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Abstract. The existence of cusps on non-periodic strings ending on D-branes is

demonstrated and the conditions, for which such cusps are generic, are derived. The

dynamics of F-, D-string and FD-string junctions are investigated. It is shown that

pairs of FD-string junctions, such as would form after intercommutations of F- and D-

strings, generically contain cusps. This new feature of cosmic superstrings opens up the

possibility of extra channels of energy loss from a string network. The phenomenology

of cusps on such cosmic superstring networks is compared to that of cusps formed on

networks of their field theory analogues, the standard cosmic strings.

PACS numbers: 04.60.Kz, 04.60.Pp, 98.80.Qc

1. Introduction

Fundamental (F) strings and Dirichlet branes with one non-compact spatial dimension

(D-strings) are generically formed [1, 2, 3, 4] at the end of brane inflation [5] within

the context of string inspired cosmological models. Such strings, known as cosmic

superstrings, are of cosmological size and could play the rôle of cosmic strings [6, 7],

false vacuum remnants formed generically at the end of hybrid inflation within Grand

Unified Theories [8, 9]. Cosmic superstrings have gained a lot of interest, particularly

since it is believed that they may be observed in the sky, providing both a means of

testing string theory and a hint for a physically motivated inflationary model (for a

recent reviews, see e.g. Ref. [10, 11, 12]).

The most significant difference between cosmic superstrings and the field theory

cosmic strings we are more familiar with, is the existence of three string junctions,

the presence of which could strongly effect the dynamics of the string network.

Understanding these new dynamical effects is critical if there is to be any hope

of differentiating cosmic superstrings from their solitonic analogues. A number of

analytical [13, 14, 15] and numerical [16, 17, 18, 19, 20, 21, 22] studies have addressed

http://lanl.arXiv.org/abs/0809.2263v1
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cosmic superstring dynamics. We note that, in principle, cosmic superstring dynamics

ought to be studied using the Dirac-Born-Infeld action, the low-energy effective action

for many varieties of strings arising in the context of string theory.

In what follows, we investigate (generic) string solutions ending on parallel Dirichlet

branes as a pedagogical example of the effects possible at a three string junction. We

then look at the dynamics of a junction made up of an F-string, a D-string, and an

FD-string, which are expected to form through intercommuting of initial configurations

composed from F- and D-string networks. We show that cusps are generic features for

such strings, opening up a new energy loss mechanism for the network, in addition to the

formation and subsequent decay of closed loops and the formation of bound states [22].

Studies of the phenomenological implications of cosmic superstrings, particularly the

gravitational [23, 24, 25, 21, 26] and Ramond-Ramond [16, 27] radiation emitted from

cosmic superstrings — predominantly from cusps and to some extent from kinks —

are then justified. Some of the phenomenological consequences of cosmic superstring

dynamics are discussed here.

2. DBI string ending on parallel D-branes

The world-history of a string can be represented by its world-sheet

xµ = xµ(τ, σ);

a two-dimensional surface in the four-dimensional space-time. The world-sheet’s

coordinates τ, σ are arbitrary time-like and space-like parameters, respectively. A metric

for the two-dimensional world-sheet is induced by pulling-back the space-time metric

γαβ = gµνx
µ
,αxν

,β ,

where gµν denotes the four-dimensional metric.

Consider a Dirac-Born-Infeld (DBI) string in a Minkowski background, with end-

points that are constrained to lie on two stationary, parallel and flat Dn-branes, where

n is the spatial dimensionality of the branes. Without loss of generality, we choose

Cartesian space-time coordinates in which the separation vector between the two branes

lies in the z-direction.

The action for the DBI string is

S = −µ

∫
dτdσ

√
−|γαβ + λFαβ| , (1)

where µ is the string tension parameter and λ = 2πα′. For a (p, q)-string (a bound state

of p coincident F-strings and q coincident D-strings) the string tension is µ = |q|/(gsλ),

where gs is the perturbative string coupling. The electromagnetic field strength, Fαβ ,

associated with the U(1) gauge field Aα on the world-sheet, reads

Fαβ = ∂αAβ − ∂βAα .
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The DBI action describes the low-energy dynamics of certain classical string-like objects

found in string theory.

Due to the re-parametrisation invariance of the string world-sheet xµ(τ, σ), we are

free to impose the conformal gauge condition:

ẋ2 + x′2 = 0 and ẋ · x′ = 0 , (2)

where ˙≡ ∂/∂τ and ′ ≡ ∂/∂σ. In this gauge, the DBI equation of motion for the string

world-sheet reads [15]

ẍ − x′′ = 0 . (3)

The electric flux along the string,

p ≡
∂L

∂Fτσ

=
λ2µFτσ√

−x′2ẋ2 − λ2Fτσ
2

, (4)

is a conserved quantity; in the (p, q)-string picture it corresponds to the number of

coincident F-strings that make up the bound state.

The conformal gauge condition allows for a residual gauge symmetry, which can

be fixed in a manner that is consistent with the equations of motion by imposing the

temporal gauge condition x0 ≡ t = τ . Once we have totally fixed the world-sheet

parametrisation in this way, the equation of motion reads

ẍ − x′′ = 0 , (5)

with gauge constraints

ẋ2 + x′2 = 1 and ẋ · x′ = 0 , (6)

where xµ(t, σ) = (t,x(t, σ)).

The general solution of the equation of motion, Eq. (5), is

x =
1

2
[a(t − σ) + b(t + σ)] , (7)

where a(t − σ) and b(t + σ) are arbitrary vector-valued functions. However, the gauge

constraints, Eq. (6), impose the additional (necessary and sufficient) restrictions

|a′|2 = |b′|2 = 1 , (8)

where primes (
′

) here refer to total derivative of these single-variable functions.

Therefore, prior to taking boundary conditions into account, a DBI string solution may

be completely specified by the arbitrary choice of two parametrised curves on the unit

sphere.

