 · 108 70 0.125 25.1 5 1; 2 0; 0.2; 0.5; 1

IV. RESULTS

In this section we present the results obtained in our
numerical experiments. We provide maps of the spatial
distribution of dark matter particles as well as clumps of
particles, called halos. We also study different statistical
measures of clustering, such as the power spectrum, the
two-point correlation function and the cumulative halo
mass function with and without the scalar interaction.

A. The Clustering Pattern

Figure 1 shows the final particle distribution in
10h−1 Mpc slices, cut through the centers of 200h−1 Mpc
simulation boxes. For clarity each slice shows only 1/10

of the total number of particles, selected at random [40]

The frame, labeled ’Newton’ in Figure 1 assumes β =
0, while the remaining frames show particle distributions
for a set of different β parameters and a fixed screening
length, rs = 2h−1 Mpc. As a test, we also consider ’anti-
gravity’ with β = −0.5. All of the frames in Figure 1
have evolved from the same initial state, with identical
amplitudes and phases of density fluctuations, set up at
z = 30.

At first sight, modified gravity simulations look sim-
ilar to the Newtonian case. The filaments, voids and
high-density peaks occupy similar positions in the frames.
However, a close inspection shows that with increasing
β, the voids appear increasingly more empty. This phe-
nomenon is seen more clearly in Figure 2, where we show
2h−1 Mpc slices, cut through the centers of our smaller
simulation boxes (L = 16h−1 Mpc).
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FIG. 2: Similar results for the smaller box, L = 16h−1 Mpc.
The thickness of each slice is 2h−1 Mpc.

Figure 2 also shows that the scalar forces enhance the
accretion of matter, producing more massive halos at
small scales. Pancake-like structures, seen in the β = 0
frame, are more homogeneous than their counterparts in
frames with β > 0, which show substructure. The frag-
mentation into subsystems of smaller halos is increasingly
more pronounced, with increasing values of β. Quan-
titatively, we can expect an increase of the amplitude
of the power spectrum at small scales, corresponding
to wavenumbers k & r−1

s , and an opposite effect for
β = −0.5, when the pancakes appear even more homo-
geneous than those generated by Newtonian gravity.

B. The Power Spectrum

The power spectrum is a convenient measure of the
strength of dark matter clustering. It is well constrained
by redshift surveys of galaxies, such as the SDSS catalog
[41]. In the longwave tail, corresponding to wavenumbers

0.01 Mpc−1h ≤ k ≤ 0.3 Mpc−1h , (23)

this survey provides a reliable estimate of P (k) [30]. In
this range, the ΛCDM power spectrum agrees well with
observations. This can be used to constrain scalar field
models.

In Figure 3 we plot the final power spectra, obtained
from the simulations with L = 200h−1 Mpc. The top pair
of plots shows P (k) and the ratio P/PN for scalar forces
with fixed β = 0.5 and a varying screening length. The
pair of plots below was obtained from simulations with a
fixed screening length, rs = 1h−1 Mpc, and a varying β.
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FIG. 3: Power spectra from simulations with L =
200h−1 Mpc. Vertical dashed lines show the Nyquist
wavenumber. We also plot the ratio of the scalar interac-
tion induced P (k) to its Newtonian counterpart, PN(k). For
all of the upper pair of plots β = 1, while the rs paremeter
is allowed to vary. For the bottom pair rs = 1h−1 Mpc is
fixed, while the value of β changes from −0.5 to 1. Each
curve was obtained by averaging over 10 simulation realiza-
tions with different initial phases.

These plots show that the rate of growth of density
perturbations is more sensitive to the range of the scalar
field, rs, than to its strength, as long as β > 0. The scalar
force increases the rate of growth of density fluctuations
on comoving scales, smaller than rs and wavenumbers
k & r−1

s . As expected, there is an opposite effect for
β = −0.5: the rate of growth of density perturbations at
small scales is reduced.

We describe the deviations from the Newtonian power
spectrum at a given wavenumber by the parameter

∆P

P
≡

P − PN

PN

. (24)

These deviations remain negligible on large scales for all
of the considered models with one exception: the model
with rs = 5h−1 Mpc. For this model, ∆P/P is signif-
icant on all scales present in simulation box, including
the SDSS wavenumber range. Therefore all scalar field
models with rs ≥ 5h−1 Mpc do not appear promising.
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FIG. 4: Power spectra plots similar to those in figure 3,
obtained from a set of simulations, using the smaller box,
L = 16h−1 Mpc. Each curve shown here is an average over 5
realizationrealizations with different initial phases.