Let us consider what additional conditions are imposed by the boundary conditions

for the current problem – that of a DBI string ending on two stationary and parallel Dn-

branes. Without loss of generality, we choose the parametrisation of the world-sheet so

that at time t the end-point of the string attached to the upper brane (towards the +z-

direction) is at σ = 0, whilst the end-point of the string attached to the lower brane is at

σ = L(t). Note that L(t) denotes the parameter length of the string (as opposed to its

physical length). When the string has time-independent boundary conditions (as is the
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case considered here), the parameter length, L(t), is assumed to be time-independent.

However, for more general configurations (which we consider later on), it is important

to look for solutions where L(t) is not necessarily constant. Thus, we do not make here

the (usual) assumption that L̇(t) = 0. Certainly, when we analyse a time-independent

brane configuration, we recover the expected result, namely that the parameter length

of the string remains constant.

It turns out to be convenient to decompose all spatial three-vectors (e.g., v) into a

part parallel to the D-branes and one perpendicular to them:

v = v‖ + v⊥ . (9)

This decomposition (which is clearly unique), allows us to distinguish between the

boundary conditions for Neumann directions (parallel to the branes) and the boundary

conditions for Dirichlet directions (perpendicular to the branes).

On the one hand, the fact that the end-points of the string are constrained to the

two D-branes implies, in Dirichlet directions, that

ẋ⊥(t, 0) = 0 and ẋ⊥(t, L(t)) + L̇(t)x′
⊥(t, L(t)) = 0 , (10)

whilst in Neumann directions, that

x′
‖(t, 0) = 0 and x′

‖(t, L(t)) = 0 . (11)

If we consider what these boundary conditions mean in terms of a and b, we find that

the boundary conditions at the σ = 0 end of the string lead to

a′
‖(t) = b′

‖(t) , (12)

a′
⊥(t) = − b′

⊥(t) . (13)

Geometrically speaking, Eqs. (12), (13) imply that the curves a′(t) and b′(t) are related

by inversion through a surface of identical dimension and orientation to the D-branes,

that passes through the centre of the unit sphere. On the other hand, the boundary

conditions at the σ = L(t) end of the string imply that

a′
‖(t − L(t)) = b′

‖(t + L(t)) , (14)
[
L̇(t) − 1

]
a′
⊥(t − L(t)) = −

[
L̇(t) + 1

]
b′
⊥(t + L(t)) . (15)

Any curves a′ and b′ that satisfy Eqs. (12), (13), (14), (15) must also necessarily satisfy

the conditions that we obtain by squaring them and imposing the gauge constraints

Eq. (8), written in the form

|a′
‖|

2 + |a′
⊥|

2 = |b′
‖|

2 + |b′
⊥|

2 = 1 . (16)

It is easily checked that the necessary conditions that we have obtained in this manner

can only be satisfied when L̇ = 0. We have thus confirmed explicitly that the string

solutions for this stationary brane configuration must have constant parameter length,

L(t) = L.

Using L̇ = 0, as well as the boundary conditions Eqs. (12), (13), it is straightforward

to re-write Eqs. (14), (15) in the form

a′(t − L) = a′(t + L) , (17)
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and similarly for b′. Geometrically speaking, a′(t) and b′(t) describe closed curves of

parameter length 2L on the unit sphere.

Equations (14) and (15) are necessary but not sufficient to satisfy the Dirichlet

boundary conditions; they ensure that the string end-points do not travel in any

direction perpendicular to the D-branes, but they do not ensure that the end-points

are actually on the D-branes. Satisfying this extra requirement has two consequences:

firstly, it determines the initial values a⊥(0) and b⊥(0), and secondly — and more

importantly for our purposes — it implies that the curve a′(ξ) must satisfy the condition

1

2

∫ L

−L

a′
⊥(ξ)dξ = ∆ , (18)

where ∆ is a normal vector stretching from the lower brane at σ = L to the upper brane

at σ = 0. In other words, ∆ points in the +z-direction and has magnitude equal to the

inter-brane separation.

Finally, we have to fix the remaining symmetry, namely the space-time symmetry

corresponding to a free choice of space-time coordinates xµ. In other words, we need to

choose a unique inertial frame. One obvious choice would be the zero momentum frame.

This choice is indeed possible, as one can check that the total momentum of the string

P µ ∼

∫ L

0

ẋµ(t, σ)dσ (19)

is a time-like vector, and therefore there exists a Lorentz transformation that would

set the spatial part of this vector equal to zero. However, we need to avoid Lorentz

transformations that involve the Dirichlet directions, as these would change the

configuration of the D-branes. Therefore, the correct solution is to choose the frame in

which only the Neumann component of the momentum, P‖, is zero. In other words, we

choose the unique frame in which the momentum in directions parallel to the branes

vanishes. Obviously, such a choice of frame will not affect the configuration of the

D-branes. It follows that in this frame,
∫ L

0

ẋ‖(t, σ)dσ = 0 . (20)

Combining Eqs. (18) and (20) we get the condition

〈a′〉 =
∆

L
, (21)

with the definition

〈v〉 ≡
1

2L

∫ L

−L

v(ξ)dξ , (22)

for any closed curve v(ξ) on the unit sphere, having parameter length equal to 2L.

(This quantity can be geometrically visualised as the average or centre-of-mass of such

a curve.) Notice that this condition has a corollary that we should have expected on

physical grounds: there is a lower bound on our choice of string parameter length,

L ≥ |∆|.
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We have thus arrived at a geometric method for classifying solutions for a system

of a DBI string constrained by two parallel and stationary D-branes. Working with

a conformal and temporal gauge parametrisation of the world-sheet, and also working

in unique zero Neumann-momentum space-time coordinates, we have found that any

string solution has a unique description in terms of one constant scalar, L, two constant

vectors, a‖(0) and b‖(0), as well as a single closed, parametrised curve on the unit

sphere, a′(ξ) (or, equivalently, b′(ξ)), which satisfies the averaging condition Eq. (21)

(or an equivalent averaging condition for b′).

Cusps

To investigate cusps formation in DBI strings ending on two stationary and parallel

Dn-branes, we will follow the same approach as for Nambu-Goto string loops, we are

more familiar with. Actually, the geometric visualisation of the DBI string solutions

described here is similar to that of closed Nambu-Goto string loops [6], but with two

important differences. Firstly, whilst with closed string loops we are free to choose both

curves a′ and b′ independently, for a DBI string ending on two stationary and parallel

Dn-branes we can only choose one of these curves freely; the other one is automatically

determined by the inversion described by Eqs. (12), (13). Secondly, with closed string

loops we can always choose the zero momentum frame, so that the average of the curves

a′ and b′ can always be constrained to the centre of the unit sphere. Here we can only

constrain the average of a′ to a unique point within the unit sphere determined by the

separation and orientation of the D-branes, ∆. When we investigate the formation of

cusps in this system, we will see the consequences of the above mentioned differences.

Cusps are found wherever the instantaneous velocity of a part of the string reaches

the speed of light. As with closed strings, it is straightforward to show that cusps are

present in DBI strings ending in two stationary and parallel branes if, and only if, the

curves a′ and b′ intersect on the unit sphere. Therefore, the prevalence of cusps in a

string configuration is directly related to the prevalence of intersections amongst pairs

of closed curves on the unit sphere, that satisfy a number of properties listed above.

For smooth closed string loops, where a′ and b′ are independent smooth curves

whose centres-of-mass are at the centre of the unit sphere, it is very difficult for a′ and

b′ curves to avoid intersection. Therefore, as it is usually said, closed string loops have

generically cusps [28]. For the DBI string under consideration here, the curves are no

longer independent. The exact nature of their relationship to each other depends on the

dimensionality of the Dn-branes. The important case for cosmological implications is

n = 1 (D1-branes), which we discuss in detail in the following sections. For n = 2, the

two curves are reflections of each other across a plane passing through the centre of the

unit sphere (see, Fig.1); for n = 1 the two curves are inversions of one another through

a line passing through the unit sphere; and for n = 0 the two curves are inversions of

one another through the centre of the unit sphere. Furthermore, the centres-of-mass of

the two curves are no longer necessarily located at the centre of the unit sphere – their
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v‖

v‖
v⊥

∆

∆

ր
Plane of
reflection

a
′ (t − σ)

b
′ (t + σ)

Figure 1. The vectors a′ (t− σ) and b′ (t+ σ) trace out closed curves on unit spheres

that are separated by the inter-brane distance.

locations are now governed by the inter-brane separation.

Even though we have managed to reduce the problem of cusps to a rather simple-

looking game involving intersections of curves satisfying certain properties, it turns out

to be very difficult to make any quantitative predictions about this geometric puzzle.

Nevertheless, there are a few observations that are worth pointing out.

Firstly, for any n, the likelihood of cusps falls to zero as L approaches the inter-brane

separation distance |∆| (i.e., the centres-of-mass of the curves approach the surface of

the unit sphere). In this limit, the two curves, related by inversion, are confined to

shrinking antipodal regions of the sphere and the likelihood of intersection becomes

vanishingly small.

Secondly, for coincident D2-branes (with the DBI string having its end-points on

these coincident branes) there are always cusps. This is because the two curves have

centres-of-mass at the centre of the unit sphere, and are related by reflections through a

plane passing through the centre of the unit sphere. The first condition forces each curve

to cross the plane of reflection at least twice, whilst the second condition implies that

the two curves intersect whenever they cross the reflection plane. Assuming continuity,

it is therefore reasonable to expect that even for the case of non-coincident D2-branes,

the likelihood of cusps will grow in the limit L ≫ |∆|.

Thirdly, the situation is different for coincident D1- and D0-branes, as although the

averaging condition still forces the two curves to pass through the same plane as before,

whereas the inversion property no longer implies that the two curves have to cross this

plane at the same point. Therefore, intersections are not guaranteed in the same way

as they are for coincident D2-branes.

For D1-branes however we can see that the two curves will generically intersect

whenever the line though which they are inverted is enclosed by the closed curves. To

see this consider the two vectors perpendicular to the inversion line that end on the

closed curve. Typically these will not be anti-parallel, however if they are, then these

points will be unaffected by the inversion and the a′ and b′ curves will intersect. If

the inversion line is enclosed by the closed curve, then at one extreme the two vectors
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ψ = 0ψ
ψψ = π

ψ = 2π

Inversion line

Figure 2. When the line through which the two closed curves are inverted pierces the

closed curve, then there will generically be and intersection of the two curves. This

can be seen by considering the two vectors perpendicular to the inversion line, ending

on the curve. When the angle between these vectors, ψ, is π the inverted curve will

intersect the original curve (marked with crosses).

will have zero angle between them and at the other extreme this angle will tend to 2π.

By continuity there must be a point at which the angle between the two vectors is π

and hence we will get the intersection between the a′ and b′ curves, necessary for cusps

formation (see, Fig. 2).

We can extend the above, by considering closed curves that do not encircle the

inversion line, but for which there exists a line, AB, that intersects the inversion line

at ninety degrees and is (topologically) on the opposite side of the closed curve (see,

Fig. 3). To see that this scenario also has points on the closed curve that are invariant

under the inversion, consider the plane containing the inversion line and the line AB.