To assign statistical significance to their failure to repro-
duce the real Universe, it is necessary to create a mock
SDSS survey and reproduce the power spectrum estima-
tor, used by the observers. We are planning to run appro-
priate Monte Carlo simulations and address this problem
in greater detail in a forthcoming paper.

The model with rs = 5h−1 Mpc may not be suc-
cessful in reproducing the real Universe, but it is ex-
tremely useful in understanding the physics of the scalar
field because this value of the screening length is much
larger than the interparticle separation in the big box,
ℓ ≈ 1.6h−1 Mpc. Therefore, we can resolve the differ-
ence between purely Newtonian gravity and the scalar
field. Indeed, for k = 1/rs = 0.2 , and β = 0.5 , we get
∆P/P = 0.5 (see Figure 3), and an increasing ∆P/P
for larger wavenumbers. The gravitational attraction,
enhanced by the scalar field generates the extra power
in the plot. To look for a similar jump in amplitude for
smaller values of rs , we need a better resolution. So, we
have to turn to the simulations in the smaller box, where
ℓ = 125h−1 kpc. And we do find a similar feature: for
β = 0.5 and rs = 1h−1 Mpc , we get ∆P/P = 0.5 at
k = 1/rs = 1hMpc−1 (see Figure 4)!

The decline of PN/P with decreasing wavenumber in
all considered models is a natural consequence of the
presence of the Yukawa cutoff, reflected in the equation
(11).

In the opposite limit, with growing wavenumbers, all
power spectra in Figure 3 seem to misbehave. Equa-
tion (13) suggests that all PN/P curves should flatten for
large wavenumbers, k ≫ 1/rs. Instead, we see a decline.
Since this behavior is in disagreement with gravitational
dynamics, and since it appears in the range k & kNyq,
we can expect that the decline is an artifact of the dis-
crete nature of the simulation. If this is indeed the case,
then in the simulation in the smaller box, this artifact
should move to higher wavenumbers. This simulation
has a smaller interparticle separation and a better force
resolution. Hence, for wavenumbers in the range

r−1
s . k . kNyq , (25)

we should see a flat section of the P/PN curve, followed
by a decline for k & kNyq . This is exactly what happens
in Figure 4. The PN/P ratio rises with k until it reaches
its maximum, followed by a plateau, and then by decline
for wavenumbers above the Nyquist limit.

C. The Correlation Function

Another convenient measure of the strength of cluster-
ing is the spatial two-point correlation function,

ξ (|x − x′|, t) = 〈 δ(x, t)δ(x′, t) 〉 . (26)

It is related to the power spectrum by the Fourier trans-
form,

ξ (x) = (2π)−3

∫

P (k) eik·x d3k . (27)

Under ideal conditions, when the power spectrum is de-
termined in the entire wavenumber range from zero to
infinity, P and ξ are equivalent to each other. How-
ever, measurements from simulations or galaxy redshift
surveys provide only noisy estimates of P (k) or ξ(x) for
limited ranges of k and x. Therefore, in numerical exper-
iments, it is safer to estimate ξ(x) directly from the par-
ticle positions in the simulation output, using the expres-
sion (26), or its discrete version, based on the probability
density of finding a pair of particles in a separation range
from x to x + dx (see Ref. [12]). The results presented
in this section are therefore not a mere Fourier transform
of the results discussed in two previous subsections. Fol-
lowing the approach we used to study power spectrum
deviations from the Newtonian case, here we introduce
a similar measure of the deviations of the scalar-induced
correlation function from its Newtonian cousin, ξN. This
is the quantity

∆ξ

ξ
≡

ξ − ξN

ξN

. (28)
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FIG. 5: The correlation function for pairs of DM particles at redshift z = 1 (bottom frames) and z = 0 (top frames). The
width of the simulation box is 200h−1 Mpc. All plots were averaged over 10 simulations. To avoid overcrowding, we show one
standard deviation error bars for the Newtonian ξ(x) only. The error bars for the scalar induced correlation functions are
similar. Their size is determined mostly by the number of realizations and by the size of the box. Both these quantities are
identical for all simulations presented here.

The four frames in Figure 5 show two-point correlation
functions for DM particles in the 200h−1 Mpc box. The
top two frames show simulation outputs at z = 0, while
the bottom frames refer to an earlier epoch, z = 1. For
clarity, we show one standard deviation errors only for
the Newtonian case. The error bars for the remaining
models are similar.