The closed curve will have to intersect this plane at least four times (with the possibility

that two or more of these intersection points are coincident in the extreme cases). Then

as before we can construct the vectors perpendicular to the inversion line that end on

the closed curve. The angle between these two vectors will be zero at both extremes

and because the line AB in on the opposite side of the closed curve to the inversion line,

there will be at least one point at which the angle between the two vectors is greater

than π. By continuity, there exists a pair of points on the closed curve at which the

angle between the vectors is π and hence a pair of points on the closed curve that are

invariant under the inversion, i.e. there will be cusps. We can then classify all possible

closed curves by considering a general line intersecting the inversion line at right angles

and describing the closed curve by whether it goes over or under each leg of the resulting

cross (see, Fig. 4). If we label the legs of the cross on the inversion line by 1, 3 and the

remaining legs of the cross by 2, 4 then the following curves have cusps,

(1o, 2u, 3u, 4u) , (1o, 2o, 3u, 4u) , (1o, 2u, 3o, 4u) ,

(1u, 2u, 3o, 4u) , (1o, 2u, 3u, 4o) ,
(23)
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ψ = 0

ψ = 0

ψ

ψ

Inversion line

A B

Figure 3. If there exists a line that intersects the inversion line at right angles, AB,

that is topologically on the opposite side of the closed curve, then there will be a pair

of points that are invariant under the inversion, i.e. there will be cusps. The sphere

has not been drawn for clarity.

1 1 1

2 2 2

3 3 3

4 4 4

(1u, 2u, 3o, 4u) (1o, 2u, 3o, 4u) (1u, 2o, 3u, 4u)

Figure 4. The legs of the inversion line are labelled (1, 3) and the legs of the line

intersecting it at right angles are labelled (2, 4). We can then classify possible curves

by whether they go over or under each leg. Three examples are give above, the first

two will generically contain cusps, whilst the last will not.

as well as their reflections o ↔ u, where the subscripts indicate whether the curve went

over Xo, or under Xu the leg X. The first and second groups in Eq. (23) have cusps

because the inversion line is encircled by the closed curve, whilst the right-hand most

curve has cusps by the generalisation given above. In total there are another three

curves (and their reflections) that will not produce cusps, (1o, 2o, 3o, 4o), (1u, 2o, 3u, 4u)

and (1u, 2u, 3u, 4o). If each of these possibilities are equally likely, which is a reasonable

assumption if the centre of the mass of the closed curve and the centre of the cross are

at the origin, then we would expect to have cusps in more than half of curves. As the

centre of mass of the closed curve is moved away from the origin, the probability of each

of these curves would no longer be equal. In particular as the closed curves become

restricted to shrinking antipodal region we can see that the (1o, 2o, 3o, 4o) curve (and

its reflection) would become increasingly more likely, thus reducing the probability of

having cusps, in line with our earlier expectations.

Thus, we have shown that whilst cusps may not be a generic feature of a string

stretched between two D1-branes, when |∆| ≪ L we would expect to find cusps in a
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B

A

Inversion line

a

b

Figure 5. If a closed curve a intersects the plane made up of the inversion line and

a line perpendicular to it as shown then it will encircle both lines. The inversion of

a through the inversion line results in a curve that intersects the plane through two

opposite quadrants. For any deformation of this inverted closed curve, b, that respects

the positions of these intersection, there will be a point at which the two curves a and

b intersect. In the diagram a top down view of the plane and unit sphere is given,

with the curves a and b extending out of the page.

significant fraction of cases. In the following we will need a slight generalisation of the

above proofs.

For the cases of the closed curve encircling the inversion line, we have seen that

the closed curve will intersect its inversion, here we extend this to deformations of

this inverted curve. In particular, consider a closed curve a that encircles both the

inversion line and a line AB intersecting the inversion line at right angles (the two

curves in the second column of Eq. (23)). The inversion of a will yield a closed curve b

that also encircles both these lines, but with the opposite orientation. Any subsequent

deformation of b (or indeed a) that preserves the fact that the curve encircles both

lines, will result in intersections between the two closed curves. To see this consider

the plane consisting of the inversion line and AB. We arbitrarily define one side of this

plane to be positive, then we have for the closed curves a and b to correctly encircle

the inversion line and the line AB, that they must intersect the plane twice each, in

opposite quadrants as in Fig. 5. The angle between the two vectors perpendicular to

the inversion line (or AB) and ending on a and b must at some point reach zero, which

implies the closed curves intersect. This holds equally for the negative side of the plane.

Essentially what this says is that the result for closed curves and their inversions through

a line is a topological one and holds equally well for subsequent deformations of either

closed curve that preserves the topological relations between the closed curves and the

inversion line. The requirement that the relation between the line perpendicular to the
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inversion line and the closed curves is there to ensure that the subsequent deformation

does not ‘undo’ the inversion.

3. Three string junctions

Let us consider the simplest DBI string system that contains a junction: that of three

DBI strings joined at a single junction. For the sake of simplicity, we attach the free ends

of the strings (the ends that are not connected to the junction) to three flat, stationary

and parallel Dn-branes, which (without loss of generality) are spatially separated in the

z-direction. In what follows, only the boundary conditions for the three DBI strings

associated with these Dn-branes are important and we need not be concerned with the

precise nature (dimensionality) of the branes themselves‡.

We label the three strings with an index i = 1, 2, 3. As in Section 2, we parametrise

each string’s world-sheet, xµ
i (τ, σ), so that σ = 0 corresponds to the end of the string

attached to a Dn-brane, whilst σ = Li(τ) corresponds to the three-string junction.

Thus, Li(τ) is the parameter length of the ith-string at world-sheet time τ . We denote

the world-line of the junction by x̄µ(τ) and the (single-component) gauge field present

on the junction by Ā(τ).

We exploit the re-parametrisation invariance of each string world-sheet to work in

conformal gauge. In this gauge, the action for this configuration of three DBI strings

reads [15]

S = −
∑

i

µi

∫
dτ

∫ Li(τ)

0

dσ

√
−x′

i
2ẋ2

i − λ(F i
τσ)

2

+
∑

i

∫
dτ {fi(τ) · [xi(τ, Li(τ)) − x̄(τ)]

+gi(τ)
[
Ai

τ (τ, Li(τ)) + L̇iA
i
σ(τ, Li(τ)) − Ā(τ)

]}
, (24)

where µi is the tension of the ith-string, which for a (p,q)-string is given by µi = |qi|/(gsλ),

and Ai
α and F i

αβ are the gauge field and gauge field strengths respectively on the ith-

string. The Lagrange multipliers fi(τ) constrain the strings to meet at the junction x̄(τ),

whilst the Lagrange multipliers gi(τ) impose to the component of each string’s gauge

field that is tangential to the junction world-line to coincide with the junction gauge

field Ā(τ).

We then derive the equations of motion for this action§. By varying the action

with respect to xi
µ(τ, σ) and Ai

α, we find that the equations of motion for the string

world-sheets are:

ẍµ
i − xµ

i
′′ = 0 , (25)

‡ This will be important later on, when we discuss (as an example) the case of a three string junction

composed by an F-,D-string, and their FD-string bound state.
§ This was first done in Ref. [15]; however we shall include the results here for the sake of clarity and

completeness.
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and the equations of motion for the gauge fields once again imply the conservation of

electric flux along each string, i.e., ∂τpi = ∂σpi = 0, where

pi =
λ2µiF

i
τσ√

−x′
i
2ẋ2

i − λ (F i
τσ)2

. (26)

The above variations of the action also lead to certain boundary conditions at the

junction which, when combined with the equations obtained by varying the action with

respect to x̄(τ) and Ā(τ), give the following conservation laws:
∑

i

µ̄i

(
xµ

i
′ + L̇iẋ

µ
i

)
= 0 (27)

and
∑

i

pi = 0 , (28)

where the effective string tension µ̄i is

µ̄i =
√

λ2µ2
i + p2

i =

√
q2
i

g2
s

+ p2
i . (29)

Finally, variation of the action with respect to the Lagrange multipliers, fi(τ) and gi(τ),

leads to the required constraints

xi (τ, Li(τ)) = x̄ (τ) (30)

and

Ai
τ (τ, Li(τ)) + L̇iA

i
σ (τ, Li(τ)) = Ā(τ) . (31)

The action given in Eq. (24) can only represent a network of (p,q)-strings when none

of the qi’s are zero. In the presence of a (p,0)-string, this action has to be modified

by replacing the corresponding DBI kinetic term by a Nambo-Goto (gauge-free) kinetic

term with string tension µi = p. Nevertheless, it is straightforward to show that the

equations of motion, boundary conditions and conservation equations, derived from this

modified action, agree with those given above for the original action.

Furthermore, when we are dealing with a system of (p,q)-strings (rather than generic

DBI strings, which can have arbitrary tensions), we can show that the strings must

satisfy the additional conservation condition [15]
∑

i

qi = 0 , (32)

which prevents any of the D-strings contained in the three (p,q) bound states from ending

at the junction. [Equation (28) has much the same consequence for the F-strings.]

Finally, as mentioned in the previous section, the conformal gauge condition

admits a residual re-parametrisation invariance, which can be fixed by providing a

supplementary gauge condition. Once again, one can show that temporal gauge,

τ = t, xµ
i (t, σ) = (t,x(t, σ)) and x̄µ(t) = (t, x̄(t)) , (33)
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is both consistent with the equations of motion, and also completely fixes the world-sheet

parametrisation.

We note that the above equations of motion, the boundary conditions and the

conservation laws combine to give us a system that exhibits self-duality under the S-

duality transformation

p ↔ q and gs →
1

gs

. (34)

This shall become important later, when we come to discuss the properties of this system

in the weak coupling limit gs ≪ 1; any conclusion we make about the behaviour of the

system in this regime also applies in the strong coupling limit gs ≫ 1, provided that we

interchange the roles of the F- and D-strings.

We shall now try to classify the string solutions of this system in a geometric

manner, by attempting to follow steps similar to those taken in Section 2.

In conformal and temporal gauge, we have the usual wave equation for each string

world-sheet

ẍi − x′′
i = 0 . (35)

This admits the general solution

xi =
1

2
[ai (t − σ) + bi (t + σ)] , (36)

for arbitrary single-variable functions ai and bi, subject to the conformal gauge

constraints

|a′
i|

2 = |b′
i|

2 = 1 . (37)

As with the previous single-string system, we must investigate how the boundary

conditions on the three strings affect our hitherto free choice in selecting the two curves

on the unit sphere that a′
i and b′

i represent.

The Dn-brane boundary conditions at the σ = 0 end of each string are the most

straightforward; they provide the following conditions:

a′
i‖(t) = b′

i‖(t) , (38)

a′
i⊥(t) = − b′

i⊥(t) , (39)

which are analogous to Eqs. (12) and (13).

We next consider the implications of the boundary conditions at the junction, given

by Eqs. (27) and (30), which in temporal gauge are more conveniently expressed as:
∑

i

µ̄iL̇i = 0 , (40)

∑

i

µ̄i

(
x′

i + L̇iẋi

)
= 0 , (41)

x
µ
i (t, Li(t)) = x

µ
j (t, Lj(t)) , ∀ i, j . (42)
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By substituting the general solution, Eq. (36), into Eq. (41) and the t-derivative of

Eq. (42), we obtain three independent conditions, given by

[µ̄1 + µ̄2 + µ̄3]
[
1 + L̇1

]
b′

1 (t + L1(t)) =

[µ̄1 − µ̄2 − µ̄3]
[
1 − L̇1

]
a′

1 (t − L1(t))

+ 2µ̄2

[
1 − L̇2

]
a′

2 (t − L2(t)) + 2µ̄3

[
1 − L̇3

]
a′

3 (t − L3(t)) , (43)

and its two counterparts under cyclic permutation of the string label indices.