The large amplitude in ∆ξ/ξ at separations x .
1h−1 Mpc is probably an artifact because the separations
involved are smaller than ℓ = 1.56h−1 Mpc. Nusser et
al. [3] have discovered a similar shoulder in ξ(x) in their
simulations and they provided an interpretation similar
to ours. They have also pointed out that the correlation
function in their simulations does not possess a feature
at x = rs “despite the scalar force attraction at smaller
scales“. We believe that the source of this problem is
poor resolution, not dynamics. The range of screening
lengths they consider is uncomfortably close to their in-
terparticle separation. Our correlation functions, plotted
in Figure 5 suffer from the same problem. As we have
shown in our discussion of the properties of simulated
power spectra, this problem can be avoided by improv-
ing the resolution. For an appropriate choice of the box

size and the screening length, when rs > 1/kNyq , the
feature at k = 1/rs can be resolved. We therefore have
no doubt - the feature is there. To rediscover for ξ(x)
what we have already seen for P (k) , we only need higher
resolution simulations, like those in Ref.[31], but with a
modified Green’s function.

Despite the modest resolution of the present results, we
believe that qualitatively, the stratification of the corre-
lation functions with respect to rs and β, seen in Figure
5 reflect the true dynamics. Note that for β < 0 , when
gravity is weaker than Newtonian, we get ∆ξ/ξ < 0 ,
which is dynamically reasonable.

Our results also differ from those of Nusser et al. at
larger separations, x > 3h−1 Mpc, where according to
their Figure 7, ∆ξ/ξ < 0. This does not happen in
our simulations unless β < 0. This discrepancy, however,
becomes statistically insignificant if we use our error bars
for guidance (Nusser et al. do not provide error bars for
their plots).

As we already mentioned, for separations x > rs, ∆ξ/ξ
is consistent with zero for all models considered here.
This is good news, since the observed ξ(x) at large sep-
arations agrees well with the ΛCDM model.
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FIG. 6: Positions of halo centers obtained from particular
simulation output. The size of the box is L = 16h−1 Mpc.
To avoid overcrowding, we show only the halos with centers
in the range 0 ≤ x3 ≤ 8h−1 Mpc. Halos with masses greater
than 1.15·1012M⊙ appear as circles. Their diameters are pro-
portional to their masses. Less massive halos are represented
by dots. The top left frame shows the standard gravity case.
The halo distribution in all of the remaining frames is plot-
ted for rs = 1h−1 Mpc and three different values of β. For
reference, above the upper frame on the left we show a circle,
representing a halo with a mass of 4 · 1012M⊙.

Last but not least, it is worth noticing that in Figure
5, ∆ξ/ξ is higher at z = 1 than at z = 0. The growth
of Newtonian ξ is retarded with respect to the scalar-
induced ξ at high redshift. Later, ξN ’catches up’ with the
scalar ξ. As a consequence, ∆ξ/ξ is reduced. A possible
explanation for this phenomenon is that in the presence
of scalar forces, rapid matter accretion and formation
of virialised objects occurs at earlier epochs than in the
standard gravity model. This interpretation is supported
by our direct analysis of the process of halo formation,
presented below.

D. Forming Halos in a Small Box

In this section we study the impact of modified gravity
on the halo formation process. To identify halos, we ap-
ply the halo finder program (the AHF, introduced earlier)
to output snapshots from the 16h−1 Mpc simulations. We
study all halos with more than 20 particles, hence our
minimal halo mass is 3.2 · 109h−1M⊙.
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FIG. 7: Maps of the halo distribution, derived from the same
simulations as those shown in Figure 6, but for halos with
masses, smaller than M = 2 · 1010h−1M⊙. Even smaller halos
with masses M ≤ m = 7 · 109h−1M⊙ are represented by dots.
Those with masses in the range m < M ≤ M appear as circles.