Following the same methodology as in Section 2, we look for necessary conditions

that need to be satisfied by curves that are subject to the above constraints, as well as

to those we obtain by squaring the above equations and imposing the gauge constraints,

Eq. (37). By doing so, we arrive at a system of three simultaneous equations which

are polynomial in the three L̇i. We can “solve” this system of simultaneous equations,

in the sense that we can re-arrange them to give a set of expressions for L̇i. However,

since the coefficients in these simultaneous polynomial equations involve scalar products

between the various a′
i(t−Li(t)), which themselves depend on L̇i, these expressions for

L̇i will in general be ordinary differential equations in Li(t). Therefore, by inverting this

system of equations, we find seven independent solutions; six of those are

L̇1 = ±1 , L̇2 = ±1 , L̇3 = ∓
µ̄1 + µ̄2

µ̄3
, (44)

and cyclic permutations. Notice that these solutions happen to be independent of Li,

and therefore can be integrated directly. The seventh solution however does depend on

Li, via the scalar products

cij = a′
i(t − Li(t)) · a

′
j(t − Lj(t)) , (45)

and is given by

µ̄1

µ̄1 + µ̄2 + µ̄3

(
1 − L̇i

)
=

M1 (1 − c23)

M1 (1 − c23) + M2 (1 − c13) + M3 (1 − c12)
, (46)

with cyclic permutations giving expressions for L̇2 and L̇3, where

M1 = µ̄2
1 − (µ̄2 − µ̄3)

2 , (47)

with cyclic permutations giving M2 and M3, respectively.

Let us briefly examine the first six solutions. By substituting these solutions back

into Eq. (43), we find that three of them require that

a′
1(t − L1) = a′

2(t − L2) = a′
3(t − L3) , (48)

whilst the other three require that

b′
1(t + L1) = b′

2(t + L2) = b′
3(t + L3) . (49)

The seventh solution, Eq. (46), gives us greater freedom in choosing a′
i(t − Li) and

b′
i(t + Li) – that is, for any given set of a′

i(t − Li) (as long as they are not all equal),

we can calculate L̇i using Eq. (46) and b′
i(t + Li) using Eq. (43).
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Furthermore, consider calculating L̇i using Eq. (46) for initially unequal a′
i(t−Li),

and subsequently taking the limit where a′
i(t − Li) become equal. The values of L̇i

in this limit are, in general, different from the values of L̇i suggested by Eq. (44) for

exactly equal a′
i(t − Li). In other words, there is no way of continuously deforming a

string solution that is described by Eq. (46) into one of the special solutions described

by Eq. (44)‖.

Combining the two results above, we conclude that the special string solutions

characterised by Eq. (44) form a disconnected and effectively lower dimensional part of

the space of solutions. Thus, when we discuss generic properties of this system, we may

safely neglect these special solutions as, although they are perfectly valid as dynamical

solutions, they take up an effectively zero-volume portion of the total space of solutions.

Finally, notice that the conditions, Eq. (38), (39), (40) and Eq.(43) and its two

counterparts under cyclic permutation, are not quite enough to fully enforce the Dirichlet

and junction boundary conditions. Equation (39) forces the non-junction ends of the

strings to move tangentially to the Dn-branes, but in order to ensure that these ends

actually meet the branes, we need to impose the extra conditions

xi⊥(0, 0) = Di , (50)

where Di is the position vector of the point where the Dn-brane, attached to the ith-

string, intersects the z-axis. Similarly, Eq. (43) and its cyclic permutations force the

junction ends of the string to move in tandem with one another, but in order to ensure

that these ends actually meet at the junction, we need to impose the extra conditions

xi(0, Li(0)) = xj(0, Lj(0)) , ∀ i, j . (51)

It is straightforward to check that the effect of enforcing these conditions (apart from

fixing the constants ai⊥(0) and bi⊥(0), which are inconsequential for our purposes) is

to introduce the following averaging constraints on the curves ai:
∫ Li(0)

−Li(0)

a′
i⊥(ξ)dξ −

∫ Lj(0)

−Lj(0)

a′
j⊥(ξ)dξ = ∆ij , ∀ i, j , (52)

where

∆ij = Di − Dj , (53)

is the normal separation vector from the ith to the jth Dn-brane.

Finally, as discussed in Section 2, we fix the remaining space-time symmetry in this

system by choosing the unique inertial frame in which the Neumann component total

momentum of the system, P‖, is zero. This leads to the averaging condition

∑

i

∫ Li(0)

−Li(0)

a′
i‖(ξ)dξ = 0 . (54)

At the end of this long process, we have succeeded in classifying dynamical solutions

of the DBI string system containing a junction in terms of the curves on the unit sphere

‖ We note that in Ref. [14] only Eq. (46), and its cyclic permutations, have been discussed as string

solutions.
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a′
i(t− σ) and b′

i(t + σ), the scalar functions Li(t) and the constants ai(0) and bi(0). In

particular, we have found that any choice of these quantities, subject to the constraints

given by Eqs. (38), (39), (43), (46), (52) and (54), corresponds to a unique string solution

(and vice versa).

Although most of these constraints have clear geometrical interpretations (as it was

the case in Section 2), the constraints represented by Eqs. (43) and (46) are not at all

easy to visualise for general string tensions µ̄i. Moreover, as cusps on these strings are

associated with intersections of the curves a′
i and b′

i, we need a full geometric picture of

these constraints in order to consider the likelihood of cusps in this system. Fortunately

however, we shall find that progress can be made in the case of (p,q)-string junctions

for certain limits of the coupling constants.

Example: An F-, D-, FD-string junction

Suppose that the string labelled by “1” is a (1,0)-string (F-string); the string labelled

by “2” is a (0,1)-string (D-string) and the string labelled by “3” is a (1,1)-string (FD-

string). Using Eq. (29) we can expand the effective tensions of these strings as a series

in the perturbative string coupling, gs:

µ̄1 = 1 , µ̄2 =
1

gs

, µ̄3 =

√

1 +
1

g2
s

=
1

gs

+
gs

2
+ O

(
g3
s

)
. (55)

Therefore, for gs ≪ 1, we can write down a perturbative expansion for a′
i:

a′
i = a′

i

(0)
(ξ) + gsa

′
i

(1)
(ξ) + g2

sa
′
i

(2)
(ξ) + · · · (56)

and similarly for b′
i and L̇i, and substitute these expansions into the boundary conditions

given in Eqs. (43) and (46), again fixing the boundary conditions at the σi = 0 ends of

the three strings by attaching them to parallel D branes. By doing so, and matching

coefficients order-by-order, we find the following boundary conditions for the leading

order terms:
(
S(0)