1. High Mass Halos

In Figure 6 we plot the present comoving positions
x = (x1, x2, x3) of halo centers in the (x1, x2) coordi-
nate plane of the simulation box. To avoid overcrowding,
we consider only halo centers which satisfy the condi-
tion 0 ≤ x3 ≤ 8h−1 Mpc. Halos with masses exceeding
M = 1.15 · 1012h−1M⊙ are plotted as circles with diame-
ters proportional to halo masses. For reference, the size
of a circle, representing a halo with a mass of 4 · 1012M⊙

is shown in Figure 6, above the upper left frame. The
halos with masses M < M are plotted as dots. It is inter-
esting to note that as expected, the scalar interactions
enhance the ability of the larger halos to accrete matter
and become even larger. This effect is particularly strik-
ing when we compare the upper left, Newtonian frame,
with the lower right frame where rs = 1h−1 Mpc and
β = 1. The halos seen in the rectangle

6.0h−1 Mpc < x1 < 10h−1 Mpc , (29)

2.0h−1 Mpc < x2 < 4.0h−1 Mpc , (30)

at lower right have already acreted all debris in their
vicinity at earlier times, while in the Newtonian frame
the accretion process is still going on. At the same time,
the small-scale mass redistribution process does not af-
fect the large-scale clustering: the cosmic web is clearly
visible in all of the frames. An example of this is the
cosmic wall, extending diagonally across the simulation
box from the origin of the coordinate system, (0, 0), to
(16h−1 Mpc, 12h−1 Mpc).
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2. Low Mass Halos

In this section we look at the low mass end of the
halo population. Our Figures 7 and 6 are complemen-
tary to each other. Both are derived from the same
simulation, except this time we show only halos with
masses M ≤ m = 2 · 1010h−1M⊙ . The circles show halos
with masses 7 · 109h−1M⊙ ≤ M ≤ m. The remaining
halos, with masses M ≤ 7 · 109h−1M⊙, are plotted as
dots. As before, the diameters of the circles are propor-
tional to halo masses. The influence of the scalar field
is particularly well pronounced when we compare frames
with scalar field switched off (β = 0, upper left) and on
(β = 1, lower right). The low abundance of light halos,
seen here, is consistent with the high abundance of heavy
halos in Figure 6. Both Figures show the rapid accretion
and massive halo formation at high redshift, induced by
the scalar force.

3. The Cumulative Mass Function

For a more quantitative description of the halo forma-
tion process, we will now introduce the cumulative mass
function (cmf), defined as the mean number density of
halos with masses greater than the argument mass,

n(> M) =
NH(> M)

L3
, (31)

where NH(> M) is the number of halos with masses
greater than M , identified within the a comoving volume
L3. The mean is obtained by averaging NH(> M) over
five simulations. Later we will also consider the mean
number density of halos below a certain mass threshold,
n(< M) . The sum of these two densities, multiplied by
L3 gives the mean number of halos of all masses.

In Figure 8 we show the redshift evolution of the cmf
for several models. The comparison of the Newtonian
cmf with its scalar counterparts confirms the results ob-
tained by plotting the positions of halos with different
masses. All scalar models show enhanced abundances of
high mass halos and reduced abundances of low mass ha-
los at z = 0. For rs = 2h−1 Mpc, the low mass tail of
the cmf drops by almost an order of magnitude below the
Newtonian cmf. To show this in greater detail, we plot
a magnified picture of low mass tails of all histograms
at z = 0 in Figure 9. The reduction of low mass halo
abundances is encouraging in the light of the missing-
satellites problem [32, 33, 34]. The upper left frame in
Figure 8 shows another interesting property of the models
we consider here. For halo masses in the galactic range,
1011M⊙ to 1012M⊙ , the scalar-induced halo abundances
agree with the Newtonian predictions. This is an advan-
tage because the galactic number densities predicted by
the ΛCDM model agree with observations [35].

Another interesting phenomenon is the overproduc-
tion high mass halos in the cluster mass range, M ∼

1013h−1M⊙. The cluster abundance at z = 0 is rela-
tively well known from observations and it provides a
strong cosmological test. It has been used in the past to
exclude the once popular Einstein-de Sitter CDM model
(Peebles et al. 1989). To decide how deadly this may
become for scalar interaction models, we need a larger
box to sample the cluster population properly and more
particles to keep a reasonable force resolution. Clusters
are rare objects. In a 16h−1 Mpc box, at the cluster
mass range, we are dominated by small-number statistics.
The mean distance between a pair of ΛCDM clusters (as
well as real clusters in galaxy surveys) is ∼ 50h−1 Mpc.
Nusser et al., who used a 50h−1 Mpc box, found only a
small excess of the scalar-induced cluster halo abundance
over the Newtonian case. We plan to study this problem,
using higher resolution simulations in the nearest future.

Apart from plotting n(> M) as a function of M
for fixed redshifts, it is also interesting to fix the mass
and see how the cmf evolves with z. In Figure 10 we
present the redshift evolution of two measures of halo
abundances, n(≤ 1010h−1M⊙), shown on the left, and
n(≥ 1011h−1M⊙), shown on the right.