23 − 2S(0)

13 − 2S(0)

12

)
b′

1
(0)

= S(0)

23 a′
1
(0)

− 2S(0)

13 a′
2
(0)

− 2S(0)

12 a′
3
(0)

, (57)

b′
2
(0)

= a′
3
(0)

, (58)

b′
3
(0)

= a′
2
(0)

, (59)

and

L̇(0)

1 = 1 −
S(0)

23

S(0)

12 + S(0)

13

, L̇(0)

2 =
S(0)

12 − S(0)

13

S(0)

12 + S(0)

13

, L̇(0)

3 =
S(0)

13 − S(0)

12

S(0)

12 + S(0)

13

, (60)

where Sij = 1
2
(1 − cij) and, for the sake of clarity, we have used the short-hand

a′
i = a′

i(t − Li(t)) and b′
i = b′

i(t + Li(t)) . (61)

Being interested only to the leading-order behaviour of the strings, we shall henceforth

drop the superscripts (0) in the discussion on the perturbative dynamics of the system.
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The above equations have a highly intuitive physical interpretation, which is best

seen by rewriting Eqs. (58) and (59) in the form

ẋ2(t, L2(t)) = ẋ3(t, L3(t)) and x′
2(t, L2(t)) = −x′

3(t, L3(t)) . (62)

In other words, as gs → 0, the D-string and FD-string effectively become one continuous

string of constant (overall) length, L2(t) + L3(t), obeying the usual equation of motion,

which is unaffected by the dynamics of the much lighter F-string.

The dynamics of the F-string are then determined by the boundary conditions,

Eqs. (57) and (60), imposed by the combined string (composed by the D- and the

FD-string) on the σ = L1(t) end of the F-string. Therefore, as far as the F-string

is concerned, the combined string is effectively a D1-brane (with its own prescribed

motion) on which the F-string produces no back-reaction. These boundary conditions

may be better understood when expressed in terms of the orientation, x′
2(t, L2(t)), and

velocity, ẋ2(t, L2(t)), of the effective D1-brane, as:
[
|x′

2|
2 − 2(1 − a′

1 · ẋ2)
]
b′

1 = −|x′
2|

2Ra′
1 − 2(1 − a′

1 · ẋ2)ẋ2 , (63)

and

L̇1 =
|ẋ2|

2 − a′
1 · ẋ2

1 − a′
1 · ẋ2

, (64)

where

Ra′
1 = −a′

1 +
2(a′

1 · x
′
2)x

′
2

|x′
2|

2
, (65)

is a linear transformation that inverts a′
1 through the line {λx′; λ ∈ R}, which is parallel

to the combined string and passes through the origin of the unit sphere.

After a little thought, it is apparent that Eq. (63) causes b′
1 to lie on the semi-circle

that is obtained by projecting the line {Ra′
1 + λẋ2; λ ∈ R} onto the unit sphere (ẋ2 is

perpendicular to x′
2 by the conformal gauge conditions). However, the exact position of

b′
1 on this semi-circle depends on both the magnitude, |ẋ2|, and the angle that ẋ2 makes

with a′
1, in a rather complicated manner. Nevertheless, it is possible to make further

progress in two interesting limits: firstly, when the combined string is moving slowly

at the junction (|ẋ2| ≪ 1); and secondly, when the combined string is moving highly

relativistically at the junction, (|x′
2| ≪ 1). In both limits, we follow a perturbative

procedure as before by expanding Eqs. (63) and (64) in the relevant small parameter

and extracting the leading order behaviour.

When the combined string is moving slowly (|ẋ2| ≪ 1), we obtain the following

leading order boundary conditions:

b′
1 = Ra′

1 and L̇1 = 0 , (66)

which are exactly the Dirichlet boundary conditions that we derived in Section 2 for a

single DBI string attached to a non-dynamical D1-brane at its σ = L end.

As we saw in Section 2, a string ending on D1-branes will have cusps a significant

fraction of the time. Here, we have found that precisely the boundary conditions

necessary for these cusps to form, occur for an F-string at a three string junction,
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in the limit |ẋ2| ≪ 1. We have taken the σ = 0 end of the F-string to have boundary

conditions associated with a D-brane, which can now be replaced with a second three

string junction. Thus, we see that cusps would be expected to form on F-strings ending

on two three string junctions, in the limit that the D/FD-string is moving slowly. This

can be extended by noting that for a general ẋ2 we have a deformation of a pure

inversion. In particular, a point on the curve a′
1 is inverted through x′

2 and then pulled

along the semi-circle made up of the inverted point and ± ̂̇x2 ≡ ẋ2/|ẋ|. In Section 2, we

showed that, if we consider the plane containing the lines x′
2 and ẋ2, then a curve a′

1

that encircles both lines, i.e. pierces the plane in opposite quadrants, will intersect the

curve b′
1 provided that b′

1 also pierces the plane in opposite quadrants. By considering

the projection of Eq. (63) onto both x′
2 and ẋ2, it is easily shown that

sign (b′
1 · x

′
2) = sign (b′

1 · ẋ2) . (67)

Thus, we see that indeed, b′
1 does intersect the plane in opposite quadrants and hence

will intersect a′
1 in a significant proportion of cases.

It is also worth mentioning that the |ẋ2| ≪ 1, or static brane limit, is the

approximation taken in the quatisation of standard string theory. Since we are working

with the DBI action, Eq. (24), which is derived as a low energy limit of string theory, we

should for consistency restrict ourselves to this situation. The action given by Eq. (24)

can be taken as a prototype for string junctions away from this limit, however in this

case the motivation from string theory becomes less clear.

In addition, we wish to consider the phenomenology of, for example, brane inflation,

in which it is expected that networks of F- and D- strings are produced, which can go

on to form junctions. These two networks would be produced at the same energy scale

and because the are independent we would generically expect the heavy D-strings to be

moving slower than the light F-strings. Thus, the limit |ẋ2| ≪ 1 would be satisfied early

in the evolution of the networks. As the dynamics of the strings become coupled via the

formation of junctions, it is no longer clear that this would be the case and simulations

would be required to estimate when this approximation breaks down. However, as we

have shown, cusps will remain significant away from this simplifying limit.

We find that a junction formed from an F-, D- and FD-string behaves as an F-

string ending on a static (locally) straight D-string. We have restricted our attention to

the case where the σi = 0 ends of the strings are attached to a D-brane, however if we

take this D-brane to be a D-string, then our results show that it could be replaced with

another F-string, D-string and FD-string junction. Thus, an F-string stretched between

two three-string junctions behaves as an F-string between two D1-branes, to order gs.

In particular, Eq. (66) implies that the coordinate length of the F-string is constant, as

required. As we showed in Section 2, we expect cusps to form on a significant fraction

of such strings, in contrast to standard cosmic strings which can form cusps only on

closed strings.
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4. Phenomenology

At the end of brane inflation a network of D- and F- strings is expected to form.

Although the intercommutation probability for two D-stings is less than one [29], in

the weak string coupling limit (gs → 0) it is always possible for an F- and D- string

to intercommute at a collision [15], forming a three string junction. As we have seen

an F-string ending on two such three string junctions will generically have cusps, at

least in the regime where the separation between the two D-strings is small, i.e. when

the distance between the two three string junctions is small. We have seen that in this

limit, the heavy D/FD-string behaves as a single infinitely long string that is unaffected

by the dynamics of the F-string. At the level of approximation used here (of order gs),

there is no energetic difference between the D-string and the bound FD-string, however

simulations [22] have shown that the FD-string will grow at the expense of the D string.

Explicit calculations of the intercommutation probability of F-strings with multiple

bound state strings has been done [29] and in the gs → 0 limit they are identical. Thus,

an F-string can intercommute with an FD-string to form a multiple bound state, with,

to order gs, the same probability of intercommutation as with a D-string. In effect then,

we have two types of strings evolving in such a network, heavy strings which are D or

FD strings or multiple bound states, and light F strings, which move in the background

of the heavy strings, but do not affect their dynamics.

For cusps to be significant to the dynamics of the F-string, we require that the

typical separation of the heavy strings is small compared to the length of F-string

stretched between them. This condition is met early in the evolution of the string

network [4], where the typical inter-string distance is of the order of the symmetry

breaking scale [6] and the string network is in the friction dominated regime. As the

heavy strings move apart, the F-strings ending on them will stretch, increasing the inter-

string distance and reducing the importance of cusps. This is in addition to the fact that

as the heavy strings move beyond the horizon scale, any effects of cusps would be lost.

Thus, phenomenological consequences of cusps from junctions on cosmic superstrings

will be most significant at early times, close to the end of brane inflation. This is similar

to the situation in cosmic strings when particle production from cusps on string loops is

dominant in the friction dominated regime and was used as a baryogenesis mechanism

in Ref. [30].

The radiative properties of the cusps from F-strings are similar to those of standard

cosmic strings. In particular, the mechanism for the emission of gravitational and

particle radiation from cusps on loops of cosmic string [23, 24, 25, 31] also applies

to cusps on strings between junctions. As in the standard case the energy (and entropy)

released by cusps goes into excitation of all available fields. In the cosmic string case

these are just the standard model fields, however here they could include the dilaton [27],

Ramond-Ramond [32, 16] and moduli fields and all other fields present in the low energy

limit of string theory. In particular, it is possible that gravitinos and other stable

supersymmetry particles may be produced, in addition to standard model particles.
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Since this particle production would predominately occur at early times, cosmological

events such as baryogenesis and big bang nucleosynthesis should be sensitive to the

presence of such cusps. This is in addition to the fact that cusps on such a network

would contribute to the gravitational wave background [23, 24, 25].

Under S-duality the rôle of F- and D-strings is reversed; however the results derived

here apply with the heavy strings now being the F-strings and the bound FD-string

states. In this case the cusps would be present on the light D-strings ending on three

string junctions, which allows a connection to be made with the cosmic strings of

supergravity that coincide with D-strings in this limit [33], enalbing their properties

to be studied in the supergravity limit [34].

5. Conclusions

We have shown how to characterise classical solutions to low energy effective string

actions in an intuitive geometric manner. We have shown how the boundary conditions

for strings ending on D-branes can lead to cusps, points with luminous velocity, in such

solutions, in an analogous manner to cusps of standard cosmic string loops. In particular,

we have demonstrated that cusps would be a generic feature of an F-string ending on

two (parallel and stationary) D-strings. We have then considered general three string

junctions that are possible in DBI-actions and have shown that the boundary conditions

of such a junction can similarly be characterised and understood in a geometric setting,

for the case of an F- and D-string meeting an FD-string. We find that this system exactly

reproduces the situation of an F-string ending on two D-strings and hence a pair of such

junctions would generically include cusps. We have shown that this remains true even

when the D-strings are moving.

The relevance of such a scenario is that networks of F- and D-strings are expected

to form at the end of brane inflation. Collisions of such networks would lead to pairs of

three string junctions, each of which would then be expected to have cusps, opening up

a new energy loss mechanism for such networks. Our new feature is in addition to cusps

on string loops. Importantly the formation and existence of cusps is expected to be

most significant early in the evolution of the network. The fact that the radiation from

such cusps should include all available fields present in the low energy string theory,

makes it possible that signatures of their presence would appear in baryogenesis or big

bang nucleosynthesis.

The extreme nature of cusps means that they are possible targets for observations

of string networks and here we have shown that it is, in principle, possible to distinguish

between standard cosmic strings formed during cosmological phase transitions and

cosmic superstring, relics of brane inflation. The observation of three string junctions

would provide strong evidence for string theory. In future it might be possible to observe

the emission of radiation from cusps and the distribution of such cusps.
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