Note that for all scalar models, the low mass halo abun-
dances are higher than in the Newtonian case at high
redshift. This happens because the enhanced gravity at
small scales speeds up the halo formation process. For
the same reason, these abundances drop below the New-
tonian values with decreasing redshift. The light halos
become extinct because they merge with larger mass ha-
los. This process is responsible for evacuating the voids
more effectively than conventional Newtonian forces.

On the high mass end, we see two interesting effects:
First, because of faster accretion, the higher mass halos

reach abundances, close to their final values at relatively
high redshifts. Later, their number densities change less
rapidly with reshift than the Newtonian halo number
density. This is particularly prominent in the right frame
at the bottom of Figure 10. Such a picture is consistent
with the observational evidence for an uneventful recent
past of galaxies like our Milky Way and other nearby
galaxies, allowing merger events only at high reshifts
[36, 37, 38]. In contrast, for the Newtonian model, we
see rapid growth of n(≥ 1011h−1M⊙) with decreasing
redshift, suggesting that mergers continue to the present
day.

The second effect, particularly pronounced in the right
frame at the bottom of Figure 10, is the convergence of
all of the n(> M) curves at z = 0. Since our mass
threshhold for this set of cumulative mass functions is in
the galactic mass range, this convergence is a promising
feature of scalar models, because the ΛCDM abundance
of galaxies agrees with observations [39].

E. The most massive halo

We finish by showing the impact of attractive scalar
forces on the properties of most massive particle concen-
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FIG. 8: The redshift evolution of the cumulative halo mass functions in simulations with L = 16h−1 Mpc . We show the
Newtonian case and two scalar models with β = 1 and two different values of rs . Each curve was obtained by averaging 5
simulations with different initial phases.

TABLE II: Averaged properties of the most massive halo found in a simulation box of width 16h−1 Mpc. Gravity models are
parameterized by β and rs in h−1 Mpc; M is the halo mass; σv is the velocity dispersion; rvir is the virial radius. The first
row, with the vanishing β and rs, represents ΛCDM cosmology with Newton’s gravity.

β rs [h−1 Mpc] M/1013M⊙ σv [kms−1] rvir [h−1 kpc]
0.0 0.0 3.4 ± 2.2 494 ± 110 630 ± 135

0.2 1.0 3.6 ± 2.5 565 ± 161 644 ± 138
0.2 2.0 4.5 ± 2.4 604 ± 102 702 ± 125

0.5 1.0 4.0 ± 2.4 646 ± 118 673 ± 130
0.5 2.0 5.2 ± 2.6 732 ± 113 739 ± 119

1.0 1.0 4.7 ± 2.8 780 ± 162 706 ± 135
1.0 2.0 7.3 ± 3.7 984 ± 180 845 ± 137
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FIG. 9: A magnified section of Figure 8, taken from the z = 0
frame, showing low-mass tails of cumulative mass functions.

trations in the box. In table II we list average properties
of the most massive halo in our 16h−1 Mpc simulations.
These results were obtained by averaging over five real-
izations with different initial phases for each pair of β
and rs. The mass, velocity dispersion and the virial ra-
dius of the most massive member of the halo population
increase with increasing rs and β, as expected.

V. SUMMARY

We have performed N-body simulations of large scale
structure formation in a ΛCDM background, with a New-

tonian potential, modified by the scalar interaction. We
have studied the spatial distribution of dark matter parti-
cles and halos. We also investigated statistical measures
of clustering, such as the two-point correlation function,
the power spectrum, and the cumulative halo mass func-
tion. We find that the scalar interaction removes de-
bris from cosmic voids more effectively than the stan-
dard ΛCDM model. It also suppresses late accretion and
merger activity; halo formation processes move to higher
redshifts. These findings agree very well with earlier work
[3]. For the first time in the literature, we have also shown
the effect of scalar forces on the evolution of the power
spectrum. We have resolved the boundary between pure
Newtonian dynamics, and enhanced power, generated by
the scalar interactions.

In the near future we plan to run higher resolution sim-
ulations. We will follow the evolution of the baryon spa-
tial distribution, as well as the dark matter. We will also
consider the three-point correlation function and bispec-
trum - statistics of higher order, than those considered
here. Finally we expect to constrain the scalar field pa-
rameter range by direct comparisons of model predictions
with observations.
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